
Part I

Public-key cryptosystems basics: I. Key exchange, knapsack,
RSA



Two issues

Why we need a new type of cryptography?

How powerful (super) computer we have and are
expected to have?
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INGENIOUS IDEA

In the last lecture we have considered symmetric key
cryptosystems - cryptosystems in which both
communicating party use the same (that is symmetric)
key.

Till 1977 all cryptosystems used were symmetric.
The main issue was then absolutely secure
distribution of symmetric keys – problem how to
achieve such a secure distribution of keys.

Symmetric key cyptosystms are also called private key
cryptosystems because the communicating parties use
unique private key - no one else should know that key.

The realization that a cryptosystem does not need
to be symmetric/private can be seen as the single
most important breakthrough in the modern
cryptography and as one of the key discoveries
leading to the internet and to information society.
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MOST POWERFUL SUPERCOMPUTERS - 2018

1 Summit, USA, 2018, 122.23 petaflops, 2,282.544 cores, 8,806 kW power
2 Sunway, TaihuLights, China, Wuxi, 93 petaflops, 10,650.000 cores, 15,371 kW

3 Siare, US, 71.6 petaflops, 1,572.400 cores,

4 Tianhe-2, China, Guangzhou, 34.55 petaflops, 4,981.760 cores, 18,482 kW:wq

5 ABCI, Japan, 19,9 petaflops, 39, 680 cores, 1,649 kW

In April 2013 (June 2014) [June 2015] there were 26 (37) [68] computer systems with
more than one teraflop performance.

Performance of the 100th computer increased in six months from 172 to 241 Teraflops

Out of 500 most powerful computer systems in June 2014, 233 was in US, 123 in Asia,
105 in Europe, 76 in China, 30 in UK, 30 in Japan, 27 in France, 11 in India... In June
2016, 167 in China, 166 in USA,...

Exaflops computers (1018) are expected in China - 2020;: USA - 2023, India 202?.
zetaflops 1021 in ???, yotaflops 1024 in ??????

Combined performance of 500 top supercomputers was 361 petaflops in June 2015, and
274 petaflops a year ago - 31% increase in one year.

Supercomputer Salomon in Ostrava, with performance 1.407 petaflops was on 40th place
in June 2015; best in India on 79th place.
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MOST POWERFUL SUPERCOMPUTERS - 2019

Among first 10 bet supercomputers only one was newon the fifth position.

1 Summit, USA, increased performance to 200 petaflops

2 Siare, USA, increased performance to 94.6 ,

3 Sunway, TaihuLights, China, Wuxi, 93 petaflops

4 Tianhe-2, China, Guangzhou, increased performance to 61.4 petaflops,

5 Frontera, USA 23.5 petaaflops, Uni. of Texas

10th Lassen , 18,2 petaflops
China has 203 supercomputers, USA 143
Ostrava’s Solomon is currently on 282 position. They got a new one, called Barbora,
with 8 times larger performance.
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EXASCALE COMPUTERS

Who is building them? In 2018, in US the Department
of Enery awarded 6 companies 258 millions of dolars to
develop exascale computers.

Why they are needed? Exascale computers would allow
to make extremely precise simulations of biological systems
what is expected to allow to deal with such problems as
climate change and growing food that could withstand
drought.
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CHAPTER 5: PUBLIC-KEY CRYPTOGRAPHY I. RSA

The main problem of secret key (or symmetric or privte)
cryptography is that in order to send securely

a message

there is a need to send, at first, securely

a secret/private key.

Therefore, private key cryptography is not a
sufficiently good tool for massive communication
capable to protect secrecy, privacy and anonymity.
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SYMMETRIC versus ASYMMETRIC CRYPTOSYSTEMS
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PUBLIC KEY CRYPTOGRAPHY

In this chapter we first describe the birth of public key cryptography, that can better
manage the key distribution problem, and then two important public-key cryptosystems,
especially RSA cryptosystem.

The basic idea of a public key cryptography:

In a public key cryptosystem not only the encryption and decryption algorithms are
public, but for each user U also the key eU for encrypting messages (by anyone) for
U is public.

Moreover, each user U gets/creates and keeps secret a specific (decryption) key,
dU , that can be used for decryption of messages that were addressed to him and
encrypted with the help of the public encryption key eU .

Encryption and decryption keys of public key cryptography could (and should) be
different - we can therefore say also that public-key cryptography is asymmetric
cryptography. Secret key cryptography, that has the same key for encryption and for
decryption is then called also as symmetric cryptography.
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KEYS DISTRIBUTION PROBLEM - HISTORY

The main problem of secret-key cryptography: Before two users can exchange
secretly (a message) they must already share a secret (encryption/decryption) key.

Key distribution has been a big problem for 2000 of years, especially during both
World Wars.

Around 1970 a vision of an internet started to appear (ARPAnet was created in
1969) and it started to be clear that an enormous communication potential that a
whole world connecting network could provide, could hardly be fully utilized unless
secrecy of communication can be established. Therefore the key distribution
problem started to be seen as the problem of immense importance.

For example around 1970 only US government institutions needed to distribute daily
tons of keys (on discs, tapes,...) to users they planned to communicate with.

Big banks had special employees that used to travel all the time around the world
and to deliver keys, in special briefcases, to everyone who had to get a message next
week.

