
Part I

Public-key cryptosystems II. Other cryptosystems and
cryptographic primitives

CHAPTER 6: OTHER CRYPTOSYSTEMS and BASIC
CRYPTOGRAPHY PRIMITIVES

A large number of interesting and important cryptosystems have already been designed.
In this chapter we present several other of them in order to illustrate other
principles and techniques that can be used to design cryptosystems.

At first, we present several cryptosystems security of which is based on the fact that
computation of square roots and discrete logarithms is in general unfeasible in some
groups.

Secondly, we discuss one of the fundamental questions of modern cryptography:
when can a cryptosystem be considered as (computationally) perfectly secure?

In order to do that we will:

discuss the role randomness play in the cryptography;

introduce the very fundamental definitions of perfect security of cryptosystem;

present some examples of perfectly secure cryptosystems.

Finally, we will discuss, in some details, such very important cryptography primitives as
pseudo-random number generators and hash functions .

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 2/65

FROM THE APPENDIX

STORY of SQUARE ROOTS

and

QUADRATIC RESIDUES

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 3/65

MODULAR SQUARE ROOTS PROBLEM

The problem is to determine, given integers y and n, such an integer x that

y = x2 mod n.

Therefore the problem is to find square roots of y modulo n
Examples

{x | x2 = 1 (mod 15)} = {1, 4, 11, 14}
{x | x2 = 2 (mod 15)} = ∅
{x | x2 = 3 (mod 15)} = ∅
{x | x2 = 4 (mod 15)} = {2, 7, 8, 13}
{x | x2 = 9 (mod 15)} = {3, 12}

No polynomial time algorithm is known to solve the modular square root problem for
arbitrary modulus n.

However, in case n is a prime or a product of two odd primes, such a polynomial squaring
algorithm exists to solve modular square root problem..

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 4/65

QUADRATIC RESIDUES

Let +n,×n denote addition and multiplication modulo n

a +n b = (a + b) mod n, a×n b = (ab) mod n

Zn = {0, 1, . . . , n − 1} is a group under the operation +n

Z?n = {x | 1 ≤ x ≤ n, gcd(x , n) = 1} is a group under the operation ×n

Z?n is a field under the operations +n,×n, if n is a prime.

Theorem: For any n, the multiplicative inverse of any z ∈ Z?n and exponentiation in Z?n
can be computed in polynomial time.
Definition: An integer x ∈ Z?n is called a quadratic residue modulo n if

x ≡ y 2 (modn)

for some y ∈ Z?n , otherwise x is called a quadratic nonresidue.

Notation: QR(n) – the set of all quadratic residues modulo n. QR(n) is therefore
subgroup of squares in Z?n .
QNR(n) – the set of all quadratic nonresidues modulo n.
For any prime p the set QR(p) has p−1

2
elements.

So called Euler criterion says that c is a quadratic residue modulo prime p iff

c (p−1)/2 ≡ 1 (mod p).

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 5/65

EXAMPLES of Z ?N SETS and THEIR MULTIPLICATION TABLES

Z∗9 ={1,2,4,5,7,8}

∗ 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2

Z∗11={,1,2,3,4,5,6,7,8,9,10}

∗ 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 6/65

EXAMPLE of Z ?N SETS and THEIR QUADRATIC RESIDUES

To get all quadratic residues QR(n) of Z?N we need to compute squares of all elements in
Z?n .

If n = 8 then Z?8 = {1, 3, 5, 7}
12 ≡ 1(mod 8), 32 ≡ 1(mod 8),
52 ≡ 1(mod 8), 72 ≡ 1(mod 8)

QR(8) = {1}
If n = 9 then Z?9 = {1, 2, 4, 5, 7, 8}

12 ≡ 1(mod 9), 22 ≡ 4(mod 9), 42 ≡ 7(mod 9),
52 ≡ 7(mod 9), 72 ≡ 4(mod 9), 82 ≡ 1(mod 9)

QR(9) = {1, 4, 7}
If n = 15 then Z?15 = {1, 2, 4, 7, 8, 11, 13, 14}

12 ≡ 1(mod 15), 22 ≡ 4(mod 15), 42 ≡ 1(mod 15),
72 ≡ 4(mod 15), 82 ≡ 4 mod 15,

112 ≡ 1(mod 15), 132 ≡ 4(mod 15), 142 ≡ 1(mod 15)

QR(15) = {1, 4}

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 7/65

BLUM PRIMES and INTEGERS

If p, q are primes such that p ≡ 3 (mod 4), q ≡ 3
(mod 4) then they are called Blum primes and the
integer n = pq is called Blum integer

Blum integers n have the following important properties.

