IV054 Coding, Cryptography and Cryptographic Protocols **2020 - Exercises VI.**

1. (3 points) Use the Chinese reminder theorem to solve the following system of linear congruences (for $0 \le x < 1309$):

$$x \equiv 6 \pmod{17}$$
$$x \equiv 3 \pmod{7}$$
$$x \equiv 9 \pmod{11}$$

Show computation steps in detail.

- 2. (2 points) Determine which of the numbers 1,..., 10 are quadratic residui modulo the prime 8009 without using brute force.
- 3. (4 points)
 - (a) Encrypt your UČO (personal identification number) using the Rabin cryptosystem with n = 698069. Then calculate all four possible decryptions of the ciphertext you calculated, with the knowledge that $n = 887 \times 787$.
 - (b) Encrypt your UČO with the ElGamal cryptosystem with p = 567899, q = 2, x = 12345 and random choice r = 938.
- 4. (6 points) Consider the following hash function h(m):
 - i. Choose a prime p such that $q = \frac{p-1}{2}$ is prime.
 - ii. Choose primitive roots $\alpha, \beta \in \mathbb{Z}_n^*$.
 - iii. The hash of a message m = x + yq with $0 \le x, y \le q 1$ is then defined as

 $h(m) = \alpha^x \beta^y \mod p.$

Show that finding two colliding messages $m \neq m'$ with h(m) = h(m') is at least as hard as solving the discrete logarithm problem $\log_{\alpha} \beta \pmod{p}$.

- 5. (5 points) Consider a group of 5 people. What is the probability that
 - (a) at least two
 - (b) exactly two
 - (c) at least three

of them was born on the same day of the week?

Assume that each day of the week (Monday, ..., Sunday) is equally likely as a birthday.

6. (5 points) Consider the Rabin cryptosystem with public key n = pq, where $p \equiv q \equiv 3 \mod 4$. Show that each of the four possible decryptions x_1, x_2, x_3, x_4 of ciphertext c, is uniquely determined by two bits of information – its parity $(x_i \mod 2)$ and Jacobi symbol $\left(\frac{x_i}{n}\right) \in \{1, -1\}$. You can use properties of Jacobi symbol without proof.