Informatization of society was questioned because if governments had problems with
key distribution how smaller companies could handle the key distribution problem
without bankrupting?

At the same time, the key distribution problem used to be considered, practically
by all, as an unsolvable problem.
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FIRST INGENIOUS IDEA - KEY PLAYERS

Whitfield Diffie (1944), graduated in mathematics in 1965, and started to be obsessed
with the key distribution problem -

he realized that whoever could find a solution of this
problem would go to history as one of the all-time greatest cryptographers.

In 1974 Diffie convinced Martin Hellman (1945), a professor in Stanford, to work
together on the key distribution problem - Diffie was his graduate student.

In 1975 they got a basic idea that the key distribution may not be needed. Their ideat
can be now illustrated as follows:
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A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock

and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box.

He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box

and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock)

and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born.

The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea.

The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a box,
locks the box with a padlock and sends the box to Bob.

Bob has no key to open the box. He gets angry and uses another padlock to
double-lock the box and sends this now doubly padlocked box back to Alice.

Alice uses her key to unlock her padlock (but, of course, she cannot unlock Bob’s
padlock) and sends the box back to Bob.

Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 13/71



MERKLE JOINING DIFFIE-HELLMAN

After Diffie and Hellman announced their solution to the
key generation problem, Ralph Merkle claimed, and could
prove, that he had a similar idea some years ago.

That is the way why some people talk about
Merkle-Diffie-Hellman key exchange.
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FIRST ATTEMPT to DIGITALIZE THE PADLOCK PROTOCOL

Let us try to replace the locking of padlocks by substitution encryptions.

Let Alice use the encryption substitution.
a b c d e f g h i j k l m n o p q r s t u v w x y z
H F S U G T A K V D E O Y J B P N X W C Q R I M Z L

Let Bob use the encryption substitution.
a b c d e f g h i j k l m n o p q r s t u v w x y z
C P M G A T N O J E F W I Q B U R Y H X S D Z K L V

Message m e e t m e a t n o o n

Alice’s encrypt. Y G G C Y G H C J B B J
Bob’s encrypt. L N N M L N O M E P P E
Alice’s decrypt. Z Q Q X Z Q L X K P P K
Bob’s decrypt. w n n t w n y t x b b x

Observation The first idea does not work. Why?
1 Encryptions and decryptions were not commutative.
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H F S U G T A K V D E O Y J B P N X W C Q R I M Z L

Let Bob use the encryption substitution.
a b c d e f g h i j k l m n o p q r s t u v w x y z
C P M G A T N O J E F W I Q B U R Y H X S D Z K L V

Message m e e t m e a t n o o n

Alice’s encrypt. Y G G C Y G H C J B B J
Bob’s encrypt. L N N M L N O M E P P E
Alice’s decrypt. Z Q Q X Z Q L X K P P K
Bob’s decrypt. w n n t w n y t x b b x

Observation The first idea does not work. Why?
1 Encryptions and decryptions were not commutative.
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SECURE COMMUNICATION without ecreret keys

The idea contained in the above mention padlock protocol has been materialized by
Shamir as follows:

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob

2 Bob sends eB(eA(w)) to Alice

3 Alice sends dA(eB(eA(w))) = eB(w) to Bob

4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a too large number).
Advantage: It is a perfect protocol for secret distribution of messages.
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PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: is a need to make a secure
distribution (establishment) of secret keys ahead of intended transmissions.

Diffie+Hellman solved this problem of key distribution first in 1976 by designing a
protocol for secure key establishment (distribution) over public communication
channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on large primes p and a q < p of large order in Z∗p
and then they perform, using a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice now computes Y x mod p and Bob computes X y mod p. After that each of
them has the same (key)

k = qxy mod p = Y x mod p = X y mod p

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.
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MERKLE JOINING DIFFIE-HELLMAN

After Diffie and Hellman announced their solution to the
key generation problem, Ralph Merkle claimed, and could
prove, that he had a similar idea some years ago.

That is the way why some people talk now about
Merkle-Diffie-Hellman key exchange.
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MAN-IN-THE-MIDDLE ATTACKS

The following attack, called ” a man-in-the-middle attack, is possible against the
Diffie-Hellman key establishment protocol.

1 Eve chooses an integer (exponent) z.

2 Eve intercepts qx and qy – when they are sent from Alice to Bob and from Bob to
Alice.

3 Eve sends qz to both Alice and Bob. (After that Alice believes she has received qy

and Bob believes he has received qx .)

4 Eve computes KA = qxz (mod p) and KB = qyz (mod p).
Alice, not realizing that Eve is in the middle, also computes KA and
Bob, not realizing that Eve is in the middle, also computes KB .

5 When Alice sends a message to Bob, encrypted with KA, Eve intercepts it, decrypts
it, then encrypts it with KB and sends it to Bob.

6 Bob decrypts the message with KB and obtains the message. At this point he has no
reason to think that communication was insecure.

7 Meanwhile, Eve enjoys reading Alice’s message.
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BIRTH of PUBLIC KEY CRYPTOGRAPHY I

Diffie and Hellman demonstrated their discovery of the hey
establishment protocol at the National Computer
Conference in June 1976 and astonished the audience.

Next year they applied for a US-patent.

However, the solution of the key distribution problem
through Diffie-Hellman protocol could still be seen as not
good enough. Why?

