	PROLOGUE - I.
Part I Secret-key cryptosystems basics	Decrypt cryptotexts: GBLVMUB JOGPSNBUJLZ VMNIR RPNBMZ EBMFLP OFABKEFT
PROLOGUE - II. Decrypt:	I. Secret-key cryptosystems basics 2/93 CHAPTER 4: SECRET-KEY (SYMMETRIC) CRYPTOGRAPHY In this chapter we deal with some of the very old, or quite old, classical (count law or competitive) cryptographics and their cryptographics that were
VHFUHW GH GHXA VHFUHW GH GLHX, VHFUHW GH WURLV, VHFUHW GH WRXV.	 (secret-key or symmetric) cryptosystems and their cryptanalysis that were primarily used in the pre-computer era. These cryptosystems are too weak nowadays, too easy to break, especially with computers. However, these simple cryptosystems give a good illustration of several of the important ideas of the cryptography and cryptanalysis. Moreover, most of them can be very useful in combination with more modern cryptosystem - to add a new level of security.

BASICS CRYPTOLOGY - HISTORY + APPLICATIONS		
BASICS	 Cryptology (= cryptography + cryptanalysis) has more than four thousand years long history. Some historical observation People have always had fascination with keeping information away from others. Some people – rulers, diplomats, military people, businessmen – have always had needs to keep some information away from others. Importance of cryptography nowadays Applications: cryptography is the key tool to make modern information transmission secure, and to create secure information society. Foundations: cryptography gave rise to several new key concepts of the foundation of informatics: one-way functions, computationally perfect pseudorandom generators, zero-knowledge proofs, holographic proofs, program self-testing and self-correcting, 	
IV054 1. Secret-key cryptosystems basics 5/93	IV054 1. Secret-key cryptosystems basics 6/93	
MAIN DEVELOPMENTS IN CRYPTOGRAOHY	CONTINUATION	
 Classical cryptography used to concentrate till the end of the last millenium on designing and breaking encryption systems and all that in the context of classical information processing. Modern cryptography has (1) significantly enlarged its scope to the rigorous analysis of any system that can be potential subject to malicious threats and to designs of such versions of such systems that can guarantee that they withstand such treats. 	As one onsequence, many goals have been added to old cryptography to that of private and secure commuicaions in the presence of an adversary, For example, digital signatures, authentication, privacy preservations, secret sharing, hashing, pseudorandom generators, zero-knowledge proofs, steganography, and so on.	
(2) started to develop cryptographic systems that also utilize elements and processes of the quantum world.	IV054 1. Secret-key cryptosystems basics 8/93	

	APPROACHES and PARADOXES in CRYPTOGRAPHY	
--	--	--

As another consequence, cryptography has moved from an engineering art, built on heuristic techniques, to a scientific disciplin based on mathematically rigorous design requirements, solution techniques and correctness proofs.

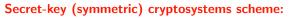
Such broadly developed modern cryptography is the subject of this lecture.

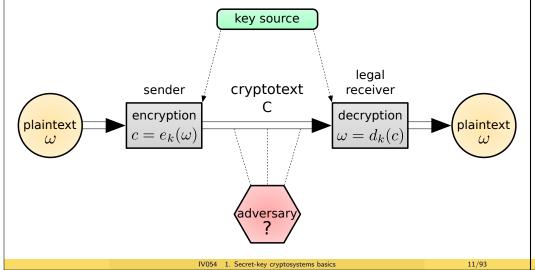
Sound approaches to cryptography

- Shannon's approach based on information theory (Enemy could not have enough information to break a given cryptosystem).
- Current approach based on complexity theory. (Enemy could not have enough computation power to break a given cryptosystem).
- Very recent a new approach has been developed that is based on the laws and limitations of quantum physics. (Enemy would need to break laws of nature in order to break a given cryptosystem).

Paradoxes of modern cryptography:

- Positive results of modern cryptography are based on negative results of computational complexity theory.
- Computers, that were designed originally for decryption, seem to be now more useful for encryption.


IV054 1. Secret-key cryptosystems basics


SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS - CIPHERS

IV054 1. Secret-key cryptosystems basics

9/93

The cryptography deals with problem of sending a message (plaintext, ciphertext, cleartext), through an insecure channel, that may be tapped by an adversary (eavesdropper, cryptanalyst), to a legal receiver.

SECRET-KEY (PRIVATE-KEY - SYMMETRIC) CRYPTOSYSTEMS

A secret-key (private-key or symmetric) cryptosystem is the one where the sender and the recepient share a common and secret key.

Security of such a cryptosystem depends solely on the secrecy of shared key.

Plaintext-space: P – a set of plaintexts (messages) over an alphabet \sum Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet Δ Key-space: K – a set of keys

Each key $k \in K$ determines an encryption algorithm e_k and an decryption algorithm d_k such that, for any plaintext $w, e_k(w)$ is the corresponding cryptotext and

 $w \in d_k(e_k(w))$ or $w = d_k(e_k(w)).$

Note: As encryption algorithms we can use also randomized algorithms.

Symmetric cryptography relies on three algorithms:
 Key generating algorithm which generates a secret key in a cryptographically (pseudo)random way.
 Encryption algorithm which transforms a plaintext into a cryptotext using a secret key.
 Decryption algorithm which transforms a cryptotext into

the original plaintext using the same secret key. Secret key cryptosystems provide secure transmission of messages along insecure channel provided the secret keys are transmitted over an extra secure channel.

IV054 1. Secret-key cryptosystems basics 13/93	IV054 1. Secret-key cryptosystems basics 14/93
SECURITY of CRYPTOSYSTEMS	WHO ARE CODEBREAKERS - DEVELOPMENTS
There are three fundamentally different ways a	The vision of codebreakers has changed through the history, depending on the tools used for encryption and cryptoanalysis.
cryptosystem/cipher can be seen as secure.	Old times view: Cryptology is a black art and
Unconditional security: is in the case it can be proven	crypanalysts communicate with dark spirits and even
that the cryptosystem cannot be broken no	they are followers of the devil.
matter how much power has the enemy	Pre-computers era view: Codebreakers or
(eavesdropper).	cryptanalysts are linguistic alchemists - a mystical
Computational security is in the case it can be proven	tribe attempting to discover meaningful texts in the
that no eavesdropper can break the	apparently meaningless sequences of symbols.
cryptosystem in polynomial (reasonable) time	Current view Codebreakers and cryptanalysts are
Practical security is in the case no one was able to break	artists that can superbly use modern mathematics,
the cryptosystem so far after many years and	informatics and computing supertechnology for
many attempts.	decrypting encrypted messages.
IV054 1. Secret-key cryptosystems basics 15/93	IV054 1. Secret-key cryptosystems basics 16/93

CRYPTO VIEW of MODERN HISTORY	BASIC TYPES of CLASSICAL SECRET-KEY CIPHERS
 First World War was the war of chemists (deadly gases). Second World War was the war of physicists (atomic bombs). Third World War will be the war of informaticians (cryptographers and cryptanalysts). 	Substitution ciphers: are ciphers where units of plaintext are replaced by parts of cryptotext according a fixed rule.Simple substitution ciphers operates on single letters. Monoalphabethic (simple) substitution ciphers: are defined by a single fixed permutation π with encoding
IV054 1. Secret-key cryptosystems basics 17/93	IV054 1. Secret-key cryptosystems basics 18/93
PARTICULAR CRYPTOSYSTEMS	CAESAR (100 - 42 B.C.) CRYPTOSYSTEM - SHIFT CIPHER I
PARTICULAR CRYPTOSYSTEMS	SHIFT CIPHER is a simple monoalphabetic cipher that can be used to encrypt words in any alphabet. In order to encrypt words in English alphabet we use: Key-space: $K = \{1, 2,, 25\}$ For any key $k \in K$, the encryption algorithm e_k for SHIFT CIPHER $SC(k)$ substitutes any letter by the letter occurring k positions ahead (cyclically) in the alphabet. The decryption algorithm d_k for $SC(k)$ substitutes any letter by the one occurring k positions backward (cyclically) in the alphabet.

