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From theory to practice in cryptography



FROM CRYPTO-THEORY to CRYPTO-PRACTICE

FROM CRYPTO-THEORY to CRYPTO-PRACTICE

In this chapter we deal with several applied cryptography
methods, systems and problems that have played very
important role in applications.
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I. SHIFT-REGISTERS

I. SHIFT REGISTERS
The first practical approach to ONE-TIME PAD cryptosystem.

Basic idea: to use a short key, called
“seed”, and a pseudorandom generator
to generate long pseudorandom key.

Shift registers as pseudorandom generators

linear shift register

Theorem For every n > 0 there is a linear shift register of maximal period 2n − 1.
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CRYPTANALYSIS of linear feedback shift registers

Sequences generated by linear shift registers have excellent statistical properties, but they
are not resistant to a known plaintext attack.

Example Let us have a 4-bit shift register and let us assume we know 8 bits of a plaintext
and of the corresponding cryptotext. By XOR-ing these two bit sequences we get 8 bits
of the output of the register (of the key), say 00011110

The task is to determine c4, c3, c2, c1 such that the above sequence is outputted by the
shift register

states of cell 4 states of cell 3 states of cell 2 states of cell 1
c4 1 0 0

c4 ⊕ c3 c4 1 0
c2 ⊕ c4 c4 ⊕ c3 c4 1

c1 ⊕ c3(c4 ⊕ c3)⊕ c4 c2 ⊕ c4 c4 ⊕ c3 c4

c4 = 1 c4 = 1
c4 ⊕ c3 = 1 c3 = 0
c2 ⊕ c4 = 1 c2 = 0

c1 ⊕ c3 ⊕ c4 ⊕ c3 · c4 = 0 c1 = 1
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COMPUTATIONS

states of cell 4 states of cell 3 states of cell 2 states of cell 1
c4 1 0 0

c4 ⊕ c3 c4 1 0
c2 ⊕ c4 c4 ⊕ c3 c4 1

c1 ⊕ c3(c4 ⊕ c3)⊕ c4 c2 ⊕ c4 c4 ⊕ c3 c4

After the second step new value of the first register is

N = (c4 · c4)⊕ c3 = c4 ⊕ c3

After the third step new value of the first register is

N = ((c4 ⊕ c3) · c4)⊕ (c4 · c3)⊕ c2

If c4 = 1, then
N = c̄3 ⊕ c3 ⊕ c2 = c̄2

and therefore N = c4 ⊕ c2.
If c4 = 0, then

N = c2

and therefore N = c4 ⊕ c2
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LINEAR RECURRENCES

Linear feedback shift registers are an efficient way to realize recurrence relations of the
type

xn+m = c0xn + c1xn+1 + · · ·+ cm−1xn+m−1 (mod n)

that can be specified by 2m bits: c0, . . . , cm−1 and x1, . . . , xm.

Recurrences realized by shift registers on previous slides are:

xn+4 = xn; xn+4 = xn+2 + xn; xn+4 = xn+3 + xn.

The main advantage of such recurrences is that a pseudo-random key of a very large
period can be generated using a few initial bits.

For example, the recurrence xn+31 = xn + xn+3, and any non-zero initial vector, produces
sequences with period 231 − 1, what is more than two billions.

Encryption using one-time pad and a key generated by a linear feedback shift register
succumbs easily to a known plaintext attack. As our main example illustrated, if we know
few bits of the plaintext and of the corresponding cryptotext, one can easily determine
the initial part of the key and then the corresponding linear recurrence, as already shown.
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FINDING LINEAR RECURRENCES - A METHOD - I.

To test whether a given portion of a bit sequence was generated by a
recurrence of a length m, if we know the sequence prefix x1, . . . , x2m, we
need to solve the matrix equation

x1 x2 . . . xm
x2 x3 . . . xm+1
...

...
. . .