The protocol required still too much communication and a
cooperation of both parties for quite a time.
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BIRTH of PUBLIC KEY CRYPTOGRAPHY II

Already in 1975 Diffie got the an idea for key distribution that seemed to be better: To
design asymmetric cryptosystems - public key cryptosystems.

The basic idea was that in a public key cryptosystem not only the encryption and
decryption algorithms would be public, but for each user U also the key eU for
encrypting messages (by anyone) for U would be public, and each user U would
keep secret another key, dU , that could be used for decryption of messages that
were addressed to him and encrypted with the help of public encryption key eU .

The realization that a cryptosystem does not need to be symmetric can be seen
nowadays as the single most important breakthrough in modern cryptography.

Diffie published his idea in the summer of 1975 in spite of the fact that he had no idea
how to design such a system that would be efficient.

To turn asymmetric cryptosystems from a great idea into a practical invention, somebody
had to discover an appropriate mathematical function.

Mathematically, the problem was to find a simple enough so-called one-way trapdoor
function.

A search (hunt) for such a function started.
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ONE-WAY FUNCTIONS

Informally, a function F : N → N is said to be a one-way function if it is easily
computable - in polynomial time - but any computation of its inverse is infeasible.

A one-way permutation is a 1-1 one-way function.

easy

computationaly infeasible

x f(x)

EA more formal approach
Definition A function f : {0, 1}∗ → {0, 1}∗ is called a strongly one-way function if the
following conditions are satisfied:

1 f can be computed in polynomial time;

2 there are c, ε > 0 such that |x |ε ≤ |f (x)| ≤ |x |c ;

3 for every randomized polynomial time algorithm A, and any constant c > 0, there
exists an nc such that for |x | = n > nc

Pr (A(f (x)) ∈ f −1(f (x))) < 1
nc

.

Candidates: Modular exponentiation: f (x) = ax mod n
Modular squaring f (x) = x2 mod n, n − a Blum integer
Prime number multiplication f (p, q) = pq.
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TRAPDOOR ONE-WAY FUNCTIONS

The key concept for design of public-key cryptosystems stsrted to be that of
trapdoor one-way functions.

A function f : X → Y is a trapdoor one-way function if

f and its inverse can be computed efficiently, but.

even the complete knowledge of the algorithm to compute f does not make it
feasible to determine a polynomial time algorithm to compute the inverse of f .

However, the inverse of f can be computed efficiently if some special,
”trapdoor”, knowledge is available.

New, bery basic, problem: How to find such a (trapdoor one-way) function?

New basic idea: To make a clever use of outcomes of computational complexity theory.
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CRYPTOGRAPHY and COMPUTATIONAL COMPLEXITY

Modern cryptography uses such encryption methods that no “enemy” can have enough
computational power and time to do decryption (even those capable to use thousands of
supercomputers during tens of years for encryption).

Modern cryptography is based on negative and positive results of complexity theory – on
the fact that for some algorithm problems no efficient algorithm seem to exists,
surprisingly, and for some “small” modifications of these problems, even more
surprisingly, simple, fast and good (randomized) algorithms do exist. Examples:

Integer factorization: Given an integer n(= pq), it is, in general, unfeasible, to find p, q.

There is a list of “most wanted to factor integers”. Top recent successes, using
thousands of computers for months.

(*) Factorization of 229

+ 1 with 155 digits (1996)

(**) Factorization of a “typical” 232 digits integer RSA-768 (2009)

Primes recognition: Is a given n a prime? – fast randomized algorithms exist (1977).
The existence of polynomial deterministic algorithms for primes recognition has been
shown only in 2002
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COMPUTATIONALLY INFEASIBLE PROBLEMS

Discrete logarithm problem: Given integers x , y , n, determine an integer a such
that y ≡ xa (mod n) – infeasible in general.

Discrete square root problem: Given integers y , n, compute an integer x such
that y ≡ x2 (mod n) – infeasible in general, but easy if factorization of n is known

Knapsack problem: Given a ( knapsack - integer) vector X = (x1, . . . , xn) and an
(integer capacity) c , find a binary vector (b1, . . . , bn) such that∑n

i=1 bixi = c .

Problem is NP-hard in general, but easy if xi >
∑i−1

j=1 xj , for all 1 < i ≤ n.
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BIRTH of PUBLIC-KEY CRYPTOGRAPHY- II.

A candidate for a one-way trapdoor function:
modular squaring

√
y mod n with a fixed modulus n.

computation of discrete square roots is unfeasible in
general, but quite easy if the decomposition of the
modulus n into primes is known.

A way to design a trapdoor one-way function is to
transform an easy case of a hard (one-way) function to a
hard-looking case of such a function, that can be,
however, solved easily by those knowing how the above
transformation was performed.
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FORMAL VIEW of PUBLIC-KEY CRYPTOSYSTEMS

A public-key cryptosystem consists of three fixed and publically known deterministic
algorithms:

E — encryption algorithm;

D — decryption algorithm;

G — key-generation algorithm

In addition: the following binary words will be considered:

M — message;

C — cryptotext

T — trapdoor

Prior transformation of any message the receiver R generates (or someone behind him) a
trapdor TR , say randomly, and then computes the pair (KTR ,e ,KTR ,d) of keys.

KTR ,e is made public, but KTR ,d and TR keps R secret.

