IV054 Coding, Cryptography and Cryptographic Protocols **2020 - Exercises VIII.**

- 1. (3 points) Sign your UČO with the following algorithm:
 - (a) Hash your UČO using a hash function $h(x) = 5^x \mod 1033$ and label it h.
 - (b) Sign h with an elliptic curve variant of the ElGamal signature scheme with

$$E: y^2 = x^3 + 3x + 983 \mod 997$$

public points P = (325, 345), Q = xP = (879, 211) and secret key x = 140. Use random component r = 339. Note that the order of P in E is 1034.

- 2. Consider elliptic curves over \mathbb{F}_7 .
 - (a) (3 points) Give examples of an elliptic curve with the minimal and with the maximal number of points. List their points. Justify your answer.
 - (b) (5 points) Give an example of two elliptic curves having 9 elements but with a different group structure. Justify your answer.
- 3. (5 points) Let $E_p: y^2 = x^3 + ax + b$ be an elliptic curve over \mathbb{F}_p where p is a prime.
 - (a) Prove the following theorem:

$$|E_p| = p + 1 + \sum_{x=0}^{p-1} \left(\frac{x^3 + ax + b}{p}\right)$$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol.

- (b) Give an upper bound on $\left|\sum_{x=0}^{p-1} \left(\frac{x^3+ax+b}{p}\right)\right|$.
- 4. (3 points) Using the fact that the function $f(x) = 2^x \mod 1927$ has a period r = 460, factorize 1927 without using brute force.
- 5. (3 points) Consider the elliptic curve $E: y^2 = x^3 + 3x + 7 \pmod{113}$ with points (74, 3) and (28, 11) having order 3 and 14, respectively.

Calculate the number of points of E. (Do not use brute force.)

6. (3 points) Alice and Bob are using the elliptic curve variant of the Diffie-Hellman key exchange protocol. You managed to intercept Alice sending $n_A P = (55, 0)$ to Bob but nothing else, not even the public elliptic curve they are using. What are all the possible keys Alice and Bob can now share?