If x ∈ QR(n), then x has exactly four square roots and
exactly one of them is in QR(n) – this square root is
called primitive square root of x modulo n.

Function f : QR(n)→ QR(n) defined by f (x) = x2 is a
permutation on QR(n).

The inverse function is f −1(x) = x ((p−1)(q−1)+4)/8

mod n

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 8/65

EXAMPLE

For n = 21 = 3× 7

Z ∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

QR(21) = {1, 4, 16}
and

12 = 1 mod 21 42 = 16 mod 21 162 = 4 mod 21

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 9/65

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 10/65

Leonhard EULER - picture

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 11/65

Leonhard EULER

Russian, one of the greatest mathematicians of the world, who worked in many areas
of mathematics especially with applications to physics.

Euler lectured also on astronomy, philosophy and religion.

He worked also on problems of insurance, design of channels and waterworks.

Euler was extremely productive: his papers fill 75 large volumes

He used to produce about 800 pages of papers per year and it took 50 years after his
death to publish all his papers.

Since 1735 he could see only on one eye and the last 12 years he was totally blind
and as such wrote 400 papers by dictating them to his children.

Euler had phenomenal memory.

He took great care of his 13 children.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 12/65

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 13/65

RABIN CRYPTOSYSTEM

Let Blum primes p, q are kept secret, and let the Blum integer n = pq be the public key.
Encryption: of a plaintext w < n

c = w 2 (mod n)

Decryption: -briefly

It is easy to verify (using Euler’s criterion which says that if c is a quadratic residue
modulo p, then c (p−1)/2 ≡ 1 (mod p),) that

±c (p+1)/4mod p and ±c (q+1)/4mod q

are two square roots of c modulo p and q. (Indeed, p+1
2

= p−1
2

+ 1) One can now obtain
four square roots of c modulo n using the method of Chinese remainder shown in the
Appendix.

In case the plaintext w is a meaningful English text, it should be easy to determine w
from the four square roots w1,w2,w3,w4 presented above.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.

That is, likely, why Rabin did not propose this system as a practical cryptosystem.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 14/65

COMPUTATION of SQUARE ROOTS MODULO PRIMES

In case of Blum primes p and q and Blum integer n = pq, in order to solve the equation
x2 ≡ a(mod n), one needs to compute squares of a modulo p and modulo q and then to
use the Chinese remainder theorem to solve the equation x2 = a (mod pq).

Example To solve modular equation x2 ≡ 71 (mod 77),one needs to solve modular
equation

x2 ≡ 71 ≡ 1 (mod 7) to get x ≡ ±1(mod 7)
and
to solve also modular equation

x2 ≡ 71 ≡ 5 (mod 11) to get x ≡ ±4 (mod 11).

Using the Chinese Remainder Theorem we then get

x ≡ ±15,±29 (mod 77).

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 15/65

CHINESE REMAINDER THEOREM

Theorem Let m1, . . . ,mt be integers, gcd(mi ,mj) = 1 if i 6= j , and a1, . . . , at be integers
such that 0 < ai < mi , 1 ≤ i ≤ t.
Then the system of congruences

x ≡ ai (mod mi), 1 ≤ i ≤ t

has the solution

x =
t∑

i=1

aiMiNi (?)

where

M =
t∏

i=1

mi ,Mi =
M

mi
,Ni = M−1

i mod mi

and the solution (?) is unique up to the congruence modulo M.

Application Each integer 0 < x < M is uniquely represented by t-tuple:

x (mod m1), . . . , x (mod mt).

Example If m1 = 2,m2 = 3,m3 = 5, then (1, 0, 2) represents integer 27.
Advantage: With such a modular representation addition, subtraction and multiplication
can be done component-wise and therefore in parallel time.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 16/65

GENERALIZED RABIN CRYPTOSYSTEM

Public key: n,B (0 ≤ B < n)

Trapdoor: Blum primes p, q (n = pq)

Encryption: e(x) = x(x + B) mod n

Decryption: d(y) =

(√
B2

4
+ y − B

2

)
mod n

It is easy to verify that if ω is a nontrivial square root of 1 modulo n, then there are four
decryptions of e(x):

x , −x , ω
(
x + B

2

)
− B

2
, −ω

(
x + B

2

)
− B

2

Example

e
(
ω
(
x + B

2

)
− B

2

)
=
(
ω
(
x + B

2

)
− B

2

) (
ω
(
x + B

2

)
+ B

2

)
= ω2

(
x + B

2

)2 −
(
B
2

)2
=

x2 + Bx = e(x)

Decryption of the generalized Rabin cryptosystem can be reduced to the decryption
of the original Rabin cryptosystem.