When any a sender S wants to send a message M to a receiver R, S first encrypts M
using a public key KTR ,e to get a cryptotext C . Then S sends C to R through any public
channel. The receiver R gets then M by decrypting C using the key KTR ,d .
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PROBELMS ITH a MASSIVE USE OF PKC

Once PKC is to be used broadly usual a huge machinery
has to be established in a country for generating, storing
and validation (of validity,....) of public keys.
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PUBLIC KEY CRYPTOGRAPHY based on KNAPSCAK PROBLEM

Interesting and important public key cryptosystems
were developed on the base of the KNAPSACK
PROBLEM and its modifications
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GENERAL, UNFEASIBLE, KNAPSACK PROBLEM

KNAPSACK PROBLEM: Given an integer-vector X = (x1, . . . , xn) and an integer c.
Determine a binary vector B = (b1, . . . , bn) (if possible) such that XBT = c.

However, the Knapsack problem with a superincreasing vector is easy.

Problem Given a superincreasing integer-vector X = (x1, . . . , xn) (i.e. xi >
∑i−1

j=1 xj , for
all i > 1) and an integer c,

determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Algorithm – to solve knapsack problems with superincreasing vectors:

for i = n← downto 2 do
if c ≥ 2xi then terminate {no solution}

else if c ≥ xi then bi ← 1; c ← c − xi ;
else bi = 0;

if c = x1 then b1 ← 1
else if c = 0 then b1 ← 0;

else terminate {no solution}

Example X = (1,2,4,8,16,32,64,128,256,512), c = 999
X = (1,3,5,10,20,41,94,199), c = 242
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KNAPSACK and MCELIECE CRYPTOSYSTEMS

KNAPSACK and MCELIECE CRYPTOSYSTEMS
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KNAPSACK ENCRYPTION – BASIC IDEAS

Let a (knapsack) vector (of integers)

A = (a1, . . . , an)

be given.

Encryption of a (binary) message/plaintext B = (b1, b2, . . . , bn) by A is done by the
vector × vector multiplication:

ABT = c

and results in the cryptotext c.

Decoding of c requires to solve the knapsack problem for the instant given by the
knapsack vector A and the cryptotext c.

The problem is that decoding seems to be infeasible.

Example
If A = (74, 82, 94, 83, 39, 99, 56, 49, 73, 99) and B = (1100110101) then

ABT =
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DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing (raw) vector X = (x1, . . . , xn).

2 Choose integers m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi︸︷︷︸

diffusion

mod m.

︸ ︷︷ ︸
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary message (vector) w of length n: c = X ′wT

Decryption: compute c ′ = u−1c mod m
and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′wT = c. Then

c ′ ≡ u−1c ≡ u−1X ′wT ≡ u−1uXwT ≡ XwT (mod m).

Since X is superincreasing and m > 2xn we have

(XwT ) mod m = XwT

c ′ = XwT .and therefore
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DESIGN of KNAPSACK CRYPTOSYSTEMS – EXAMPLE

Example X = (1,2,4,9,18,35,75,151,302,606)
m = 1250, u = 41
X’ = (41,82,164,369,738,185,575,1191,1132,1096)

In order to encrypt an English plaintext, we first encode its letters by 5-bit numbers -
00000, A - 00001, B - 00010,. . . and then divide the resulting binary strings into blocks of
length 10.

Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption:
c1′ = X ′wT

1 = 3061 c2′ = X ′wT
2 = 2081 c3′ = X ′wT

3 = 2203

Cryptotext: (3061,2081,2203)

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u–1 = 61 (mod 1250) we get new cryptotexts (several new c ′)

(693, 326, 320, 789)

And, in the binary form, solutions B of equations XBT = c ′ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

Therefore, the resulting plaintext is: ZIMBABWE
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Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption:
c1′ = X ′wT

1 = 3061 c2′ = X ′wT
2 = 2081 c3′ = X ′wT

3 = 2203

Cryptotext: (3061,2081,2203)

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u–1 = 61 (mod 1250) we get new cryptotexts (several new c ′)

(693, 326, 320, 789)

And, in the binary form, solutions B of equations XBT = c ′ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

Therefore, the resulting plaintext is: ZIMBABWE
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McELIECE CRYPTOSYSTEM

McEliece cryptosystem is based on a similar design principle as the
Knapsack cryptosystem. McEliece cryptosystem is formed by transforming an
easy to break cryptosystem (based on an easy to decode linear code) into a
cryptosystem that is hard to break ( because it seems to be based on a linear code
that is, in general, NP-hard).

The underlying fact is that the decision version of the decryption problem for
linear codes is in general NP-complete. However, for special types of linear codes
polynomial-time decryption algorithms exist. One such a class of linear codes, the
so-called Goppa codes, are often used to design McEliece cryptosystem.

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

(McEliece suggested to use m = 10, t = 50.)
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McELIECE CRYPTOSYSTEM – DESIGN

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

Design of McEliece cryptosystems. Let

G be a generating matrix for an [n, k, d ] Goppa code C ;

S be a k × k binary matrix invertible over Z2;

P be an n × n permutation matrix;

G ′ = SGP.

Plaintexts: P = (Z2)k ; cryptotexts: C = (Z2)n, key: K = (G , S ,P,G ′), message: w
G ′ is made public, G , S ,P are kept secret.