...
xm xm+1 . . . x2m−1




c0

c1
...

cm−1

 =


xm+1

xm+2
...

x2m


and then to verify whether the remaining available bits of the sequence,
x2m+1, . . . , are really generated by the recurrence just obtained.
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III. How to make cryptanalyst’s task harder?

Two general methods to achieve the above goal are called diffusion and confusion.

Diffusion: dissipate the source language redundancy found in the plaintext by spreading it
out over the whole cryptotext.

Example 1: A permutation of the plaintext rules out possibility to use frequency tables
for digrams, trigrams,....

Example 2: Make each letter of cryptotext to depend on so many letters of the plaintext
as possible

Illustration: Let letters of English be encoded by integers from {0, . . . , 25}. Let the key
k = k1, . . . , ks be a sequence of such integers.

Let

p1, . . . , pn

be a plaintext.

Define, for 0 ≤ i < s, p−i = ks−i , and construct the cryptotext by

ci =

(
s∑

j=0

pi−j

)
mod 26, 1 ≤ i ≤ n

Confusion makes the relation between the cryptotext and plaintext as complex as
possible.

Example: polyalphabetic substitutions.
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CONFUSION and DIFFUSION - a more DETAILED VIEW

As already mentioned, two fundamental cryptographic techniques,
introduced already by Shannon, are confusion and diffusion.

Confusion obscures much the relationship between the plaintext and
the cryptotext, to make much more difficult cryptanalyst’s attempts to
study cryptotext by looking for redundancies and statistical patterns. (The
best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over
cryptotext – that again makes much more difficult a cryptanalyst’s
attempts to search for redundancy in the plaintext through observation of
cryptotext. (The best way to achieve it is through transformations that
cause that bits from different positions in plaintext contribute to the same
bit of cryptotext.)

Mono-alphabetic cryptosystems use no confusion and no diffusion.
Polyalphabetic cryptosystems use only confusion. In permutation
cryptosystems only diffusion step is used. DES cryptosyste, introduced
later, uses essentially a sequence of confusion and diffusion steps.
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PREHISTORY of DES - LUCIFER

During the years 1966-1972 a need grew up to develop an encryption standard so that
many users can easily communicate among themselves using encrypted messages.

The idea was that people should be able to communicate secretly using identical
encryption and decryption machines and/or software systems.

On May 15, 1973 American National Bureau of Standards formally requested to make
proposals for a standard encryption system.

The main candidate was the cryptosystem LUCIFER developed in IBM by Horst Feistel.

After 3 years of arguing of experts, a 56-bit key version of Lucifer was accepted
(supposedly only for the next 5 years) as the standard called DES (Data Encryption
Standard) on November 23, 1976.
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DES – description

DES was a revolutionary step in the secret-key
cryptography history because:

1. Both encryption and decryption algorithms were made
public!!!!!!

The same algorithms, software systems or hardware could
be used for both encyption and decryption.
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DES ALGORITHM – CONCISE DESCRIPTION

Preprocessing: A secret 56-bit key k56 is chosen.

A fixed+public permutation φ56 is applied to get φ56(k56).The first (second) part of the
resulting string is taken to get a 28-bit block C0(D0). Using a fixed+public sequence
s1, . . . , s16 of integers, 16 pairs of 28-bit blocks (Ci ,Di ), i = 1,. . . ,16 are obtained as
follows:

Ci (Di ) is obtained from Ci−1(Di−1) by si left shifts.

Using a fixed and public order, a 48-bit block Ki is created from each pair Ci and Di .

Encryption A fixed+public permutation φ64 is applied to a 64-bits long plaintext w to get
w ′ = L0R0, where each of the strings L0 and R0 has 32 bits.16 pairs of 32-bit blocks
Li ,Ri , 1 ≤ i ≤ 16, are designed using the recurrence:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1,Ki ),

where f is a fixed+public and easy-to-implement function.

The cryptotext c = φ−1
64 (L16,R16)
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DES cryptosystem – Data Encryption Standard – 1977

Encryption A fixed+public permutation φ64 is applied to a 64-bits long plaintext w to get
w ′ = L0R0, where each of the strings L0 and R0 has 32 bits.