Indeed, the equation x2 + Bx ≡ y (mod n) can be transformed,
by the substitution x = x1 − B/2, into x1

2 ≡ B2/4 + y (mod n)
and, by defining c = B2/4 + y , into x1

2 ≡ c (mod n)
Therefore decryption can be done by factoring n and solving congruences

x1
2 ≡ c (mod p) x1

2 ≡ c (mod q)

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 17/65

SECURITY of RABIN CRYPTOSYSTEM

We show that any hypothetical decryption algorithm A for Rabin cryptosystem, can be
used, as an oracle, in the following randomized algorithm, to factor an integer n.

Algorithm:

1 Choose a random r , 1 ≤ r < n;

2 Compute y = (r 2 − B2/4) mod n; {y = ek(r − B/2)}.

3 Call A(y), to obtain a decryption x =

(√
B2

4
+ y − B

2

)
mod n;

4 Compute x1 = x + B/2; {x12 ≡ r 2 mod n}

5 if x1 = ±r then quit (failure)
else gcd(x1 + r , n) = p or q

Indeed, after Step 4, either x1 = ±r mod n or x1 = ±ωr mod n.
In the second case we have

n | (x1 − r)(x1 + r),

but n does not divide any of the factors x1 − r or x1 + r .
Therefore computation of gcd(x1 + r , n) or gcd(x1 − r , n) must yield factors of n.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 18/65

DISCRETE LOGARITHM CRYPTOSYSTEMS

DISCRETE LOGARITHM CRYPTOSYSTEMS

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 19/65

ElGamal CRYPTOSYSTEM

Design: choose a large prime p – (with at least 150 digits).
choose two random integers 1 ≤ q, x < p – where q is a primitive element of Z∗p
calculate y = qx mod p.

Public key: p, q, y ; trapdoor: x
Encryption of a plaintext w : choose a random r and compute

a = qr mod p, b = y rw mod p

Cryptotext: c = (a, b)
(Cryptotext contains indirectly r and the plaintext is ”masked” by multiplying with y r

(and taking modulo p))

Decryption: w = b
ax

mod p = ba−xmod p.

Proof of correctness: ax ≡ qrxmod p

b

ax
≡ y rw

ax
≡ qrxw

qrx
≡ w(mod p)

Note: Security of the ElGamal cryptosystem is based on infeasibility of the discrete
logarithm computation.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 20/65

SHANKS’ ALGORITHM for DISCRETE LOGARITHM

Let m = d√p − 1e. The following algorithm computes lgqy in Z∗p.

1 Compute qmjmod p, 0 ≤ j ≤ m − 1.

2 Create list L1 of m pairs (j , qmj mod p), sorted by the second item.

3 Compute yq−i mod p, 0 ≤ i ≤ m − 1.

4 Create list L2 of pairs (i , yq−imod p) sorted by the second item.

5 Find two pairs, one (j , z) ∈ L1 and (i , z) ∈ L2 with identical second element

If such a search is successful, then

qmjmod p = z = yq−i mod p

and as the result
qmj+i ≡ y (mod p)

On the other hand, for any y we can write
lgqy = mj + i ,

for some 0 ≤ i , j < m. Hence the search in the Step 5 of the algorithm has to be
successful.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 21/65

GROUP VERSION of ElGamal CRYPTOSYSTEM

A group version of discrete logarithm problem

Given a group (G , ◦), α ∈ G , β ∈ {αi | i ≥ 0}. Find

logα β = k such that αk = β that is k = logα β

GROUP VERSION of ElGamal CRYPTOSYSTEM

ElGamal cryptosystem can be implemented in any group in which discrete logarithm
problem is infeasible.

Cryptosystem for (G , ◦)
Public key: α, β
Trapdoor: k such that αk = β

Encryption: of a plaintext w and a random integer r

e(w , k) = (y1, y2) where y1 = αr , y2 = w ◦ βr

Decryption: of cryptotext (y1, y2):

d(y1, y2) = y2 ◦ y−k
1

An important special case is that of computation of discrete logarithm in a group of
points of an elliptic curve defined over a finite field.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 22/65

FEISTEL ENCRYPTION/DECRYPTION SCHEME

This is a general scheme for design of cryptosystems that
was used at the design of several important
cryptosystems, such as Lucifer and DES.
Its main advantage is that encryption and decryption are
very similar, and even identical in some cases, and then
the same hardware can be used for both encryption and
decryption.
Let F a be a so-called round function and K0,K1, . . . ,Kn

be sub-keys for rounds 0, 1, 2, . . . , n.
Encryption is as follows:

Split the plaintext into two equal size parts L0,R0.