SHIFT CIPHER $SC(k)$ - $SC(3)$ is called CAESAR SHIFT	EXAMPLE	
Example $e_2(EXAMPLE) = GZCORNG,$ $e_3(EXAMPLE) = HADPSOH,$ $e_1(HAL) = IBM,$ $e_3(COLD) = FROGABCDEFGHIJKLMNOPQRSTUVWXYZExample Find the plaintext to the following cryptotext obtained by the encryption withSHIFT CIPHER with \mathbf{k} = ?.Decrypt theVHFUHW GH GHXA, VHFUHW GH GLHX,cryptotext:VHFUHW GH WURLV, VHFUHW GH WXXV.Numerical version of SC(k) is defined, for English, on the set \{0, 1, 2, \dots, 25\} by theencryption algorithm:e_k(i) = (i + k)(mod \ 26)Numerical version of the cipher Atbash used in the Bible.e(i) = 25 - i$	Decrypt: VHFUHW GH GHXA VHFUHW GH GLHX, VHFUHW GH WURLV VHFUHW GH WRXV. Solution: Secret de deux secret de deux secret de trois secret de trois	
VATSYAYANA CIPHER – SC(2)	POLYBIOUS CRYPTOSYSTEM - I	
Vatsyayana was a Hindu philosopher, believed to be the author of Kamasutra and to live in the period 400 BC - 200 BC. According to his Kamasutra, a girl needs to learn certain arts and certain tricks: to cook,to read and to write, and to send her lover secret messages which no one else would be able to decipher.	It is a digraphic cipher developed by Polybious in 2nd century BC. Polybious was a Greek soldier, historian and for 17 years a slave in Rome.	
Vatsyayana even described such a cipher which is actually <i>SC</i> (2).		

POLYBIOUS CRYPTOSYSTEM - II

POLYBIOUS can be used to encrypt words of the English alphabet without J.

Key-space: Polybious checkerboards 5 \times 5 with 25 English letters and with rows + columns labeled by symbols.

Example:

	F	G	Н	Ι	J
Α	Α	В	С	D	Е
В	F	G	Н	I	K
С	L	М	Ν	0	Р
D	Q	R	S	Т	U
Е	V	W	Х	Y	Ζ

Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the row and the column of the checkerboard in which the symbol is placed.

Example: KONIEC →BJCICHBIAJAH **Decryption algorithm:** ???

FIRST INTERNET

Observation: Romans were able to created powerful optical information communication networks that allowed them to deliver information and orders very fast along long distances and this way to control efficiently huge territory and to make their armies flexible because they could deliver information and messages much faster than using horses.

It is expected that Romans already used Polybious cryptosystem.

IV054 1. Secret-key cryptosystems basics 25/93	IV054 1. Secret-key cryptosystems basics 26/93
KERCKHOFF's PRINCIPLE	BASIC REQUIREMENTS for GOOD CRYPTOSYSTEMS
The basic philosophy of modern cryptanalysis is embodied in the following principle formulated in 1883 by Jean Guillaume Hubert Victor Francois Alexandre Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).	 (Sir Francis R. Bacon (1561 - 1626)) ■ Given e_k and a plaintext w, it should be easy to compute c = e_k(w). ■ Given d_k and a cryptotext c, it should be easy to compute w = d_k(c). ■ A cryptotext e_k(w) should not be much longer than the plaintext w. ■ It should be unfeasible to determine w from e_k(w) without knowing d_k. ■ The so called avalanche effect should hold: A small change in the plaintext, or in the key, should lead to a big change in the cryptotext (i.e. a change of one
The security of a cryptosystem must not depend on keeping secret the encryption algorithm. The security should depend only on <i>keeping secret the key</i> .	 bit of the plaintext should result in a change of all bits of the cryptotext, each with the probability close to 0.5). The cryptosystem should not be closed under composition, i.e. not for every two keys k₁, k₂ there is a key k such that e_k(w) = e_{k1}(e_{k2}(w)).
	■ The set of keys should be very large.

27/93

IV054 1. Secret-key cryptosystems basics

KERKHOFFS' REQUIREMENTS - 1883	FOUR DEVELOPMENTS THAT CHANGED METHODS and IMPORTANCE of CRYPTOGRAPHY
 Cryptotext should be unbreakable in practice. Cryptosystem should be convenient for the correspondence. The key should be easily remembered and changeable. The cryptotext should be transmissible by telegraph. The cryptosystem apparatus should be easily portable. The encryption machine should be relatively easy to use. 	 Wide use of telegraph - 1844. Wide use of radio transmission - 1895. Wide use of encryption/decryption machines - 1930. Wide use of internet.
IV054 1. Secret-key cryptosystems basics 29/93 CRYPTANALYSIS ATTACKS I	IV054 1. Secret-key cryptosystems basics 30/93 CRYPTANALYSIS ATTACKS - II.
The aim of cryptanalysis is to get as much information about the plaintext or the key as possible.	
 Main types of cryptanalytic attacks Cryptotexts-only attack. The cryptanalysts get cryptotexts c₁ = e_k(w₁),, c_n = e_k(w_n) and try to infer the key k,or as many of the plaintexts w₁,, w_n as possible. Known-plaintexts attack (given are some pairs [plaintext, cryptotext]) The cryptanalysts know some pairs w_i, e_k(w_i), 1 ≤ i ≤ n, and try to infer k, or at least w_{n+1} for a new cryptotext e_k(w_{n+1}). Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts). The cryptanalysts choose plaintexts w₁,, w_n to get cryptotexts e_k(w₁),, e_k(w_n), and try to infer k or at least w_{n+1} for a new cryptotext c_{n+1} = e_k(w_{n+1}). (For example, if they get temporary access to the encryption machinery.) 	 Known-encryption-algorithm attack The encryption algorithm e_k is given and the cryptanalysts try to get the decryption algorithm d_k. Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts) The cryptanalysts know some pairs