16 pairs of 32-bit blocks Li ,Ri , 1 ≤ i ≤ 16, are designed using the recurrence:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1,Ki ),

where f is a fixed+public and easy-to-implement function.

The cryptotext c = φ−1
64 (L16,R16)

Decryption φ64(c) = L16R16 is computed and then the recurrence

Ri−1 = Li

Li−1 = Ri ⊕ f (Li ,Ki ),

is used to get Li ,Ri i = 15,. . . ,1,0, w = φ−1
64 (L0,R0).
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DES ALGORITHM – DETAILS - PREPROCESSING

A secret 56-bit key k56 is chosen.

Eight bits in (new) positions 8, 16,..., 64 are added to the key, to make each byte of odd
parity.
This step is useful for errors detection in the key distribution and in storage.
56 bits of the key are now subject to the following fixed+public permutation φ56:

The first (second) part of the resulting string is taken to get a 28-bit block C0(D0).
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NEXT STEP I

Blocks Ci ,Di for i = 1, 2, . . . , 16 are now constructed from blocks Ci−1,Di−1 by one or
two left shifts according the following table
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NEXT STEP II

Using a fixed and publicly known order,

16 subkeys ki , each of 48 bits, are then created, each ki from blocks Ci ,Di
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DES -ENCRYPTION DETAILS

A fixed+public initial permutation φ64

is applied to a 64-bits long plaintext w to get w ′ = L0R0, where L0 ( R0) has 32 bits.

16 pairs of 32-bit blocks Li ,Ri , 1 ≤ i ≤ 16, are then designed using the recurrences:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1,Ki ),

where f is a fixed+public and easy-to-implement function to be described next.

The cryptotext is now c = φ−1
64 (L16,R16)
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FUNCTION f

The function f produces from a 32-bit block Ri−1 and a 48-bit subkey Ki a 32-bit block
as follows:

At first, the 32-bit block is expanded into 48-bits according the following table:

After this expansion two 48-bits blocks are XOR-ed - bit by bit.
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DES - ENCRYPTION - CONTINUATION

The resulting block of 48 bits is now divided into eight 6-bit blocks B1,B2, . . . ,B8 and
j-th of these eight 6-bit blocks is transformed into a 4-bit block using table Sj . The first
two of them are:

Transformation is performed as follows. For a given 8-bit string, the first and last bit
determine a number x ∈ {0, 1, 2, 3} and the middle four bits a number y . The number in
x-row and y -column is then written in binary.
Example: for the string 110010, we have x = 2, y = 9 and the resulting number defined
by S1 is 15. Therefore the resulting string is 1111.
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KEY ELEMENTS of DES

A cryptosystem is called linear if each bit of cryptotext
is a linear combination of bits of plaintext.

For linear cryptosystems there is a powerful decryption
method - so-called linear cryptanalysis.

The only components of DES that are non-linear are
S-boxes.
Some of original requirements for S-boxes:

Each row of an S-box should include all possible output bit combinations;
It two inputs to an S-box differ in precisely one bit, then the output must differ in a
minimum of two bits;
If two inputs to an S-box differ in their first two bits, but have identical last two bits,
the two outputs have to be distinct.

There have been many other very technical
requirements.
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How fast is DES?

200 megabits can be encrypted per second using a special hardware.

How safe is DES?

Pretty good.

How to increase security when using DES?

1 DOUBLE DES: Use two keys, for a double encryption.

2 TRIPLE-DES: Use three keys, k1, k2 and k3 to compute

c = DESk1 (DES−1
k2

(DESk3 (w)))

How to increase security when encrypting long plaintexts?

w = m1m2 . . .mn

where each mi has 64-bits.

Choose a 56-bit key k and a 64-bit block c0 and compute

ci = DES(mi ⊕ ci−1)

for i = 1,. . . ,n.
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MEET in THE MIDDLE ATTACK

This attack will be illustrated on DOUBLE-DES, but can be used to attack also other
cryptosystems.