For rounds i ∈ {0, 1, . . . , n} compute

Li+1 = Ri ; Ri+1 = Li ⊕ F (Ri ,Ki)

then the ciphertext is (Rn+1, Ln+1)
Decryption of (Rn+1, Ln+1) is done by computing, for
i = n, n − 1, . . . , 0

Ri = Li+1, Li = Ri+1 ⊕ F (Li+1,Ki)

and (L0,R0) is the plaintext

R

F

F

K

F

R0 0

K 0

1

K

L

L n+1n+1

n+1

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 23/65

WHEN ARE ENCRYPTIONS PERFECTLY SECURE?

WHEN ARE ENCRYPTIONS PERFECTLY SECURE?

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 24/65

RANDOMIZED ENCRYPTIONS

From security point of view, public-key cryptography with deterministic encryptions has
the following serious drawback:

A cryptanalyst who knows the public encryption function e k and a cryptotext c can try
to guess a plaintext w , compute e k(w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding plaintext
(except with a negligible probability).

Formal setting: Given: plaintext-space P
cryptotext C
key-space K
random-space R

encryption: e k : P x R → C
decryption: d k : C → P or C → 2Psuch that for any p, r :

p = dk(ek(p, r)) or p ∈ dk(ek(p, r))

dk and ek should be easy to compute.

Given e k , it should be unfeasible to determine d k .
IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 25/65

WHEN is a CRYPTOSYSTEM (perfectly) SECURE?

First question: Is it enough for perfect security of a cryptosystem that one cannot get a
plaintext from a cryptotext?

NO, NO, NO
WHY

For many applications it is crucial that no information about the plaintext could be
obtained.

Intuitively, a cryptosystem is (perfectly) secure if one cannot get any (new)
information about the corresponding plaintext from any cryptotext.

It is very nontrivial to define fully precisely when a cryptosystem is (computationally)
perfectly secure.

It has been shown that perfectly secure cryptosystems have to use randomized
encryptions.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 26/65

SECURE ENCRYPTIONS – BASIC CONCEPTS I

We now start to discuss a very nontrivial question: when is an encryption scheme
computationally perfectly SECURE?

At first, we introduce two very basic technical concepts:

Definition A function f:N → R is a negligible function if for any polynomial p(n) and
for almost all n:

f (n) ≤ 1
p(n)

Definition – computational distinguishibility Let X = {Xn}n∈N and Y = {Yn}n∈N be
probability ensembles such that each Xn and Yn ranges over strings of length n. We say
that X and Y are computationally indistinguishable if for every feasible algorithm A the
difference

dA(n) =| Pr [A(Xn) = 1]− Pr [A(Yn) = 1] |

is a negligible function in n.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 27/65

SECURE ENCRYPTION – FIRST DEFINITION

Definition – semantic security of encryption A cryptographic system with an
encryption function e is semantically secure if for every feasible algorithm A, there exists
a feasible algorithm B so that for every two functions

f , h : {0, 1}∗ → {0, 1}n

and all probability ensembles {X n}n∈N , where X n ranges over {0, 1}n

Pr [A(e(Xn), h(Xn)) = f (Xn)] < Pr [B(h(Xn)) = f (Xn)] + µ(n),

where µ is a negligible function.

In other words, a cryptographic system is
semantically secure if whatever we can do with the
knowledge of cryptotext we can do also without
that knowledge.

It can be shown that any semantically secure public-key cryptosystem must use a
randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized versions of
RSA are semantically secure.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 28/65

PSEUDORANDOM GENERATORS - PRG

PSEUDORANDOM GENERATORS - PRG

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 29/65

PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost random)
strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the design
of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum (almost
perfect) generators of randomness are already commercially available.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 30/65

STORY of RANDOMNESS

STORY of RANDOMNESS

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 31/65

DOES RANDOMNESS EXIST? - I

One of the fundamental questions (of science) has been, and actually still is, whether
randomness really exists or whether term randomness is used only to deal with events
the laws of which we do not fully understand. Two early views are:

The randomness is the unknown and Nature is determined in its fundamentals.

Democritos (470-404 BC)

By Democritos, the order conquered the world and this order is governed by
unambiguous laws. By Leucippus, the teacher of Democritos.
Nothing occurs at random, but everything for a reason and necessity.

By Democritus and Leucippus, the word random is used when we have an incomplete
knowledge of some phenomena. On the other side:

The randomness is objective, it is the proper nature of some events.

Epikurus (341-270 BC)

By Epikurus, there exists a true randomness that is independent of our knowledge.

Einstein also accepted the notion of randomness only in the relation to incomplete
knowledge.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 32/65

VIEWS on RANDOMNESS in 19th CENTURY

Main arguments, before 20th century, why randomness does not exist:

God-argument: There is no place for randomness in a world created by God.