WHAT CAN BAD EVE DO?	BASIC GOALS of BROADLY UNDERSTOOD CRYPTOGRAPHY
 Let us assume that a clever Alice sends an encrypted message to Bob. What can a bad enemy, called usually Eve (eavesdropper), do? Eve can read (and try to decrypt) the message. Eve can try to get the key that was used and then decrypt all messages encrypted with the same key. Eve can change the message sent by Alice into another message, in such a way that Bob will have the feeling, after he gets the changed message, that it was a message from Alice. Eve can pretend to be Alice and communicate with Bob, in such a way that Bob thinks he is communicating with Alice. An eavesdropper can therefore be passive - Eve or active - Mallot. 	 Confidentiality: Eve should not be able to decrypt the message Alice sends to Bob. Data integrity: Bob wants to be sure that Alice's message has not been altered by Eve. Authentication: Bob wants to be sure that only Alice could have sent the message he has received. Non-repudiation: Alice should not be able to claim that she did not send messages that she has sent. Anonymity: Alice does not want Bob to find out who sent the message
IV054 1. Secret-key cryptosystems basics 33/93	IV054 1. Secret-key cryptosystems basics 34/93
HILL CRYPTOSYSTEM I	HILL CRYPTOSYSTEM - EXAMPLE
The polygraphic cryptosystem presented in this slide was probably never used. In spite of that this cryptosystem played an important role in the history of modern cryptography. We describe Hill cryptosystem for a fixed n and the English alphabet. Key-space: The set of all matrices M of degree n with elements from the set $\{0, 1, \dots, 25\}$ such that $M^{-1}mod\ 26$ exists. Plaintext + cryptotext space: English words of length n . Encoding: For a word w let c_w be the column vector of length n of the integer codes of	Example: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $M = \begin{bmatrix} 4 & 7 \\ 1 & 1 \end{bmatrix} M^{-1} = \begin{bmatrix} 17 & 11 \\ 9 & 16 \end{bmatrix}$ Plaintext: $w = \text{LONDON}$ Encodings: $w_{LO} = \begin{bmatrix} 11 \\ 14 \end{bmatrix}, w_{ND} = \begin{bmatrix} 13 \\ 3 \end{bmatrix}, w_{ON} = \begin{bmatrix} 14 \\ 13 \end{bmatrix}$ Encryption : $Mw_{LO} = \begin{bmatrix} 12 \\ 25 \end{bmatrix}, Mw_{ND} = \begin{bmatrix} 21 \\ 16 \end{bmatrix}, Mw_{ON} = \begin{bmatrix} 17 \\ 1 \end{bmatrix}$

IV054 1. Secret-key cryptosystems basics	35/93	IV054 1. Secret-key cryptosystems basics	36/93

INVERTING INTEGER MATRICES modulo n	SESTER S. HILL
The basic idea to compute $M^{-1} \pmod{n}$ is simple:	
Use the usual method to invert M in terms of rational numbers, and then replace each a/b by ab^{-1} , where $bb^{-1} \equiv 1 \pmod{n}$. Example: Compute the inverse of the following matrix modulo 11: $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \pmod{11}.$ The standard inverse of M in rational numbers is $\frac{1}{2} \begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix}$ Since $2^{-1} \equiv 6 \pmod{11}$, the resulting matrix has the form $M^{-1} = \begin{pmatrix} 3 & 3 & 6 \\ 8 & 4 & 10 \\ 1 & 4 & 6 \end{pmatrix} \pmod{11}.$	 Hill published his cryptosystem, based on the ideas of Giovani Bathista Porta (1535-1615), in the paper Cryptography in an algebraic alphabet in the journal American Mathematical Monthly in 1929. Hill even tried to design a machine to use his cipher, but without a success.
IV054 1. Secret-key cryptosystems basics 37/93	IV054 1. Secret-key cryptosystems basics 38/93
SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS	AFFINE CRYPTOSYSTEMS
SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS A cryptosystem is called secret-key cryptosystem if some secret piece of information – the key – has to be agreed first between any two parties that have, or want, to communicate through the cryptosystem. Example: CAESAR, HILL. Another name is symmetric cryptosystem (cryptography). Two basic types of secret-key cryptosystems = substitution based cryptosystems = transposition based cryptosystems = monoalphabetic cryptosystems – they use a fixed substitution – CAESAR, POLYBIOUS = polyalphabetic cryptosystems – substitution keeps changing during the encryption A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely specified by a permutation of letters, (number of permutations (keys) is 26!)	AFFINE CRYPTOSYSTEMSExample: Each AFFINE cryptosystem is given by two integers $0 \le a, b \le 25, gcd(a, 26) = 1.$ Encryption: $e_{a,b}(x) = (ax + b) \mod 26$ Example $a = 3, b = 5, e_{3,5}(x) = (3x + 5) \mod 26, e_{3,5}(3) = 14, e_{3,5}(15) = 24, e_{3,5}(D) = O, e_{3,5}(P) = Y$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Decryption: $d_{a,b}(y) = a^{-1}(y - b) \mod 26$

FREQUENCY ANALYSIS for SEVERAL LANGUAGES

CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins with a so called **frequency count**: the number of each letter in the cryptotext is counted. The distributions of letters in the cryptotext is then compared with some official distribution of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be the substitute for the letter with highest frequency in the plaintext language The likelihood grows with the length of cryptotext.


Freque	ncy (ςοι	unts	in	English:				and	d for a	other	^r lang	guag	es:			
	%		%		%	English	%	German	%	Finnish	%	French	%	Italian	%	Spanish	%
E	12.31	L	4.03	В	1.62	E	12.31	E	18.46	A	12.06	E	15.87	E	11.79	E	13.15
						Т	9.59	N	11.42	1	10.59	A	9.42	A	11.74	A	12.69
т	9.59	D	3.65	G	1.61	A	8.05	1	8.02	Т	9.76	1	8.41	1	11.28	0	9.49
A	8.05	С	3.20	V	0.93	0	7.94	R	7.14	N	8.64	S	7.90	0	9.83	S	7.60
0	7.94	U	3.10	K	0.52	N	7.19	S	7.04	E	8.11	Т	7.29	N	6.88	N	6.95
N	7.19	Ρ	2.29	Q	0.20	1	7.18	Α	5.38	S	7.83	N	7.15	L	6.51	R	6.25
I	7.18	F	2.28	Х	0.20	S	6.59	Т	5.22	L	5.86	R	6.46	R	6.37	1	6.25
S	6.59	М	2.25	J	0.10	R	6.03	U	5.01	0	5.54	U	6.24	Т	5.62	L	5.94
R	6.03	W	2.03	Ζ	0.09	н	5.14	D	4.94	K	5.20	L	5.34	S	4.98	D	5.58
Н	5.14	Y	1.88														
	70.02		24.71		5.27												

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most common trigrams are: THE, ING, AND, HER, ERE, ENT.