Let DES uses an (unknown) set K1 of keys for the first encryption and a set K2 of keys
for second encryption.

Assume that the attacker knows a set of pairs (p, c) - plaintext and corresponding
cryptotext, such that

c = ENCR-DESk2 (ENCR-DESk1 (p))

p = DECR-DESk1 (DECR-DESk2 (c))

where k1 ∈ K1, k2 ∈ K2.

ATTACK:
Compute ENCR-DESk1 (p) for all k1 ∈ K1;
Compute DECR-DESk2 (c) for all k2 ∈ K2;

Any matches between these two resulting sets is likely to reveal the correct keys.

Complexity of attacks
Brute force: 256 × 256 = 22×56 = 2112;

MITM: 2× 256 = 21+56 = 257.

MITM attack has been generalized for the case on n-multiple encodings are used for DES
and some other cryptosystems.
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The DES CONTROVERSY

1 There have been suspicions that the design of DES
might contain hidden “trapdoors’‘ what allows NSA to
decrypt messages.

2 The main criticism has been that the size of the
key-space, 256, is too small for DES to be really secure.

3 In 1977 Diffie+Hellamn suggested that for $ 20 millions
one could build a VLSI chip that could search the entire
key space within 1 day.

4 In 1993 M. Wiener suggested a machine of the cost $
100.000 that could find the key in 1.5 days.
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WEAKNESSES of DES

Existence of weak keys: they are such keys k that for any plaintext p,

Ek(Ek(p)) = p.

There are four such keys:

k ∈ {(028, 028), (128, 128), (028, 128), (128, 028)}

The existence of semi-weak key pairs (k1, k2) such that for any plaintext

Ek1(Ek2(p)) = p.

The existence of complementation property

Ec(k)(c(p)) = c(Ek(p)),

where c(x) is binary complement of binary string x.
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DES MODES of OPERATION

ECB (Electronic Code Book) mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, each xi is encrypted with the same key.

CBC (Cipher Block Chaining) mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, a c0 is chosen and each xi is encrypted to get cryptotext

ci = ek(ci−1 ⊕ xi ).

OFB (Output Feedback) mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, a z0 is chosen, zi = ek(zi−1) are computed and each xi is
encrypted to get cryptotext ci = xi ⊕ zi .

CFB (Cipher Feedback) mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks a c0 is chosen and each xi is encrypted to get cryptotext

ci = xi ⊕ zi , where zi = ek(ci−1).
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ADVANTAGES of DIFFERENT ENCRYPTION MODES

CBC mode is used for block-encryption and also for authentication;

CFB mode is used for stream-encryptions;

OFB mode is used for stream-encryptions that require message authentication;

CTR MODE

Counter Mode – some consider it as the best one.

Key design: ki = Ek(n, i) for a nonce n;

Encryption: ci = xi ⊕ ki
This mode is very fast because a key stream can be parallelised to any degree. Because
of that this mode is used in network security applications.
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KILLERS and DEATH of DES

In 1993 M. J. Weiner suggested that one could design, using one
million dollars, a computer capable to decrypt, using brute force, DES
in 3.5 hours.

In 1998 group of P. Kocher designed, using a quarter million of dolars,
a computer capable to decrypt DES in 56 hours.

In 1999 they did that in 24 hours.

It started to be clear that a new cryptosystem with larger keys is badly
needed.
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PRODUCT and FEISTEL CRYPTOSYSTEM

Design of several important practical cryptosystems used the following
three general design principles for cryptosystems.

A product cryptosystem combines two or more crypto-transformations in
such a way that resulting cryptosystem is more secure than component
transformations.

An iterated block cryptosystem iteratively uses a round function (and it has
as parameters number of rounds r, block bit-size n, subkeys bit-size k) of
the input key K from which r subkeys Ki are derived.