Encryption: eK (w , e) = wG ′ + e, where e is a binary vector of length n & weight ≤ t.

Decryption of a cryptotext c = wG ′ + e ∈ (Z2)n.

1 Compute c1 = cP−1 = wSGPP−1 + eP−1 = wSG + eP−1

2 Decode c1 to get w1 = wS ,

3 Compute w = w1S
−1
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RSA CRYPTOSYSTEM

The most important public-key cryptosystem is the
RSA cryptosystem on which one can also illustrate a
variety of important ideas of modern public-key
cryptography.

For example, we will discuss various possible attacks on
the security of RSA cryptosystems.

A special attention will be given in Chapter 7 to the
problem of factorization of integers that play such an
important role for security of RSA.

In doing that we will illustrate modern distributed
techniques to factorize very large integers.
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HISTORY of RSA

Diffie published his idea of asymmetric cryptosystem in summer 1975, though he
had no example of such a cryptosystem.

The problem was to find a one-way function with a backdoor.

Rivest, Shamir and Adleman, from MIT, started to work on this problem in 1976.

Rivest and Shamir spent a year coming up with new ideas and Adleman spent a year
shooting them down.

In April 1977 they spent a holiday (Passover) evening drinking quite a bit of wine.

At night Rivest could not sleep, mediated and all of sudden got an idea. In the
morning the paper about a new cryptosystem, called now RSA, was practically
written down.
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DESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978 by Rivest, Shamir, Adleman
Basic idea: prime multiplication is very easy, integer factorization seems to be unfeasible.

Design of RSA cryptosystems

1 Choose randomly two large about s-bit primes p,q, where s ∈ [512, 1024], and denote

n = pq, φ(n) = (p − 1)(q − 1)

2 Choose a large d such that
gcd(d , φ(n)) = 1

and compute
e = d−1(mod φ(n))

Public key: n (modulus), e (encryption exponent)
Trapdoor information: p, q, d (decryption exponent)

Plaintext w
Encryption: cryptotext c = w e mod n
Decryption: plaintext w = cd mod n

Details: A plaintext is first encoded as a word over the alphabet {0, 1, . . . , 9}, then
divided into blocks of length i − 1, where 10i−1 < n < 10i . Each block is taken as an
integer and decrypted using modular exponentiation.
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OBSERVATION

Observe that when RSA is used we are working with really huge numbers - even with
numbers having more than 2,000 bits what means that more than 600 digits.

In order to see how huge these numbers are observe that the total number of particle
interactions in whole universe since the Big Bang is estimated to be

2122

what is the number with about only 40 digits.

Total mass-energy (in Joules) of observable universe is 4× 1069

The total number of particles in observable universe is about 1080 − 1085.

All that means that in modern cryptography we need, for security reasons, to work with
numbers that have no correspondence in the physical reality.
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SOME APPLICATIONS of RSA

Discovery of RSA initiated enormous number of
applications and business.

For example, RSA is a key component of SSL (Secure
Sockets Layer) and TLS (Transport level Security)
protocols that are universally accepted standards for
authenticated and encrypted communications between
clients and servers, especially in internet.

SSL/TLS use a combination of PKC and SKC. SSL
uses mainly RSA, TLS uses mainly ECC (Elliptic
Curves Cryptography).
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A SPECIAL PROPERTY of RSA ENCRYPTIONS

If a cryptotext c is obtained using an
(n, e)-RSA-encryption from a plaintext w

then

c2 [cm] is the (n, e)-RSA-encryption of w 2 [wm].

In other words. If we know the RSA-encryption of
unknown plaintext w , we can compute encryption of w 2

without knowing w .

Indeed, if c = w e , then c2 = (w e)2 = w 2e = (w 2)e .
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KEY THEOREMS for RSA DISCOVERY

As the next slide demonstrates, RSA cryptosystem could
hardly be invented by someone who did not know:

Theorem 1 (Euler’s Totient Theorem)

nΦ(m) ≡ 1 ( mod m)

if n < m, gcd(m, n) = 1

and
Theorem (Fermat’s Little Theorem)

w p−1 ≡ 1 (mod p)

for any w and any prime p.
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PROOF of the CORRECTNESS of RSA

Let c = w emod n be the cryptotext for a plaintext w , in the cryptosystem with

n = pq, ed ≡ 1 (mod φ(n)), gcd(d , φ(n)) = 1

In such a case
w ≡ cd mod n

and, if the decryption is unique, w = cdmod n.
Proof Since ed ≡ 1 (mod φ(n)), there exists a j ∈ N such that ed = jφ(n) + 1.