IV054 1. Secret-key cryptosystems basics

41/93

43/93

42/93

44/93

FREQUENCY COUNTS in CZECH and SLOVAK

	<i>.</i> .			
	Czech		Slovak	
	0	8.66	а	10.67
	е	7.69	0	9.12
	п	6.53	е	8.43
	а	6.21	i	5.74
First resource	t	5.72	п	5.74
	V	4.66	5	5.02
	5	4.51	t	4.92
	i	4.35	V	4.60
	Ι	3.84	k	3.96
	Czech		Slovak	(
	е	10.13	а	9.49
	а	8.99	0	9.34
	0	8.39	е	9.16
Consul resources	i	6.92	i	6.81
Second resource:	n	6.64	п	6.34
	S	5.74	S	5.94
	r	5.33	r	5.12
	t	4.98	t	5.06
	V	4.50	V	4.85

IV054 1. Secret-key cryptosystems basics

OTHER CHARACTERISTICS of ENGLISH

V ANGLIČTINĚ ————				
Nejčastější písmena:	e t a o i n s h r d l u			
Nejčastější první písmena:	t a s o i c p b s h m			
Nejčastější poslední písmena:	etsdnryoflag			
Nejčastější dvojice písmen:	th er on an re he in ed nd ha at			
Nejčastější trojice písmen:	the and tha ent ion tio for nde			
Nejčastější zdvojení písmen:	ss ee tt ff ll mm oo			
Nejčastější písmena následující po E:	rdsnactmepwo			
Nejčastější dvojpísmenná slova:	of to in it is be as at so we he			
Nejčastější trojpísmenná slova:	the and for are but not you all			
Nejčastější čtyřpísmenná slova:	that with have this will your from they			

IV054 1. Secret-key cryptosystems basics

_

Discovery of FREQUENCY ANALYSIS - I.	Discovery of FREQUENCY ANALYSIS - II.					
It was discovered, in 1987, that this technique was already described in 9th century in						
a manuscript on deciphering cryptographic messages	المالية عند الجمود معتد منافلان المصوم من والالام والموقع موال عن المرجع والمعرات . من المالة المسالم من المسلم من المولين ما مولة من الموالية والمعن المولية والمعن المولية والمعن المعالية .					
written by the" philosopher of the Arabs",called	مرد اماده الدسم مسترق مشتاط مكرم مناسب المسترق المكرم المالية المكان محمد المحافية المحمد المسترق محمد المحافية ما استرحت محمد المحافية المحرك المحافية المحمد ال المحمد محمد المحمد المحافية المحركة والمحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم - مسمر المحمد المحافية المحركة والمحمد المحمد					
Abú Yúsúf Ya'qúb ibn Is-háq ibn as-Sabbáh ibn 'omrán ibn Ismail a-Kindi	مراند الاسمير المعالية بيرانيد المرجم المعالية معالية معالية معالية معالية معالية معالية معالية معالية معالية مع معالية المراسية الاسمير معالية المعالية مع الالاسمر الاستدامة المعالية المعالية المعالية معالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المع معالية المرالية الواجع المروسة الحوالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية المعالية الاستدامة المعالية الم					
He wrote 290 books on medicine, astronomy, mathematics, music,	المحكم المواليات المواجعين من المسلمة المدى الموالية من المولية من المدى الموالية من المولية من المدى المولية م معمد المعامر معرفة معرفة المعامر الموالية الموالية الموالية المولية المولية المولية المولية المولية المولية الم مسلما معامر المولية الم مسلما من المولية المولية المولية المولية المولية المولية المولية المولية معمد المولية					
Frequency analysis was originally used to study Koran, to establish chronology of revelations by Muhammad in Koran.	-مداراته بروانسا مالدان مرور سعد محاصرة مرار المروز في المال مروز بعلى المراجع روانسا مراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع روانسا مراجع والمراجع المراجع					
IV054 1. Secret-key cryptosystems basics 45/93	IV054 1. Secret-key cryptosystems basics 46/93					
CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLE	CRYPTANALYSIS - CONTINUATION I					
CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLECryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm $e_{a,b}(x) = (ax + b) \mod 26$	K = 32J = 11D = 2 $\frac{9}{6}$ $\frac{9}{6}$ $\frac{9}{6}$ K = 32J = 11D = 2U = 300 = 6V = 2U = 305G = 56U = 30O = 6V = 2T9.59D3.65G = 1.61H = 23R = 6F = 1A8.05C3.20V 0.93H = 19G = 5P = 1O7.94U3.10K0.52L = 19M = 4E = 0N7.19P2.29Q 0.20N = 16Y = 4I = 0NT.19F2.280.20					
Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm						
Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm $e_{a,b}(x) = (ax + b) \mod 26$ where $0 \le a, b \le 25, gcd(a, 26) = 1$. (Number of keys: $12 \times 26 = 312$.) Example: Assume that an English plaintext is divided into blocks of 5 letters and	Frequency analysis of plaintext and frequency table for English: $X - 32$ U = 30 H = 23 L = 10 $V - 12$ U = 30 H = 23 L = 10 H = 23 L = 10 $\frac{\%}{E}$ I = 10 H = 23 L = 10 H = 23 H = 23 L = 10 H = 23 H = 23 					
Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm $e_{a,b}(x) = (ax + b) \mod 26$ where $0 \le a, b \le 25, gcd(a, 26) = 1$. (Number of keys: $12 \times 26 = 312$.) Example: Assume that an English plaintext is divided into blocks of 5 letters and encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows:	Frequency analysis of plaintext and frequency table for English: $X - 32$ U $- 30$ $J - 11$ U $- 2$ U $- 30$ U $- 30$ $D - 2$ U $- 30$ U $- 30$ $H = 12 - 2$ U $- 30$ U $- 30$ 					
Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm $e_{a,b}(x) = (ax + b) \mod 26$ where $0 \le a, b \le 25, gcd(a, 26) = 1$. (Number of keys: $12 \times 26 = 312$.) Example: Assume that an English plaintext is divided into blocks of 5 letters and encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows: B H J U H N B U L S V U L R U S L Y X H	Frequency analysis of plaintext and frequency table for English: $X - 32 - 11 - 12 - 22 - 13 - 13 - 22 - 13 - 13$					
Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm $e_{a,b}(x) = (ax + b) \mod 26$ where $0 \le a, b \le 25, gcd(a, 26) = 1$. (Number of keys: $12 \times 26 = 312$.) Example: Assume that an English plaintext is divided into blocks of 5 letters and encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows:	Frequency analysis of plaintext and frequency table for English: First guess: $E = X, T = U$ Encodings: x + b = y x - 32 $y - 11$ $D - 2y - 30$ $O - 6$ $V - 2y - 30$ $O - 6$ $V - 2y - 30$ $O - 6$ $V - 2y - 30$ $C - 6$ $V - 2Y - 9,59$ $D - 3,65$ $G - 1,61a - 805$ $C - 320$ $V - 0,930,7,94$ $U - 3,10$ $K - 0.520,7,94$ $U - 3,10$ $K - 0.520,7,94$ $U - 3,10$ $K - 0.520,7,19$ $P - 2,29$ $Q - 0,20S - 15$ $C - 3$ $T - 0V - 14$ $A - 2V - 12V - 12V$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Frequency analysis of plaintext and frequency table for English: First guess: $E = X, T = U$ Encodings: $4a + b = 23 \pmod{26}$ $b = 3 \rightarrow a^{-1} = 21$ Translation table $\frac{crypto}{plain} \frac{AB CD E F GH I J K L MNOP QR S T UV W X Y Z}{plain} \frac{AB CD E F GH I J K L MNOP QR S T UV W X Y Z}{plain}$ BH J UH N B U L S V U L RU S L Y X H N U N B W U A X K Z S W K X X L K O L J L K L M N B X M W X K X K X B H J U H N B X M W X K K X N O Z L J B X X H B N F U B H J U H S W S W K X K N B H B H J U H S S W K N B H B H J U					
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an encryption algorithm} \\ \hline \\ e_{a,b}(x) = (ax+b) \mbox{ mod } 26 \\ \mbox{where } 0 \leq a, b \leq 25, gcd(a, 26) = 1. \end{tabular} (Number of keys: 12 \times 26 = 312.) \\ \hline \\ \hline \\ \mbox{Example: Assume that an English plaintext is divided into blocks of 5 letters and encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows: \\ \hline \\ \\ \mbox{B H J UH N B U L S V U L R U S L Y X H} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Frequency analysis of plaintext and frequency table for English:					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Frequency analysis of plaintext and frequency table for English: First guess: $E = X, T = U$ Encodings: $4a + b = 23 \pmod{26}$ $b = 3 \rightarrow a^{-1} = 21$ Translation table $\frac{crypto}{PFFAVQLGBWRMHCXSNLDYTOJEZU}$ BHJUH NBULS VULRU SLYXH NUMHU GSWHU XMBXR WXXXX KXNOZ LJBXX HBNFU BHJUH HYXWN UGSWX GLLK					