Science-argument: Success of natural sciences and mechanical engineering in 19th
century led to a belief that everything could be discovered and explained
by deterministic causalities of a cause and the resulting effect.

Emotional-argument: Randomness used to be identified with uncertainty or
unpredictability or even chaos.

There are only two possibilities, either a big chaos conquers the world, or order and law.

Marcus Aurelius

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 33/65

EINSTEIN versus BOHR

God does not roll dice.

Albert Einstein, 1935, a strong opponent of randomness.

The true God does not allow anybody to prescribe what he has to do.

Famous reply by Niels Bohr - one of the fathers of quantum mechanics.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 34/65

RANDOMNESS in NATURE

Two big scientific discoveries of 20th century changed the view on usefulness of
randomness.

1 It has turned out that random mutations of DNA have
to be considered as a crucial instrument of evolution.

2 Quantum measurement yields, in principle, random
outcomes.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 35/65

RANDOMNESS

Randomness as a mathematical topic has been studied
since 17th century.

Attempts to formalize chance by mathematical laws is
somehow paradoxical because, a priory, chance
(randomness) is the subject of no law.

There is no proof that perfect randomness exists in the
real world.

More exactly, there is no proof that quantum
mechanical phenomena of the microworld can be
exploited to provide a perfect source of randomness for
the macroworld.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 36/65

CRYPTOGRAPHICALLY PERFECT PSEUDORANDOM
GENERATORS

One of the most basic questions of perfect security of
encryptions is whether there are cryptographically
perfect pseudorandom generators and what such a
concept really means.

The concept of pseudorandom generators is quite old. An
interesting example is due to John von Neumann:

Take an arbitrary integer x as the ”seed”
and repeat the following process:

compute x2 and take a sequence of the middle digits of
x2 as a new ”seed” x .

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 37/65

SIMPLE PSEUDORANDOM GENERATORS

Informally, a pseudorandom generator is a deterministic polynomial time algorithm
which expands short random sequences (called seeds) into longer bit sequences such that
the resulting probability distribution is in polynomial time indistinguishable from the
uniform probability distribution.

Example. Linear congruential generator

One chooses n-bit numbers m, a, b, X0 and generates an n2 element sequence

X1X2 . . .Xn2

of n-bit numbers by the iterative process

Xi+1 = (aXi + b) mod m.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 38/65

CRYPTOGRAPHY and RANDOMNESS

Randomness and cryptography are deeply related.

1 Prime goal of any good encryption method is to transform even a highly nonrandom
plaintext into a highly random cryptotext. (Avalanche effect.)

Example Let ek be an encryption algorithm, x0 be a plaintext. And

xi = ek(xi−1), i ≥ 1.

It is intuitively clear that if encryption ek is “cryptographically secure”, then it is
very, very likely that the sequence x0 x1 x2 x3 is (quite) random.

Perfect encryption should therefore produce (quite) perfect (pseudo)randomness.

2 The other side of the relation is more complex. It is clear that perfect randomness
together with ONE-TIME PAD cryptosystem produces perfect secrecy. The price to
pay: a key as long as plaintext is needed.

The way out seems to be to use an encryption algorithm with a pseudo-random
generator to generate a long pseudo-random sequence from a short seed and to use
the resulting sequence with ONE-TIME PAD.

Basic question: When is a pseudo-random generator good enough for
cryptographical purposes?

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 39/65

CRYPTOGRAPHICALY STRONG PSEUDORANDOM
GENERATORS

In cryptography random sequences can usually be replaced by pseudorandom
sequences generated by (cryptographically perfect/strong) pseudorandom generators.

Definition. Let l(n) : N → N be such that l(n) > n for all n. A (cryptographically
strong) pseudorandom generator with a stretch function l , is an efficient deterministic
algorithm which on the input of a random n-bit seed outputs a l(n)-bit sequence which is
computationally indistinguishable from any random l(n)-bit sequence.

Candidate for a cryptographically strong pseudorandom generator:

A very fundamental concept: A predicate b is a hard core predicate of the function f if
b is easy to evaluate, but b(x) is hard to predict from f(x). (That is, it is unfeasible,
given f(x) where x is uniformly chosen, to predict b(x) substantially better than with the
probability 1/2.)

Conjecture: The least significant bit of x2 mod n is a hard-core predicate.

Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G(s) = b(s) · b(f (s)) · · · b
(
f l(|s|)−1(s)

)

is a (cryptographically strong) pseudorandom generator with stretch function l(n).