A Feistel cryptosystem is an iterated cryptosystem mapping 2t-bit plaintext
(L0,R0) of t-bit blocks L0 and R0 to a 2t-bit cryptotext (Lr ,Rr ), through
an r-round process, where r > 0.

For 0 < I < r + 1, the round i maps (Li−1,Ri−1) to (Li ,Ri ) using a subkey
Ki as follows

Li = Ri−1, Ri = Ki−1 ⊕ f (Ri−1,Ki ),

where each subkey Ki is derived from the main key K.
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BLOWFISH CRYPTOSYSTEM

Blowfish is a Feistel type cryptosystem developed in 1993 by Bruce
Schneier.

Blowfish is more secure and faster than DES.

It encrypts 8-bytes blocks into 8-bytes blocks.

Key length is a variable 32k, for k = 1, 2, . . . , 14.

For decryption, Blowfish does not reverse the order of encryption, but
follows it.

S-boxes are of key dependence and they, as well as subkeys, are
created by repeated execution of Blowfish enciphering
transformation.

Blowfish has very strong avalanche effect.

A follower of Blowfish, Twofish, was one of 5 main candidates
for AES.

Blowfish can be downloaded free from the B. Schneier web site.
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FEISTEL ENCRYPTION/DECRYPTION SCHEME

This is a general scheme for design of cryptosystems that
was used at the design of several important
cryptosystems, such as Lucifer and DES.
Its main advantage is that encryption and decryption are
very similar, and even identical in some cases, and then
the same hardware can be used for both encryption and
decryption.
Let F a be a so-called round function and K0,K1, . . . ,Kn

be sub-keys for rounds 0, 1, 2, . . . , n.
Encryption is as follows:

Split the plaintext into two equal size parts L0,R0.

For rounds i ∈ {0, 1, . . . , n} compute

Li+1 = Ri ; Ri+1 = Li ⊕ F (Ri ,Ki )

776,13 36The ciphertext is then: (Rn+1, Ln+1)
Decryption of (Rn+1, Ln+1) is done by computing, for
i = n, n − 1, . . . , 0

Ri = Li+1, Li = Ri+1 ⊕ F (Li+1,Ki )

and (L0,R0) is the plaintext

R

F

F

K

F

R0 0

K 0

1

K

L

L n+1n+1

n+1
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SUBSTITUTION-PERMUTATION ENCRYPTION/DECRYPTION
SCHEMES

This scheme, known also as substitution-permutation network, is an
encryption/decryption method/network that performs a series of
substitution-permutation layers of operations composed of S-boxes (substitution boxes)
and P-boxes (permutation boxes) as shown in the picture - Ki are keys.

Encryption/decryption system AES discussed next is the most known example of such a
system.
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AES CRYPTOSYSTEM - PREHISTORY

NIST in USA decided in 1997 to create a new standard
for encryption and decryption called AES.

Anyone could make a proposal and 15 candidates were
accepted in 1998.

Based on public comments 5 candidates got into
second round.

High security as well as fast speed and low memory
requirements on a variety of computing systems were
main criteria.
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AES CRYPTOSYSTEM - HISTORY

On October 2, 2000, NIST selected, as new Advanced Encryption Standard, the
cryptosystem Rijndael, designed in 1998 by Joan Daemen and Vincent Rijmen.

The main goal has been to develop a new cryptographic standard that could be used to
encrypt sensitive governmental information securely, well into the next century.

AES was expected to be used obligatory by U.S. governmental institution and, naturally,
voluntarily, but as a necessity, also by the private sector.

AES is dedicated to 8-bit microprocessors to encrypt 128-bit messages using a key with
128, 192 or 256 bits. In addition, AES is to be used as a standard for authentication
(MAC), hashing and pseudorandom numbers generation.

Motivations and advantages of AES:

Short code and fast and low memory implementations.

Simplicity and transparency of the design.

Variable key length.

Resistance against all known attacks.
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AES MATHEMATICS - I

Some operations in AES are define on bytes.

Bytes will be seen as elements of the finite field

GF (28).