Case 1. Neither p nor q divide w .
In such a case gcd(n,w) = 1 and by the Euler’s Totient Theorem we get that

cd = w ed = w jφ(n)+1 ≡ w (mod n)

Case 2. Exactly one of numbers p, q divides w – say p.
In such a case w ed ≡ w (mod p) and by Fermat’s Little theorem wq−1 ≡ 1 (mod q)

⇒ wq−1 ≡ 1 (mod q)⇒ wφ(n) ≡ 1 (mod q)

⇒ w jφ(n) ≡ 1 (mod q)

⇒ w ed ≡ w (mod q)

Therefore: w ≡ w ed ≡ cd (mod n)
Case 3. Both p, q divide w .
This cannot happen because, by our assumption, w < n.
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HOW TO DO EFFICIENTLY RSA COMPUTATIONS

How to compute w e mod n? Use the method of exponentiation by squaring - see the
Appendix - and perform all operations modulo n

How to compute d−1 mod φ(n)? :

Method 1 Use Extended Euclid algorithm, see the Appendix, that shows
how to find, given integers 0 < m < n with GCD(m, n) = 1, integers x , y
such that

xm + yn = 1

Once this is done, x = m−1 mod n

Method 2 It follows from Euler’s Totient Theorem that

m−1 ≡ mφ(n)−1 mod φ(n)

if m < n and GCD(m, n) = 1
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EXPONENTIATION by squaring

Exponentiation (modular) plays the key role in many cryptosystems. If

n =
k−1∑
i=0

bi2
i , bi ∈ {0, 1}

then

e = an = a
∑k−1

i=0 bi 2
i

=
k−1∏
i=0

abi 2
i

=
k−1∏
i=0

(a2i )bi

Algorithm for exponentiation

begin e ← 1; p ← a;
for i ← 0 to k − 1

do if bi = 1 then e ← e · p;
p ← p · p

od
end

Modular exponentiation: an mod m = ((a mod m)n) mod m
Modular multiplication: ab mod n = ((a mod n)(b mod n) mod n)
Example 31000 mod 19 =

34.250 mod 19 = (34)250 mod 19 = (81 mod 19)250 mod 19
= 5250 mod 19 = ......

310000 mod 13 = 3
3340 mod 11 = 1
3100 mod 79 = 51
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GOOD e-EXPONENTS

Good values of the encryption exponent e should:

have:

short bits length;

small Hamming weight

e = 3, 17, 65.537 = 216 + 1
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HISTORICAL QUESTION

Question Why Euler did not invent puboic key

cryptography?

Euler knew everyhing from number theory that

was needed to invent RSA!!

Answer It was not needed at that time.
For centuries cryptography was used mainly for
military and diplomatic purposes and for that
privite cryptography was well suited. It was the
incresed computerization and communication of
and in economic life that led to very new needs in
cryptography.
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EXAMPLE of ENCRYPTION and DECRYPTION in RSA

Example of the design and of the use of RSA cryptosystems.

By choosing p = 41, q = 61 we get n = 2501, φ(n) = 2400
By choosing d = 2087 we get e = 23
By choosing d = 2069 we get e = 29
By choosing other values of d we would get other values of e.

Let us choose the first pair of exponents (e = 23 and d = 2087).

Plaintext: KARLSRUHE First encoding (letters–int.): 100017111817200704

Since 103 < n < 104, the numerical plaintext is divided into blocks of 3 digits ⇒
therefore 6 integer plaintexts are obtained

100, 017, 111, 817, 200, 704

Encryptions:

10023 mod 2501, 1723 mod 2501, 11123 mod 2501
81723 mod 2501, 20023 mod 2501, 70423 mod 2501

provide cryptotexts:
2306, 1893, 621, 1380, 490, 313

Decryptions:

23062087 mod 2501 = 100, 18932087 mod 2501 = 17
6212087 mod 2501 = 111, 13802087 mod 2501 = 817
4902087 mod 2501 = 200, 3132087 mod 2501 = 704
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RSA CHALLENGE

The first public description of the RSA cryptosystem was in the paper.

Martin Gardner: A newkind of cipher that would take million years to break, Scientific
American, 1977

and in this paper the RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5154

encrypted using the RSA cryptosystem with 129 digit number, called also RSA129

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 561
842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147 599 290 026
879 543 541.

and with e = 9007.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and one
65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE

In 2002 RSA inventors received Turing award.
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Abstract of the US RSA patent 4,405,829

The system includes a communication channel coupled to
at least one terminal having an encoding device and to at
least one terminal having a decoding device.

A message-to-be-transferred is enciphered to
ciphertext at the encoding terminal by encoding a
message as a number, M, in a predetermined set.

That number is then raised to a first predetermined power
(associated with the intended receiver) and finally
computed. The remainder of residue, C , is ... computed
when the exponentiated number is divided by the product
of two predetermined prime numbers (associated with the
predetermined receiver).
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RSA SECURITY

Security of RSA is based on the fact that for the

following two problems no classical polynomial

time algorithms seem to exist.

Integer factorization problem.

RSA problem: Given a public key (n, e) and a

cryptotext c find an m such that

c = me(modn).

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 53/71



RSA SECURITY

Security of RSA is based on the fact that for the

following two problems no classical polynomial

time algorithms seem to exist.

Integer factorization problem.

RSA problem: Given a public key (n, e) and a

cryptotext c find an m such that

c = me(modn).

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 53/71



RSA SECURITY

Security of RSA is based on the fact that for the

following two problems no classical polynomial

time algorithms seem to exist.

Integer factorization problem.

RSA problem: Given a public key (n, e) and a

cryptotext c find an m such that

c = me(modn).

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 53/71



HISTORY of RSA

Diffie published his idea of asymmetric cryptosystem in summer 1975, though he
had no example of such a cryptosystem.

The problem was to find a one-way function with a backdoor.

Rivest, Shamir and Adleman, from MIT, started to work on this problem in 1976.

Rivest and Shamir spent a year coming up with new ideas and Adleman spent a year
shooting them down.

In April 1977 they spent a holiday evening drinking quite a bit of wine.