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 40/65

THEOREM

Theorem A cryptographically strong (perfect)
pseudorandom generator exists if one-way functions exist.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 41/65

PSEUDORANDOM GENERATORS and ENCRYPTIONS

If two parties share a pseudorandom generator g ,

and exchange (secretly) a short random string -

(seed) - s

then they can generate and use long

pseudorandom string g(s) as a key k

for one-time pad for encoding and decoding.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 42/65

CANDIDATES for CRYPTOGRAPHICALLY STRONG
PSEUDO-RANDOM GENERATORS

So far there are only candidates for cryptographically strong pseudo-random generators.

For example, cryptographically strong are all pseudo-random generators that are
unpredictable to the left in the sense that a cryptanalyst that knows the generator and
sees the whole generated sequence except its first bit has no better way to find out this
first bit than to toss the coin.

It has been shown that if integer factoring is intractable, then the so-called BBS
pseudo-random generator, discussed below, is unpredictable to the left.

(We make use of the fact that if factoring is unfeasible, then for almost all quadratic
residues x mod n, coin-tossing is the best possible way to estimate the least significant
bit of x after seeing x2 mod n.)

Let n be a Blum integer. Choose a random quadratic residue x0 (modulo n).

For i ≥ 0 let
xi+1 = xi

2mod n, bi = the least significant bit of xI

For each integer i , let
BBS n,i (x0) = b0 . . . bi−1

be the first i bits of the pseudo-random sequence generated from the seed x0 by the BBS
pseudo-random generator.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 43/65

PERFECTLY SECURE CIPHERS - EXAMPLES

PERFECTLY SECURE CIPHERS - EXAMPLES

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 44/65

RANDOMIZED VERSION of RSA-LIKE CRYPTOSYSTEM

The scheme works for any trapdoor function (as in case of RSA),

f : D → D,D ⊂ {0, 1}n,

for any pseudorandom generator

G : {0, 1}k → {0, 1}l , k << l

and any hash function

h : {0, 1}l → {0, 1}k ,

where n = l + k. Given a random seed s ∈ {0, 1}k as input, G generates a
pseudorandom bit-sequence of length l.

Encryption of a message m ∈ {0, 1}l is done as follows:

1 A random string r ∈ {0, 1}k is chosen.

2 Set x = (m ⊕ G(r))‖(r ⊕ h(m ⊕ G(r))). (If x /∈ D go to step 1.)

3 Compute encryption c = f(x) – length of x and of c is n.

Decryption of a cryptotext c.

Compute f −1(c) = a‖b, |a| = l and |b| = k.

Set r = h(a)⊕ b and get m = a⊕ G(r).

Comment: Operation ”‖” stands for a concatenation of strings.
IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 45/65

BLOOM-GOLDWASSER CRYPTOSYSTEM

Private key: Blum primes p and q.

Public key: n = pq.

Encryption of x ∈ {0, 1}m.

1 Randomly choose s0 ∈ {0, 1, . . . , n}.
2 For i = 1, 2, . . . , m + 1 compute

si ← s2i−1 mod n

and σi = lsb(si). —–{lsb – least significant bit}
The cryptotext is then (sm+1, y), where y = x ⊕ σ1σ2 . . . σm.

Decryption: of the cryptotext (r, y):

Let d = 2−m modφ(n)).

Let s1 = rd mod n.

For i = 1, . . . , m, compute σi = lsb(si) and si+1 ← s2i mod n

The plaintext x can then be computed as y ⊕ σ1σ2 . . . σm.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 46/65

CRITERIA for a CRYPTOSYSTEM to be PRACTICAL

One can neve be sure - in the sence of a rigorous proof -
that a public-key cryptosystem cannot feasibly be broken.

The best one can hope for is to havve a large number of
empirical evidence that

the cryptosystem cannot be cracked without solving a
ceratin mathemarical problem, and

there is no method known, in spite of many years of
many attempts, to show that that problem can be
solved in a reasonable length of time.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 47/65

HASH FUNCTIONS

HASH FUNCTIONS

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 48/65

HASH FUNCTIONS - PICTURE

Hash functions f map huge sets A (randomly and
uniformly) into very small sets B in such a way that for
many important information processing tasks one can, well
enough, replace working with (huge) elements x from A by
working with (small) elements f (x) from B .

A

Bf

Cryptographic hash functions are hash functions that
satisfy well enough basic cryptographic properties.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 49/65

HASH FUNCTIONS - BASICS

A hash function is any function that maps (uniformly and randomly) digital data of huge
(arbitrary) size to digital data of small fixed size, in such a way that slight differences in
input data produce big differences in output data.

The values returned by a hash function are called hash values, hash codes, fingerprints,
message digests, digests or simply hashes.

A good hash function should map possible inputs as evenly as possible over its output
range.

In other words, if a hash function maps a set A of n elements into a set B of m << n
elements, then the probability that an element of B is the value of much more than n

m

elements of A should be very small.