Bytes will be represented either by binary 8-bit

strings b7b6b5b4b3b2b1b0 or by polynomials

b7x
7 +b6x

6 +b5x
5 +b4x

4 +b3x
3 +b2x

2 +b1x+b0

Some operations in AES will be defined in terms

of 4-bytes words .
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OPERATIONS in THE FIELD GF (28)

Addition

In polynomial representation, the sum of two bytes is the polynomial whose coeficiants
are given by xor-ing coefficients of both bytes-polynomials.

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2

Multiplication

In polynomial representation of bytes, multiplication in GF (28) corresponds with
multiplication of polynomials modulo an irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1

Example

(x6 + x4 + x2 + x + 1)(x7 + x + 1) = x13 + x11 + x9 + x8 + x5 + x5 + x4 + x3 + 1

and
(x13 + x11 + x9 + x8 + x5 + x5 + x4 + x3 + 1) mod m(x) = x7 + x6 + 1

The set of 256 possible byte values with operations of addition and multiplication as
defined above has the structure of the finite field GF (28).
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POLYNOMIALS WITH COEFFICIENTS in GF (28)

In polynomial representation, addition of two
polynomials is given by xor-ng corresponding coefficients.

In polynomial representation multiplication of two
polynomilas is done performing usual multiplicaion and
then taking modulus a special polynomial in such a way
that multiplication has inverse elements.
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AES - BASIC IDEA

AES is a substitution-permutation network.

Basic AES implementations operate on 4× 4 matrices of bytes called states. A
128-bit message is also written as a 4× 4 matrix of bytes.

Some AES implementations work with states with additional columns in the state
matrices.

Encryption is performed through 10, 12 or 14 rounds depending on whether the key
size is 128, 196 or 256.

Each round (but the final one) consists of four simple transformations:

1 SubBytes - byte-wise substitution defined by a
special table of 256 bytes.

2 ShiftRows - a circular shift of i -th row of the
matrix by i positions to the left.

3 MixColumns - a linear transformation on each
column defined by a 4× 4 matrix of bytes.

4 AddRoundKey - bit-wise XOR with a round key
defined by another matrix.
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THE SubBytes STEP

In this step, each byte in the state is replaced with its
entry in a fixed 8-bit lookup table.

The operation introduces non-linearity into encryption.

At decryption, an Inverse SubBytes step is used.
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THE ShiftRows STEP

At this step each row of the state is cyclically shifted by
a certain offset.
This step is done to avoid that columns of states are
linearly dependent.
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THE MixColumns STEP

During this step, each column is multiplied by the matrix
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


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THE AddRoundKey STEP

subkey using XOR operation.

In this step, the subkey is combined with the state.
More exactly, the subkey is added by combining each
bye of the state with the corresponding byte of the
subkey using bitwise XOR operation.
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PERFORMANCE

AES performs well on a variety of hardware - from 8-bit
smart cards to supercomputers.

On a Pentium Pro throughput is about 11 MB/s for a 200
MHz processor. On a 1.7 GHz Pentium M, throughput is
about 60 MB/s.

On Intel Core i3/i5/i7 CPUs supporting AES-NI instruction
set extensions, throughput can be over 700 MB/s.
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BYTE-WISE SUBSTITUTION

Byte-wise substitution b = SubByte(a) is defined by the following matrix
operations

b7

b6

b5

b4

b3

b2

b1

b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



(a−1)7

(a−1)6

(a−1)5

(a−1)4

(a−1)3

(a−1)2

(a−1)1

(a−1)0


+



0
1
1
0
0
0
1
1


This operation is computationally heavy and it is assumed that it will be
implemented by a pre-computed substitution table.
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ENCRYPTION in AES

Encryption and decryption are done using state matrices

A E I M
B F J N
C G K O
D H L P

elements of which are bytes.
A byte-matrix with 4 rows and k = 4, 6 or 8 columns is also used to write down a key
with Dk = 128, 192 or 256 bits.