 $4a + b = 23 \pmod{26}$

Solutions: a = 4 or a = 17 and therefore a = 17

 $b = 7 \pmod{26}$

IV054 1. Secret-key cryptosystems basics

Second guess: E = X, A = H

This gives the translation table

Equations

OTHER EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS

Symbols of the English alphabet will be replaced by squares with or without points and with or without surrounding lines using the following rule:

	B:			K٠		S	T	U
	E:			N٠			W	
G:	H:	I:	P٠	Q٠	R∙	Y	Z	

For example the plaintext:

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

IV054 1. Secret-key cryptosystems basics

cryptoA B C D E F G H I J K L M N O P Q R S T U V W X Y Z plainand the following plaintext from the above cryptotextS A U N A I S N O T K N O W N T O B E A F I N N I S H I N V E N T I O N B U T T H E W O R D I S F I N N I S H T H E R E A R E M A N Y M O R E S A U N A S I N F I N L A N D T H A N E L S E W H E R E O N E S A U N A P E R E V E R Y T H R E E O R F O U R P E O P L E F I N N S K N O W W H A T A S A U N A I S E L S E W H E R E I F Y O U S E E A S I G N S A U N A O N T H E D O O R Y O U C A N N O T B E S U R E T H A T T H E R E I S A S A U N A B E H I N D T H E D O O R	WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER results in the cryptotext: $\Box \Box $
IV054 1. Secret-key cryptosystems basics 49/93	with holes. H Y P E R S P A C E 6 7 IV054 1. Secret-key cryptosystems basics
EXTREME CASES for FREQUENCY ANALYSIS	INTRODUCTION TO "A VOID"
In 1969 Georges Perec published, in France, La Disparition	Appendix A The Opening Paragraph of <i>A Void</i> by Georges Perec, translated by Gilbert Adair
a 200 pages novel in which there is no occurence of the letter "e".	Today, by radio, and also on giant hoardings, a rabbi, an admiral notorious for his links to masonry, a trio of cardinals, a trio, too, of insignificant politicians (bought and paid for by a rich and corrupt Anglo-Canadian banking corporation), inform us all of how our country now risks dying of starvation. A rumor, that's my initial thought as I switch off my radio, a rumor or possibly a hoax. Propaganda, I murmur anxiously-as though, just by saying so, I might allay my doubts-typical politicians' propaganda. But public opinion gradually absorbs it as a fact. Individuals start strutting
British translation, due to Gilbert Adair, has appeared in 1994 under the title	around with stout clubs. "Food, glorious food!" is a common cry (occa- sionally sung to Bart's music), with ordinary hardworking folk harassing officials, both local and national, and cursing capitalists and captains of industry. Cops shrink from going out on night shift. In Mácon a mob storms a municipal building. In Rocadamour rufflans rob a hangar full of foodstuffs, pillaging tons of tuna fish, milk and cocoa, as also a vast quan- tity of com-all of it, alas, totally unfit for human consumption. Without fuss or ado, and naturally without any sort of tried cap us
A void	 Inlarge 26 sources on a hastup built scaffold in front of Nancy's law courts (this Nancy is a town, not a woman) and ransacks a local journal, a disgusting right-wing rag that is siding against it. Up and down this land of ours looting has brought docks, shops and farms to a virtual standstill. First published in France as <i>La Disparition</i> by Editions Denöel in 1969, and in Great Britain by Harvill in 1994. Copyright © by Editions Denöel 1969: in the
IV054 1, Secret-key cryptosystems basics 51/93	IV054 1. Secret-key cryptosystems basics 52/93

HOMOPHONIC CRYPTOSYSTEMS

EXAMPLES of HOMOPHONIC CRYPTOSYTEMS - I.

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.

They are substitution cryptosystems in which each letter is replaced by arbitrarily chosen substitutes from fixed and disjoint sets of substitutes.

The number of substitutes of a letter is usually proportional to the frequency of the letter.

Though homophonic cryptosystems are not unbreakable, they are much more secure than ordinary monoalphabetic substitution cryptosystems.

IV054 1. Secret-key cryptosystems basics

The first known homophonic substitution cipher is from 1401.

Jindřich IV. Francouzský


Homofonní tabulku Jindřicha IV. (viz níže) určitě navrhoval François Viète, oficiální králův kryptograf, luštitel a matematik. Jde o praktickou a účinnou šifru, jakou lze čekat od autora, který zná všechny triky i jejich meze. Většina souhlásek má více variant podle jejich skutečné četnosti. Slovník obsahuje pouhá tři slova.

Tabulka zahrnuje i značkovací symbol: 🚓

To stačí k označení všech začátků i konců bezvýznamných úseků, na rozdíl od označování textových částí z Montmorencyho tabulky.

EXAMPLES of HOMOPHONIC CRYPTOSYTEMS - I.

Vévoda z Montmorency

А	В	С	D	E	F	G	Н	2	J	L
z	ť	6	8	olo	9	3	э	9	የ	6
0	d.	б	P	ď	G	0	£	0		٦.
۴		w		q		ð		e		
		Ð						ឃ		
М	Ν	0	Р	Q	R	S	т	U	х	Y
പ	3	>	₽	4	£	3	8	ж.		
9	2	8	r						×	+
		0			L	ſ	3	8	×	ዩ
	f		х		r	f		Z		
								11'0		
								2		

IV054 1. Secret-key cryptosystems basics

POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem

Invented around 1854 by Ch. Wheatstone.

Key – a Playfair square is defined by a word w of length at most 25. In w repeated letters are then removed, remaining letters of alphabets (except j) are then added and resulting word is divided to form an 5 x 5 array (a Playfair square).

Encryption: of a pair of letters *x*, *y*

53/93

55/93

- If x and y are in the same row (column), then they are replaced by the pair of symbols to the right (bellow) them.
- If x and y are in different rows and columns they are replaced by symbols in the opposite corners of rectangle created by x and y the order is important and needs to be agreed on.