Hash function have a variety applications, especially in the design of efficient algorithms
and in cryptography.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 50/65

CRYPTOGRAPHIC HASH FUNCTIONS

A good cryptographic hash function f is such a hash function that withstands all known
cryptographic attacks. As a minimum, it must have the following properties:

Pre-image resistance: Given a hash h it should be unfeasible (difficult) to find a
(message) m such that h = f (m). In such a case it is also said that f
should have one-wayness property.

Second pre-image resistance: Given a message m1 it should be unfeasible (difficult) to
find another message m2 such that f (m1) = f (m2). In such a case it is
also said that f should be weakly collision resistant.

Collision resistance: It should be unfeasible (difficult) to find two messages m1 and m2

such that f (m1) = f (m2). In such a case it is also said that f should be
strongly collision resistant.

In cryptographic practice ”difficult” generally means ”almost certainly beyond the
reach of any adversary who must be prevented from breaking the system for as long
as the security of the system is considered to be very important”.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 51/65

SOME APPLICATIONS

To verify integrity of messages: To determine
whether a change was made to a message during a
transmission, can be done by comparing message
digests calculating before, and after, the transmission.

Passport verification The idea is to store only hashes
of each password. To authenticate a user, the password
presented by the user is hashed and resulting hash is
compared with the stored hash.

In 2013 a long-term Password Hashing Competition
was announced to choose a new, standard algorithm for
password hashing.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 52/65

HASH FUNCTIONS and INTEGRITY of DATA

An important use of hash functions is to protect integrity of data:

The problem of protecting integrity of data of arbitrary length is
reduced, using hash functions, to the problem to protect integrity of data
of fixed (and small) length hashes – of the data fingerprints.

In addition, to send reliably a message w through an unreliable (and cheap)
channel, one sends also its (small) hash h(w) through a very secure (and
therefore expensive) channel.

The receiver, familiar also with the hash function h that is being used, can
then verify the integrity of the message w’ he receives by computing h(w’)
and comparing

h(w) and h(w’) .

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 53/65

EXAMPLES

Example 1 For a vector a = (a1, . . . , ak) of integers let

H(a) =
k∑

i=0

ai mod n

where n is a product of two large primes.

This hash functions does not meet any of the three properties mentioned above.

Example 2 For a vector a = (a1, . . . , ak) of integers let

H(a) =
k∑

i=0

a2i mod n

where n is product of two large primes.

This function is one-way, but it is not weakly collision resistant.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 54/65

HASH FUNCTIONS h from CRYPTOSYSTEMS

Let us have computationally secure cryptosystem with plaintexts, keys and cryptotexts
being binary strings of a fixed length n and with encryption functions ej .

If

x = x1‖x2‖ . . . ‖xm
is the decomposition of x into substrings of length n, g0 is a random string, and

gi = f (xi , gi−1)

for i = 1, . . . ,m, where f is a function that “incorporates” encryption functions ej of the
cryptosystem, for suitable keys kj , then

h(x) = gm .

For example such good properties have these two functions:

f (xi , gi−1) = egi−1(xi)⊕ xi
f (xi , gi−1) = egi−1(xi)⊕ xi ⊕ gi−1

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 55/65

PRACTICALLY USED HASH FUNCTIONS

A variety of hash functions has been constructed. Very often used hash
functions were MD4, MD5 (created by Rivest in 1990 and 1991 and
producing 128 bit message digest).

NSA published, as standards, starting in 1993, SHA-0, SHA-1 (Secure Hash
Algorithm) – producing 160 bit message digest – based on similar ideas as
MD4 and MD5.

Some of the most important cryptographic results of the last years were
due to the Chinese Wang who has shown that MD4 is not cryptographically
perfectly secure and Dr. Kimy who has done that also for MD5.

Observe that every cryptographic hash function is vulnerable to a collision
attack using so called birthday attack. Due to the birthday problem a
hash of n bits can be broken in

√
2n evaluations of the hash function -

much faster than the brute force attack.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 56/65

RECENT DEVELOPMENTS CONCERNING HASH FUNCTIONS

In February 2005, an attack on SHA-1 was reported that would find collision in
about 269 hashing operations - rather than the 280 as expected by dictionary attack
for a 160-bit hash function.

In August 2005 another attack on SHA-1 was reported that would find collisions in
263 operations.

Though no collision for SHA-1 was found, it started to be expected that this will
soon happen and so SHA2 was developed.

Very recently a successful attack on SH1 has been reported.

In order to ensure long-term robustness of applications that use hash functions a
public competition was announced by NIST to replace SHA-2.

On October 2012 Keccak was selected as the winner and a version of this algorithm
is expected to be a new standard (since 2014) under the name SHA-3.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 57/65

MD5

Often used in practise has been hash function MD5 designed in 1991 by Rivest. It maps
any binary message into 128-bit hash.

