IV054 Coding, Cryptography and Cryptographic Protocols **2020 - Exercises I.**

- 1. (3 points)
 - (a) Find the minimal distance of the code $C = \{11111, 00100, 10010, 01001\}$.
 - (b) Using the code C, decode the strings 11011, 01101, 10011, 00111 according to the nearest neighbor decoding strategy.
- 2. (5 points)
 - (a) For any $N \ge 1$, find a binary code C_N with (n, M, d) = (2N, 4, N).
 - (b) For any $M_0 \ge 2$ and any $d_0 \ge 1$, find a binary (n, M, d) code with $M \ge M_0$ and $d \ge d_0$.
- 3. (2 points) Decide whether the following ternary (respectively binary) codes are equivalent.

(a)
$$C_1 = \begin{cases} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{cases}$$
 $C_2 = \begin{cases} 0 & 2 & 0 \\ 2 & 1 & 2 \\ 1 & 0 & 1 \end{cases}$ (b) $C_1 = \begin{cases} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{cases}$ $C_2 = \begin{cases} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{cases}$

4. (6 points) Show that if $d \ge \frac{n}{2}$ then $A_2(n, d) \le 2n$.

You can use the following lemma:

Lemma. Let $u_1, \ldots, u_m \in \mathbb{R}^n$ such that $|u_i| = 1$ and $u_i \cdot u_j \leq 0$ for all $1 \leq i < j \leq m$. Then $m \leq 2n$.

- 5. (5 points) Consider the following code with codewords of length 6 over alphabet $\{0, \ldots, 9\}$ where the verification process is as follows:
 - i. Multiply digits on even positions by 2 (starting from the rightmost digit).
 - ii. Sum all the individual digits (both unchanged and doubled digits).
 - iii. The codeword is valid if the sum modulo 10 is equal to zero.
 - (a) Calculate the last digit x of 19054x.
 - (b) Given the first five digits show how to compute the check digit.
 - (c) Can this code detect any single error?
 - (d) Can this code detect any transposition error involving adjacent digits?

Explain your answers.

6. (4 points) Consider a source X producing symbols A, B, C and D with the following probabilities:

symbol	probability
А	0.45
В	0.10
\mathbf{C}	0.15
D	0.30

Design a binary Huffman code and calculate its average codeword length and its efficiency.