Example: PLAYFAIR is encrypted as LCNMNFSC Playfair was used in World War I by British army.

	S	D	Z		U	
	Н	А	F	Ν	G	
Playfair square:	В	Μ	V	Υ	W	
	R	Ρ	L	С	Х	
	Т	0	Е	Κ	Q	

IV054 1. Secret-key cryptosystems basics

56/93

POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II	POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS III
VIGENERE and AUTOCLAVE cryptosystemsSeveral of the following polyalphabetic cryptosystems are modification of the CAESAR cryptosystem.Design of cryptosystem: First step: A 26×26 table is first designed with the <i>i</i> -th row containing all symbols of alphabet, in the cyclic way, starting with <i>i</i> -th symbol of the alphabet. This way <i>i</i> -th column represent the CAESAR shift $CS(i-1)$ starting with the symbol of the first row.Second step: For a plaintext w a key k has to be chosen that should be a word of the same length as w.Encryption: the <i>i</i> -th letter of the plaintext - w_i - is encrypted by the letter from the w_i -row and k_i -column of the table.VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR cryptosystem.IMPORTANT EXAMPLESVIGENERE-key cryptosystem: a short keyword p is chosen and periodically repeated to form the key to be used $k = Prefix_{ w }p^{oo}$ AUTOCLAVE-key cryptosystem: a short keyword is chosen and appended by plaintext	Vigenere tableMercence
COMMENT	BLAISE de VIGENERE (1523-1596)

Autoclave-key cipher is also called autokey cipher.

So called running-key cipher uses very long key that is a passage from a book (for example from Bible).

HISTORICAL COMMENT	VIGÉNERE CRYPTOSYSTEM
The encryption method that is commonly called as Vigenere method was actually discovered in 1553 by Giovan Batista Belaso.	 Nigenére work culminated in his <i>Traicté des Chiffres</i> - "A treatise on secret writing" in 1586. NIGENERE cryptosystem was practically not used for the next 200 years, in spite of its perfection. Is seems that the reason for ignorance of the JGENERE cryptosystem was its apparent complexity.
CRYPTANALYSIS of cryptotexts produced by VIGENERE-key	Charles Babbage (1791-1871)
 Task 1 - to find the length of the keyword Kasiski's (Prussian officier) method (published in 1862) - invented also by Charles Babbage (1853 - unpublished). Basic observation: If a subword of a plaintext is repeated at a distance that is a multiple of the length of the keyword, then the corresponding subwords of the cryptotext have to be the same. Example, cryptotext: CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK Substring "CHR" occurs in positions 1, 21, 41, 66: expected keyword length is therefore 5. Method. Determine the greatest common divisor of the distances between identical subwords (of length 3 or more) of the cryptotext. 	

63/93

IV054 1. Secret-key cryptosystems basics

64/93

IV054 1. Secret-key cryptosystems basics

DERIVATION of the FRIEDMAN METHOD I

Friedman method to determine the length of the keyword: Let n_i be the number of occurrences of the *i*-th letter in the cryptotext.

Let **L** be the length of the keyword.

Let **n** be the length of the cryptotext.

Then it holds, as shown on next slide:

$$L = \frac{0.027n}{(n-1)I - 0.038n + 0.065}, I = \sum_{i=1}^{26} \frac{n_i(n_i - 1)}{n(n-1)}$$

Once the length of the keyword is found it is easy to determine the key using the frequency analysis method for monoalphabetic cryptosystems.

Let *n* be the length of a cryptotext w and o_i be the number of occurrences of the *i*-th symbol of the alphabet in w. The probability that if one selects a pair of symbols from w, then they are the same is

$$I = \frac{\sum_{i=1}^{26} o_i(o_i-1)}{n(n-1)} = \sum_{i=1}^{26} \frac{\binom{o_i}{2}}{\binom{n}{2}}$$

and it is called the index of coincidence.

Example 1 Let p_i be the probability that a randomly chosen symbol is the *i*-th symbol of the alphabet. The probability that two randomly chosen symbols are the same is

$$\sum_{i=1}^{26} p$$

For an English text one has

$$\sum_{i=1}^{26} p_i^2 = 0.065$$

For a randomly chosen text:

$$\sum_{i=1}^{26} p_i^2 = \sum_{i=1}^{26} \frac{1}{26^2} = 0.038$$

In addition it holds:

 $I = \sum_{i=1}^{26} p_i^2$

IV054 1. Secret-key cryptosystems basics 65/93	IV054 1. Secret-key cryptosystems basics 66/93
DERIVATION of the FRIEDMAN METHOD - II.	BREAKING VIGENER CRYPTOSYSTEM
Assume that a cryptotext is writen into L columns headed by the letters of the keyword	
key letters S_1 S_2 S_3 \ldots S_L x_1 x_2 x_3 \ldots x_L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kasiski method and the index of coincidence can be used in the following way to break a VIGENERE cryptosystem - basic algorithm.
 First observation Each column is obtained using the CAESAR cryptosystem. Probability that two randomly chosen letters are the same in ■ the same column is 0.065. ■ different columns is 0.038. The number of pairs of letters in the same column: L · ¹/₂ · ⁿ/₁ (ⁿ/₁ - 1) = ^{n(n-L)}/_{2L} 	for all guesses of the length <i>m</i> of the key (obtained using Kasiski method) do write cryptotext in an array with <i>m</i> columns - row by row; check if index of coincidence of each column is high; if yes you have the length of key;
The number of pairs of letters in different columns: $\frac{L(L-1)}{2} \cdot \frac{n^2}{L^2} = \frac{n^2(L-1)}{2L}$	to decode columns use decoding method for Caesar
The expected number A of pairs of equals letters is $A = \frac{n(n-L)}{2L} \cdot 0.065 + \frac{n^2(L-1)}{2L} \cdot 0.038$	
Since $I = \frac{A}{\frac{n(n-1)}{2}} = \frac{1}{L(n-1)} [0.027n + L(0.038n - 0.065)]$	
one gets the formula for L from one of the previous slides.	
IV054 1. Secret-key cryptosystems basics 67/93	IV054 1. Secret-kev cryptosystems basics 68/93