ENCRYPTION ALGORITHM

1 KeyExpansion

2 AddRoundKey
3 do (k + 5)-times:

a) SubByte
b) ShiftRow
c) MixColumn
d) AddRoundKey

4 Final round
a SubByte
b ShiftRow
c AddRoundKey

The final round does not contain MixColumn procedure. The reason being is to be able
to use the same hardware for encryption and decryption.
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KEY EXPANSION

The basic key is written into the state matrix with 4, 6 or 8 columns.

The goal of the key expansion procedure is to extend the number of keys in
such a way that each time a key is used actually a new key is used.

The key extension algorithm generates new columns Wi of the state matrix
from the columns Wi−1 and Wi−k using the following rule

Wi = Wi−k ⊕ V ,

where

V =


F (Wi−1), if i mod k = 0

G (Wi−1), if i mod k = 4 and Dk = 256 bits,

Wi−1 otherwise

and where the function G performs only the byte-substitution of the
corresponding bytes. Function F is defined in a quite a complicated way.

IV054 1. From theory to practice in cryptography 48/59



KEY EXPANSION

The basic key is written into the state matrix with 4, 6 or 8 columns.
The goal of the key expansion procedure is to extend the number of keys in
such a way that each time a key is used actually a new key is used.

The key extension algorithm generates new columns Wi of the state matrix
from the columns Wi−1 and Wi−k using the following rule

Wi = Wi−k ⊕ V ,

where

V =


F (Wi−1), if i mod k = 0

G (Wi−1), if i mod k = 4 and Dk = 256 bits,

Wi−1 otherwise

and where the function G performs only the byte-substitution of the
corresponding bytes. Function F is defined in a quite a complicated way.

IV054 1. From theory to practice in cryptography 48/59



KEY EXPANSION

The basic key is written into the state matrix with 4, 6 or 8 columns.
The goal of the key expansion procedure is to extend the number of keys in
such a way that each time a key is used actually a new key is used.

The key extension algorithm generates new columns Wi of the state matrix
from the columns Wi−1 and Wi−k using the following rule

Wi = Wi−k ⊕ V ,

where

V =


F (Wi−1), if i mod k = 0

G (Wi−1), if i mod k = 4 and Dk = 256 bits,

Wi−1 otherwise

and where the function G performs only the byte-substitution of the
corresponding bytes. Function F is defined in a quite a complicated way.

IV054 1. From theory to practice in cryptography 48/59



DECRYPTION in AES

Steps of the encryption algorithm map an input state matrix into an output matrix. All
encryption operations have inverse operations. Decryption algorithm applies, in the
opposite order as at the encryption, the inverse versions of the encryption operations.

DECRYPTION

1 Key Expansion

2 AddRoundKey
3 do k+5 - times:

a) InvSubByte
b) InvShiftRow
c) InvMixColumn
d) AddInvRoundKey

4 Final round
a) InvSubByte
b) InvShiftRow
c) AddInvRoundKey
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SECURITY GOALS

The goal of the authors was that Rijndael (AES) is K-secure and hermetic
in the following sense:

Definition A cryptosystem is K-secure if all possible attack strategies for it
have the same expected work factor and storage requirements as for the
majority of possible cryptosystems with the same security.

Definition A block cryptosystem is hermetic if it does not have weaknesses
that are not present for the majority of cryptosystems with the same block
and key length.
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MISCELLANEOUS

Pronunciation of the name Rijndael is as “Reign Dahl’‘ or “rain Doll” or
“Rhine Dahl”.
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AES attacks

Best known is so called Biclique attack.

Complexity of the biclique attack

AES-128 - 2126.1 - brute force (2128).

AES-192 - 2189.7 - brute force (2192)

AES-256 - 2254.4 - brute force (2256)

Comment 1: Biclique is a complete bipartite graph - all
nodes of which are connected to all potential neighbours.