The input message is broken into 512-bit blocks, divided into 16 words-states (of 32 bits)
and padded if needed to have final length divisible by 512. Padding consists of a bit 1
followed by so many 0’s as required to have the length up to 64 bits fewer than a
multiple of 512. Final 64 bits represent the length of the original message modulo 264.

The main MD5 algorithm operates on 128-bits words
that are divided into four 32-bits words A,B,C ,D
initialized to some fixed constants. The main
algorithm then operates on 512 bit message blocks in
turn - each block modifying the state.

The processing of a message consists of four rounds.
j-th round is composed of 16 similar operations using
non-linear functions Fj and left rotations by sj places
where sj varies for each round - see next figure. Ki

and Mi are 32-bits keys and messages.

A B C D

A B C D

M

K

F

s−shift

j

i

i

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 58/65

BREAKING MD5

In 2006 Vladiḿır Klima published an algorithm to find
a collision for MD5 within one minute on a notebook.

In 2010 T. Xie, O. Feng published single-block MD5
collision.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 59/65

HOW to FIND COLLISIONS of HASH FUNCTIONS

HOW to FIND COLLISIONS of HASH FUNCTIONS

The most basic method is based on so-called birthday
paradox related to so-called the birthday problem.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 60/65

BIRTHDAY PROBLEM and its VARIATIONS

It is well known that if there are 23 (29) [40] {57} < 100 > people in one
room, then the probability that two of them have the same birthday is
more than 50% (70%)[89%] {99%} < 99.99997% > — this is called a
Birthday paradox.

More generally, if we have n objects and r people, each choosing one object
(so that several people can choose the same object), then if
r ≈ 1.177

√
n(r ≈

√
2nλ), then probability that two people choose the same

object is 50% ((1− e−λ)%).

Another version of the birthday paradox: Let us have n objects and two
groups of r people. If r ≈

√
λn, then probability that someone from one

group chooses the same object as someone from the other group is
(1− e−λ).

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 61/65

BASIC DERIVATIONS related to BIRTHDAY PARADOX

For the probability p̄(n) that all n < 366 people in a room have birthday in different days,
it holds

p̄(n) =
n−1∏

i=1

(
365− i

365

)
=

∏n−1
i=1 (365− i)

365n−1
=

365!

365n(365− n)!

This equation expresses the following fact: First chosen person has for sure birthday
different from any person chosen before. the second person cannot have the same
birthday as the first one with probability 365−1

365
, the third person cannot have the same

birthday as first two with probbility 365−2
365

,,.....

Probability p(n) that at least two person have the same birthday is therefore

p(n) = 1− p̄(n)

This probability is larger than 0.5 first time for n = 23.

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 62/65

FINDING COLLISIONS USING BIRTHDAY PARADOX

If the hash of a hash function h has the size n, then to a given x to find x ′ such that
h(x) = h(x ′) by brute force requires 2n hash computations in average.

The idea, based on the birthday paradox, is simple. Given x we iteratively pick a random
x ′ until h(x) = h(x ′). The probability that i-th trial is the first one to succeed is
(1− 2−n)i−12−n;

The average complexity, in terms of hash function computations is therefore

∞∑

i=1

i(1− 2−n)i−12−n = 2n.

To find collisions, that is two x1 and x2 such that h(x1) = h(x2) is easier, thanks to the
birthday paradox and can be done by the following algorithm:

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 63/65

ALGORITHM

Input: A hash function h onto a domain of size n, a real θ and an empty hash table.
Output: A pair (x1, x2) such that x1 6= x2 and h(x1) = h(x2)

1. for θ
√

(n) different x do
2. compute y = h(x)
3. if there is a (y , x ′) pair in the hash table then
4. yield (x , x ′) and stop
5. add (y , x) to the hash table
6.Otherwise search failed

Theorem If we pick the numbers x with uniform distribution in {1, 2, . . . , n} θ√n times,
then we get at least one number twice with probability converging (for n→∞) to

1− e−
θ2

2

For n = 365 we get triples: (θ, θ
√
n, probability) as follows: (0.79, 15, 25%); (1.31, 25,

57%); (2.09, 40, 89%)

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 64/65

WHY CURRENTLY BROADLY USED HASHES HAVE 160 BITS?

The birthday paradox imposes also a lower bound on the sizes of hashes of
the cryptographically good hash functions.

For example, a 40-bit hashes would be insecure because a collision could be
found with probability 0.5 with just over 4020 random guesses.

Minimum acceptable size of hashes seems to be 128 and therefore 160 are
used in such important systems as DSS – Digital Signature Schemes (a
standard).

IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 65/65