At night Rivest could not sleep, mediated and all of sudden got an idea. In the
morning the paper about RSA was practically written down.
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HISTORY of RSA REVISITED

Around 1960 British military people started to worry about the key distribution
problem.

At the beginning of 1969 James Ellis from secrete Government Communications
Headquarters (GCHQ) was asked to look into the problem.

By the end of 1969 Ellis discovered the basic idea of public key cryptography.

For next three years best minds of GCHQ tried to unsuccessfully find a suitable
trapdoor function necessary for useful public-key cryptography.

In September 1973 a new member of the team, Clifford Cocks, who graduated in
number theory from Cambridge, was told about problem and solved it in few hours.
By that all main aspects of public-key cryptography were discovered.

This discovery was, however, too early and GCHQ kept it secret and they disclosed
their discovery only in 1997, after RSA has been shown very successful.
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PRIMES - key tools of modern cryptography

A prime p is an integer with exactly two divisors - 1 and p.

Primes play very important role in mathematics.

Already Euclid new that there are infinitely many primes.

Probability that an n-bit integer is prime is 1
2.3n

. (The accuracy of this estimate is
closely related to the Rieman Hypothesis considered often as the most important
open problem of mathematics.)

Each integer has a uniquer decomposition as a product of primes.

Golbach conjecture: says that every even integer n can be written as the sum of two
primes (verified for n ≤ 4 · 1014).

Vinogradov Theorem: Every odd integer n > 1043000 is the sum of three primes.

There are fast ways to determine whether a given integer is prime or not.

However, if an integer is not a prime then it is very hard to find its factors.
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PRIMES PRIZES

Electronic frontiers foundation offered several prizes for
record primes:

In 1999 $ 50,000 prize was given for first 1 million
digits prime.

In 2008 $ 100,000 prize was given for first 10 million
digits prime.

A special prize is offered for first 100 million digits
prime.

Another special prize is offered for first 1 billion digits
prime.
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HOW to DESIGN REALLY GOOD RSA CRYPTOSYSTEMS?

1 How to choose large primes p, q?
Choose randomly a large integer p and verify, using a randomized algorithm,
whether p is prime. If not, check p + 2, p + 4, . . . for primality.

From the Prime Number Theorem it follows that there are approximately

2d

log 2d
− 2d−1

log 2d−1

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)

2 What kind of relations should be between p and q?
2.1 Difference |p − q| should be neither too small nor too large.
2.2 gcd(p − 1, q − 1) should not be large.
2.3 Both p − 1 and q − 1 should not contain small prime factors.
2.4 Quite ideal case: q, p should be safe primes -such that also (p–1)/2 and (q − 1)/2 are

primes. (83, 107, 10100 − 166517 are examples of safe primes).

3 How to choose e and d?
3.1 Neither d nor e should be small.
3.2 d should not be smaller than n

1
4 . (For d < n

1
4 a polynomial time algorithm is known

to determine d).
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From the Prime Number Theorem it follows that there are approximately

2d

log 2d
− 2d−1

log 2d−1

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)

2 What kind of relations should be between p and q?
2.1 Difference |p − q| should be neither too small nor too large.
2.2 gcd(p − 1, q − 1) should not be large.

2.3 Both p − 1 and q − 1 should not contain small prime factors.
2.4 Quite ideal case: q, p should be safe primes -such that also (p–1)/2 and (q − 1)/2 are

primes. (83, 107, 10100 − 166517 are examples of safe primes).

3 How to choose e and d?
3.1 Neither d nor e should be small.
3.2 d should not be smaller than n
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WHAT ”SMALL” MEANS

If n = pq and p − q is ”small”, then
factorization can be quite easy.

For example, if p − q < 2n0.25

(which for even small 1024-bit values of n

is about 3 · 1077)

then factoring of n is quite easy.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 60/71



WHAT ”SMALL” MEANS

If n = pq and p − q is ”small”, then
factorization can be quite easy.

For example, if p − q < 2n0.25

(which for even small 1024-bit values of n

is about 3 · 1077)

then factoring of n is quite easy.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 60/71



PRIMES RECOGNITION and INTEGERS FACTORIZATION

The key problems for the development of RSA cryptosystem are that of primes
recognition and integers factorization.

On August 2002, the first polynomial time algorithm was discovered that allows to
determine whether a given m bit integer is a prime. Algorithm works in time O(m12).

Fast randomized algorithms for prime recognition has been known since 1977. One of the
simplest one is due to Rabin and will be presented later.

For integer factorization situation is somehow different.

No polynomial time classical algorithm is known.

Simple, but not efficient factorization algorithms are known.

Several sophisticated distributed factorization algorithms are known that allowed to
factorize, using enormous computation power, surprisingly large integers.

Progress in integer factorization, due to progress in algorithms and technology, has
been recently enormous.

Polynomial time quantum algorithms for integer factorization are known since 1994
(P. Shor).

Several simple and some sophisticated factorization algorithms will be presented and
illustrated in the following.
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LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits

and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013

at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at

23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 6, 2018

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.

IV054 1. Public-key cryptosystems basics: I. Key exchange, knapsack, RSA 62/71



LARGEST PRIMES - December 7, 2018

Largest known prime known since December 7,

2018 is the Mersenne prime

282,589,933 − 1

that has 24, 862, 048 digits
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FACTORIZATION of 512-BITS and 708-BITS NUMBERS

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and “represented” 95% of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, they
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.