ONE-TIME PAD CRYPTOSYSTEM – Vernam's cipher	NEVER USE ONE-TIME PAD TWICE WITH THE SAME KEY		
$ \begin{array}{l} \text{Binary case:} \\ \text{plaintext} & w \\ \text{key} & k \\ \text{cryptotext} & c \end{array} \right\} \text{ are all binary words of the same length} \\ \text{cryptotext} & c \end{array} \\ \begin{array}{l} \text{Encryption:} & c = w \oplus k \\ \text{Decryption:} & w = c \oplus k \\ \text{Example:} \\ & w = 101101011 \\ k = 011011010 \\ c = 110110001 \end{array} \\ \end{array} \\ \begin{array}{l} \text{What happens if the same key is used twice or 3 times for encryption?} \\ \text{If } c_1 = w_1 \oplus k, c_2 = w_2 \oplus k, c_3 = w_3 \oplus k \\ \text{then} \\ \\ c_1 \oplus c_2 = w_1 \oplus w_2 \\ c_1 \oplus c_3 = w_1 \oplus w_3 \\ c_2 \oplus c_3 = w_2 \oplus w_3 \end{array} $	The reuse of keys by Soviet Union spies (due to the maanufacturer's accidental duplication of one-time-pad pages) enabled US cryptanalysts to unmask the atomic spy Klaus Fuchs in 1949.		
IV054 1. Secret-key cryptosystems basics 69/93	IV054 1. Secret-key cryptosystems basics 70/93		
PERFECT SECRET-KEY CRYPTOSYSTEMS- I.	PERFECT SECRECY of ONE-TIME PAD		
By Shannon a cryptosystem is secure if a posterior distribution of the plaintext P after we know the cryptotext C is equal to the a priory distribution of the plaintext. Formally, for all pairs plaintext p and cryptotext c such that $Prob[C = c] \neq 0$ it holds that	One-time pad cryptosystem is perfectly secure because For any cryptotext $c = c_1 c_2 \dots c_n$ and any plaintext $p = p_1 p_2 \dots p_n$ there exists a key (and all keys were chosen with the same probability) $k = k_1 k_2 \dots k_n = \mathbf{p} \oplus \mathbf{c}$ such that $c = p \oplus k$		
Prob[P = p C = c] = Prob[P = p]. Example ONE TIME PAD cruptosystem is perfectly secure	Did we gain something? The problem of secure communication of the plaintext got transformed to the problem of secure communication of the key of the same length.		
Example ONE-TIME PAD cryptosystem is perfectly secure because for any pair c, p there exists a key k such that $c = k \oplus p.$	Yes: ONE-TIME PAD cryptosystem is used in critical applications		
	It suggests an idea how to construct practically secure cryptosystems. IDEA: Find a simple way to generate almost perfectly random key shared by both communicating parties and make them to use this key for one-time pad encoding and decoding!!!!		

PERFECT SECRECY of ONE-TIME PAD ONCE MORE	CURRENT ROLE of SUBSTITUTION SYSTEMS		
For every cryptotext <i>c</i> every element <i>p</i> of the set of plaintexts has the same probability that <i>p</i> was the plaintext the encryption of which provided <i>c</i> as the cryptotext.	 Substitution ciphers alone are no longer of use. They can be used in a combination with other ciphers as product ciphers. However, from a sufficiently abstract perspective, modern bit-oriented block ciphers (DES, AES,) can be viewed as substitution ciphers on enormously large binary alphabets. Moreover, modern block ciphers often include smaller substitution tables, called S-boxes. 		
IV054 1. Secret-key cryptosystems basics 73/93	IV054 1. Secret-key cryptosystems basics 74/93		
TRANSPOSITION CRYPTOSYSTEMS			
	KEYWORD CAESAR CRYPTOSYSTEM		
The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is how to specify and perform efficiently permutations. One idea: choose <i>n</i> , write plaintext into rows, with <i>n</i> symbols in each row and then read it by columns to get cryptotext. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	KEYWORD CAESAR CRYPTOSYSTEMThis will be an example showing that cryptanalysis often require qualified guessing.Keyword Caesar cryptosystem is given by choosing an integer $0 < k < 25$ and a string, called keyword, of length at most 25 with all letters different.The keyword is then written bellow the English alphabet letters, beginning with the <i>k</i> -symbol, and the remaining letters are written in the alphabetic order and cyclically after the keyword.Example: keyword: HOW MANY ELKS, $k = 8$ 08A B C D E F G H I J K L M N O P Q R S T U V W X Y Z P Q R T U V X Z H O W M A N Y E L K S B C D F G I J		

KEYWORD CAESAR - Example II

Example Decrypt the following cryptotext encrypted using the KEYWORD CAESAR and determine the keyword and k

T IVD ZCRTIC FQNIQ TU ΤF XAVFCZ FEQXC PCQUCZ Q WΚ FUVBC FNRRTXTCIUAK Q WTY DTUP MCFECXU UV UPC BVANHC VR UPC FEQXC UPC FUVBC XVIUQTIF FUVICF NFNQAAK VI UPC UVE UV UQGC Q FQNIQ WQUP TU TF QAFV ICXCFFQMK UPQU UPC FUVBC TF EMVECMAK PCQUCZ QIZ UPQU KVN PQBC UPC RQXTATUK VR UPMVDTIY DQUCM VI UPC FUVICF

IV054 1. Secret-key cryptosystems basics

Step 1. Make the frequency counts:

	Number		Number	- 1	Number
U	32	X	8	W	3
C	31	ĸ	7	Y	2
Q	23	N	7	G	1
F	22	E	6	- н	1
V	20	М	6	L	0
Ρ	15	R	6	_ L	0
Т	15	в	5	0	0
	14	z	5	S	0
Α	8	D	4		
	180=74.69%		54=22.41%		7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.They must be A and I. Since T occurs once and Q three times it is likely that T is I and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only once. Hence

UPC is likely to be THE.

Let us now decrypt the remaining letters in the high frequency group: F,V,I

SHANNON's CONTRIBUTIONS to

UNDERSTANDING CIPHERS

when encoding messages of natural languages.

cryptography.

From the words TU, TF \Rightarrow F=S From UV \Rightarrow V=O From VI \Rightarrow I=N

IV054 1. Secret-key cryptosystems basics

For understanding the quality of secret key ciphers of large importance was Clause

Shannon demonstrated several important features of the statical nature of natural

languages that makes solution to many problems of ciphers very straightforward.

a measure, called **unicity distane**, of the cryptohgraphic strength of the ciphers

One of the main contribution of the above Shannon's paper was the development of

Shannon's paper A Communication Theory of Secrecy systems.

Shannon introduced several advance mathematical technique to scientific

CONTINUATION

So we have: T=I, Q=A, U=T, P=H, C=E, F=S, V=O, I=N and now in

 T
 I
 V
 D
 Z
 C
 R
 T
 Q
 T
 U
 T
 F

 Q
 X
 A
 V
 F
 C
 Z
 F
 E
 Q
 X
 C
 Z
 W
 K

 Q
 F
 U
 V
 B
 C
 F
 N
 R
 T
 X
 T
 C
 I
 U
 A
 K
 W
 T
 Y

 D
 T
 U
 P
 C
 F
 E
 C
 U
 V
 U
 P
 C
 B
 C
 N
 H
 C

 V
 I
 U
 P
 C
 F
 E
 Q
 C
 U
 V
 U
 D
 C
 I
 C
 D
 I
 C
 I
 C
 I
 C
 I
 I
 C
 I
 C
 I
 I
 I
 C
 I
 I
 C
 I
 I
 I
 I
 C
 I
 I
 I
 I
 I
 I
 I
 I
 I

we have several words with only one unknown letter what leads to another guesses and the table:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z L V E W P S K M N ? Y ? R U ? H A F ? I T O B C G D

This leads to the keyword **CRYPTOGRAPHY GIVES ME FUN** and k = 4 -

79/93

77/93

UNICITY DISTANCE - MOTIVATION - INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of cryptotexts required for computationally unlimited adversaries to decrypt cryptotext uniquely (to recover uniquely the key that was used).