Comment 2: For cryptographers, a cryptographic
”break” is anything faster than a brute force.
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VI. PKC versus SKC – comparisons

Security: If PKC is used, only one party needs to keep secret its (single) key. If SKC is
used, both party needs to keep secret one key. No PKC has been shown to be perfectly
secure. Perfect secrecy has been shown for One-time Pad and for quantum generation of
classical keys.

Longevity: With PKC, keys may need to be kept secure for (very) long time; with SKC a
change of keys for each session is recommended.

Key management: If a multiuser network is used, then fewer private keys are required
with PKC than with SKC.

Key exchange: With PKC no key exchange between communicating parties is needed;
with SKC a hard-to-implement secret key exchange is needed.

Digital signatures: Only PKC are usable for digital signatures.

Efficiency: PKC is much slower than SKC (10 times when software implementations of
RSA and DES are compared).

Key sizes: Keys for PKC (2048 bits for RSA) are significantly larger than for SCK (128
bits for AES).

Non-repudiation: With PKC we can ensure, using digital signatures, non-repudiation,
but not with SKC.
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DIGITAL ENVELOPES

Modern cryptography uses both SKC and PKC, in so-called hybrid
cryptosystems or in digital envelopes. To send a message m, using a
secret key k chosen by the sender, using the public encryption exponent e
of the receiver, and using the secret decryption exponent d of the receiver,
the following steps have to be made:

1 Key k is encrypted using e and sent as Ee(k)

2 Secret description exponent d is used to get k = Dd(Ee(k))

3 SKC with k is then used to encrypt a message

Public
key

Private key

e

Alice

d

(E  (k),E  (m))=(x,c)
Bob

D  (x)=k

D  (c)=m

e k

k

d
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VIII. CRYPTANALYSIS

A variety of brute force and also sophisticated methods of
attacks have been developed to deal with (also ”complex”
and without simple mathematical structures) encryption
systems.

In case of brute force attacks, an important issue is their
performance in case they are applied to any encryption
algorithm considered as a black box.

Security is measured in such cases in terms of such
encryption parameters as the length of the key and
the size of message space.
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ATTACKS - BRUTE FORCE METHODS

We will discuss several types of brute force attacks that can be applied to any symmetric
cryptosystem Ck considered as an oracle that for each given key as input replies whether
it is a correct key.

Exhaustive search

This method consists of trying all possible keys exhaustively until the correct key is found.

Exhaustive search can be made more efficient if a probability distribution on keys can be
guessed or keys are known to satisfy some relations.

Dictionary attack

Creation of dictionary: For a fixed x and many k, values Ck(x) are computed and pairs
(Ck(x), k) are inserted into a dictionary that is ordered according to the first item of each
pair.

Search If we obtain a Ck(x) value (by a chosen plaintext attack), dictionary gives us a
list of potential keys.

A generalization for searching for several keys having several values Ck(x) is easy.
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SOPHISTICATED ATTACK METHODS

Two main attack methods for general cryptographic algorithms are differential
cryptanalysis and linear cryptanalysis

Differential cryptanalysis: It is assumed that adversary can use the encryption devise as
a black box, submitting chosen plaintexts and getting corresponding cryptotext.
The aim of the attack is to get the key.

The basic idea: pairs of random plaintexts are submitted the difference of which is a fixed
value a until differences of corresponding cryptotext are at most a fixed value b.

Linear analysis: This is a dual method to differential cryptanalysis invented after
discovering anomalies in S-boxes in DES. The idea is not to keep track of difference
propagation by the chosen plaintext attack, but to keep track of Boolean information
which is linearly obtained by a known plaintext attack: if one gets (x , c(x)) pair a
statistical analysis of the special Boolean information L(x , c(x)) is made and some
information on the key is deduced.
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ANALYSIS of ATTACKS on AES

So far there have appeared several attacks on AES that
are faster than brute force, but only by a minor factor and
none of them is feasible.

For AES-128 (AES-192) [AES-256] the key can be
recovered with a computational complexity 2126.1 (2189.7)
[2254.4].
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