In 2005 RSA-640 was factorized - this took approximately 30 2.2GHz-Opteron-CPU years
- over five months of calendar time.

In 2009 RSA-768, a 768-bits number, was factorized by a team from several institutions.
Time needed would be 2000 years on a single 2.2 GHz AND Opterons. Cash price
obtained - 30 000 $.
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computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, they
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.

In 2005 RSA-640 was factorized - this took approximately 30 2.2GHz-Opteron-CPU years
- over five months of calendar time.

In 2009 RSA-768, a 768-bits number, was factorized by a team from several institutions.
Time needed would be 2000 years on a single 2.2 GHz AND Opterons. Cash price
obtained - 30 000 $.
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DESIGN OF GOOD RSA CRYPTOSYSTEMS

Claim 1. Difference |p − q| should not be small.

Indeed, if |p − q| is small, and p > q, then (p+q)
2

is only slightly larger than
√
n because

(p + q)2

4
− n =

(p − q)2

4

In addition, (p+q)2

4
− n is a square, say y 2.

In order to factor n, it is then enough to test x >
√
n until x is found such that x2 − n is

a square, say y 2. In such a case

p + q = 2x , p − q = 2y and therefore p = x + y , q = x − y .

Claim 2. gcd(p − 1, q − 1) should not be large.

Indeed, in the opposite case s = lcm(p − 1, q − 1) is much smaller than φ(n) If

d ′e ≡ 1 mod s,

then, for some integer k,

cd ≡ w ed ≡ w ks+1 ≡ w mod n

since p − 1|s, q − 1|s and therefore w ks ≡ 1 mod p and w ks+1 ≡ w mod q. Hence, d ′

can serve as a decryption exponent.
Moreover, in such a case s can be obtained by testing.
Question Is there enough primes (to choose again and again new ones)?
No problem, the number of primes of length 512 bit or less exceeds 10150.
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WHAT SMALL REALLY MEANS

If n = pq and p − q is ”small”, then
factorization can be quite easy.

For example, if p − q < 2n0.25

(which for even small 1024-bit values of n

is about 3 · 1077)

then factoring of n is quite easy.
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SECURITY of RSA in PRACTICE

None of the numerous attempts to develop attacks on any RSA cryptosystem has turned
out to be successful.

There are various results showing that it is impossible to obtain even only partial
information about the plaintext from the cryptotext produced by the RSA cryptosystem.

We will show that would the following two functions, that are computationally
polynomially equivalent, be efficiently computable, then the RSA cryptosystem with the
encryption (decryption) exponents ek(dk) would be breakable.

parityek
(c) =the least significant bit of such an w that ek(w) = c;

halfek (c) = 0 if 0 ≤ w < n
2

and halfek (c) = 1 if n
2
≤ w ≤ n − 1

We show two important properties of the functions half and parity .

1 Polynomial time computational equivalence of the functions half and parity follows
from the following identities

halfek (c) = parityek ((c × ek(2)) mod n

parityek (c) = halfek ((c × ek(
1

2
)) mod n

and from the multiplicative rule ek(w1)ek(w2) = ek(w1w2).

2 There is an efficient algorithm, on the next slide, to determine the plaintexts w from
the cryptotexts c obtained from w by an RSA-encryption provided the efficiently
computable function half can be used as the oracle:
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encryption (decryption) exponents ek(dk) would be breakable.

parityek
(c) =the least significant bit of such an w that ek(w) = c;
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and halfek (c) = 1 if n
2
≤ w ≤ n − 1
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from the following identities
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RSA in PRACTICE

660-bits integers were already (factorized) broken in practice.

1024-bits integers are currently used as moduli.

512-bit integers can be factorized with a device costing 5.000 $ in
about 10 minutes.

1024-bit integers could be factorized in 6 weeks by a device costing 10
millions of dollars.
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ATTACKS on RSA

RSA can be seen as well secure. However, this does not mean that under special
circumstances some special attacks can not be successful. Two of such attacks are:

The first attack succeeds in case the decryption exponent is not large enough.
Theorem (Wiener, 1990) Let n = pq, where p and q are primes such that
q < p < 2q and let (n, e) be such that de ≡ 1(modφ(n)). If d < 1

3
n1/4. then there

is an efficient procedure for computing d .

Timing attack P. Kocher (1995) showed that it is possible to discover the
decryption exponent by carefully counting the computation times for a series of
decryptions. Basic idea: Suppose that Eve is able to observes times Bob needs to
decrypt several cryptotext s. Knowing cryptotext and times needed for their
decryption, it is possible to determine decryption exponent.
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CASES WHEN RSA IS EASY TO BREAK

If an user U wants to broadcast a value x to n other users, using for a
communication with a user Pi a public key (e,Ni ), where e is small, by sending
yi = xe mod Ni .

If e = 3 and 2/3 of the bits of the plaintext are known, then one can decrypt
efficiently;

If 25% of the least significant bits of the decryption exponent d are known, then d
can be computed efficiently.

If two plaintexts differ only in a (known) window of length 1/9 of the full length and
e = 3, one can decrypt the two corresponding cryptotext.

Wiener showed how to get secret key efficiently if n = pq, q < p < 2q and
d < 1

3
n0.25.
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