- **Example 1**: Let **WNAIW** be the cryptotext obtained by encoding an English word by Vigenere key cipher with the key of the length 5. Can one determine uniquely the plaintext?
- One can find two fully satisfactory solutions: RIVER, WATER and many nonsatisfactory as KHDOP, SXOOS, but not the unique plaintext.
- **Example 2**: Let cryptotext **FJKFPO** was obtained by encrypting an English text using a monoalphabetic substitution cipher. Can we find the unique plaintext?
- Possible plaintexts are thatis, ofyour, season, oxford, thatof,.... but there is no way to determine the plaintext uniquely.

IV054 1. Secret-key cryptosystems basics

UNICITY DISTANCE - BASIC RESULT

The expected unicity distance $U_{C,K,L}$ of a cipher C and a key set K for a plaintext language L can be shown to be:

$$U_{C,K,L} = \frac{H_K}{D_L}$$

where H_{κ} is the entropy of the key space (e.g 128 for 2^{128} equiprobably keys), D_L is the plaintext redundancy in bits per character.

Redundancy: Each character in English can convey lg(26) = 4.7 bits of information.

However, the average amount of actual information carried per character in a meaningful English text is only about 1.5 bits per character.

IV054 1. Secret-key cryptosystems basics

So the plaintext redundancy is 4.7 - 1.5 = 3.2.

COMMENTS

Simple monoalphabetic substitution cipher: Number of possible keys is $26! \approx 2^{88.4}$. Assuming that all keys (permutations) are are equally probable we have $H_{\mathcal{K}} = \lg(26!) = 88.4$ bits.

Since for English text $D_L = 3.2$, we have for the unicity distance

$$U = \frac{88.4}{3.2} = 28$$

Conclusion Given at least 28 characters of the cryptotext it should be possible, at least theoretically, to find unique plaintext (and key).

Other ciphers: Atbash cipher: Number of keys: 1; unicity distance: 0 characters

EXAMPLES

- **Ceaser cipher:** Number of keys: 25; unicity distance: 2 characters
- Affine cipher: Number of keys: 311; unicity distance: 3
- Playfair cipher: Number of keys: 25!; unicity distance: 27

- Observe that Unicity distance is only a theoretical minimum.
- In general one may need much more characters to reliably break a cipher say 100 for simple monoalphabetic substitution cipher.
- Unicity distance is a useful theoretical measure, but it does not say much about security of a block cipher when attacked by an adversary with real-world (limited) resources.
- Unicity distance is not a measure of how much cryptotext is needed for ctyptanalysis, but how much cryptotext is required for there to be only one reasonable solution for cryptanalysis.

83/93

81/93

IV054 1. Secret-key cryptosystems basics

UNICITY DISTANCE of CRYPTOSYSTEMS - INFORMALLY	UNICITY DISTANCE - MORE TECHNICALLY
 Redundancy of natural languages is of the key importance for cryptanalysis. Would all letters of a 26-symbol alphabet have the same probability, a character would carry lg 26 = 4.7 bits of Information. The estimated average amount of information carried per letter in a meaningful English text is 1.5 bits. The unicity distance of a cryptosystem is the minimum length of the cryptotext required by a computationally unlimited adversary to recover the unique encryption key. Empirical evidence indicates that if a simple substitution cryptosystem is applied to a a meaningful English message, then about 25 cryptotext characters are enough for an experienced cryptanalyst to recover the plaintext. 	 The unicity distance of a cryptosystem is a number that indicates the amount of cryptotext required in order to uniquely determine the plaintext. It is a function of the length of the key used for encryption and the statistical nature of the plaintext language. Outcome: It can be shown that enough time it is guaranteed that any cipher can be broken given cryptotexts of such total length that unicity distance is 1. Formally, the unicity distance is given by H(K) M - H(M) where H(k) is information content of the key. M je information content per symbol of the message assuming assuming that al symbols are equally likely. H(M) is information content per symbol of the message.
IV054 1. Secret-key cryptosystems basics 85/93 EXAMPLE	IV054 1. Secret-key cryptosystems basics 86/93 ANAGRAMS – EXAMPLES
 If K is chosen random, then H(K) = K , so for randomly chosen letters in English, H(K) = K = lg(26) = 4.7 bits. H(M) has been empirically found to be 2.9 bits for English. Therefore the unicity distance for English is 1 when M = (4.7/1.8) K 	German: IRI BRÄTER, GENF Briefträgerin FRANK PEKL, REGEN PEER ASSSTIL, MELK INGO DILMR, PEINE EMIL REST, GERA KARL SORDORT, PEINE KARL SORDORT, PEINE English: algorithms antagonist stagnation coordinate decompress coordinate decoration creativity reactivity deductions discounted descriptor predictors impression permission introduces reductions procedures reproduces

SOME SOLUTIONS	APPENDIX I
FRANK PEKL, REGEN PEER ASTIL, MELK INGO DILMR, PEINE EMIL REST, GERA KARL SORDORT, PEINEKrankenpfleger Kapellmeister Diplomengineer Lagermeister Personaldirector	APPENDIX I
FAMOUS CRYPTOGRAPHERS	CODEBOOKS CRYPTOGRAPHY
 Girolamo Cardano (1501-1576) - father of probability theory De la Bigotiere Viete (1540-1603) - father of modern algebra. Antoine Rosignol (father of Cryptology for France) John Wallis (1616-1703) (father of Cryptology for England) Thomas Jefferson (1743-1826) - Father of American Cryptography) Charles Babbage (broke Vigenere cryptosystem - the inventor of the first universal computer). Allan Turing (broke ENIGMA, designed compute BOMBS, printed basic results on computer) 	 In the middle age, messages were mostly encrypted with "code books" (codebooks). In this set-up communicating parties, say Alice and Bob, shared some secret information, called the codebook. Such a codebook can be a simple letter-to-letter substitution or a more complex word-by-word substitution. Communication: A sender encrypts her message using secret codebook and the receiver uses the same codebook to decrypt the encrypted message. A neavesdropper cannot, in theory, decrypt the message because she does not posses the secret codebook. A more modern term for "codebook" is the "key". Codebooks were intensively used during the first World War. Some had up 100 000 encoding rules. The fact that allies were able to obtained huge codebooks from several destroyed war ships helped Allies much. Til recently it was assumed that secret codebooks are necessary for secret communication.

NOMENCLATORS

- For several centuries so called "Nomenclators" were used for encryption an decryption.
- Nomenclators were in use from the end of 14th century for 450 years.
- Nomenclators combined a substitution cryptosystem (in which symbols were replaced by numbers) with codebook ciphers in which words were replaced by numbers.
- At the beginning codebooks had codes only for names of people (therefore such a name - nomenclators), later codes were used also for names of places and so on.
- Some nomenclators had huge codebooks, up to 50 000 entries.
- Famous was the nomenclator designed by very famous French cryptologist Rosignol, for Ludvig XIV, that was not broken for several hundred of years.
- It was the design of the telegraph and the need for *field ciphers* to be used in combat that ended the massive use of nomenclators and started a new history of cryptography dominated by polyalphabetic substitution cryptosystems.