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Decrypt:
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VHFUHW GH WURLYV,
VHFUHW GH WRXV.
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m In this chapter we deal with some of the very old, or quite old, classical
(secret-key or symmetric) cryptosystems and their cryptanalysis that were
primarily used in the pre-computer era.

m These cryptosystems are too weak nowadays, too easy to break, especially
with computers.

m However, these simple cryptosystems give a good illustration of several of the
important ideas of the cryptography and cryptanalysis.

m Moreover, most of them can be very useful in combination with more modern
cryptosystem - to add a new level of security.
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Cryptology (= cryptography + cryptanalysis)
has more than four thousand years long history.
Some historical observation
m People have always had fascination with keeping information away from others.

u Some people — rulers, diplomats, military people, businessmen — have always had
needs to keep some information away from others.

Importance of cryptography nowadays

m Applications: cryptography is the key tool to make modern information transmission
secure, and to create secure information society.

m Foundations: cryptography gave rise to several new key concepts of the foundation
of informatics: one-way functions, computationally perfect pseudorandom
generators, zero-knowledge proofs, holographic proofs, program self-testing and
self-correcting, . ..
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Classical cryptography used to concentrate till the end of
the last millenium on designing and breaking encryption
systems and all that in the context of classical information
processing.

Modern cryptography has

(1) significantly enlarged its scope to the rigorous analysis
of any system that can be potential subject to malicious
threats and to designs of such versions of such systems
that can guarantee that they withstand such treats.

(2) started to develop cryptographic systems that also
utilize elements and processes of the quantum world.
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As another consequence, cryptography has moved from an
engineering art, built on heuristic techniques, to a
scientific disciplin based on mathematically rigorous design
requirements, solution techniques and correctness proofs.

Such broadly developed modern cryptography is the
subject of this lecture.
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Sound approaches to cryptography

= Shannon’s approach based on information theory (Enemy could not have enough
information to break a given cryptosystem).

m Current approach based on complexity theory. (Enemy could not have enough
computation power to break a given cryptosystem).

m Very recent a new approach has been developed that is based on the laws and
limitations of quantum physics. (Enemy would need to break laws of nature in
order to break a given cryptosystem).

Paradoxes of modern cryptography:

m Positive results of modern cryptography are based on negative results of
computational complexity theory.

m Computers, that were designed originally for decryption, seem to be now more useful
for encryption.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS - CIPHERS

The cryptography deals with problem of sending a message (plaintext, ciphertext,
cleartext), through an insecure channel, that may be tapped by an adversary
(eavesdropper, cryptanalyst), to a legal receiver.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS - CIPHERS
The cryptography deals with problem of sending a message (plaintext, ciphertext,
cleartext), through an insecure channel, that may be tapped by an adversary

(eavesdropper, cryptanalyst), to a legal receiver.

Secret-key (symmetric) cryptosystems scheme:

key source

; . legal
sender ; cryptotext 4 receiver
- C :
_— encryption - decryption
c=ex(w)| T T |w=di(o)
adversary’
?
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SECRET-KEY (PRIVATE-KEY - SYMMETRIC)
CRYPTOSYSTEMS

A secret-key (private-key or symmetric)
cryptosystem is the one where the sender and the
recepient share a common and secret key.
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SECRET-KEY (PRIVATE-KEY - SYMMETRIC)
CRYPTOSYSTEMS

A secret-key (private-key or symmetric)
cryptosystem is the one where the sender and the
recepient share a common and secret key.

Security of such a cryptosystem depends solely on
the secrecy of shared key.
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Key-space: K — a set of keys
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COMPONENTS of CRYPTOSYSTEMS:

Plaintext-space: P — a set of plaintexts (messages) over an alphabet >
Cryptotext-space: C — a set of cryptotexts (ciphertexts) over alphabet A
Key-space: K — a set of keys

Each key k € K determines an encryption algorithm e, and an decryption
algorithm dj such that, for any plaintext w, ex(w) is the corresponding cryptotext
and

w € di(ex(w)) or  w = di(ex(w)).

Note: As encryption algorithms we can use also randomized algorithms.
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SECRET-KEY CRYPTOGRAPHY BASICS - SUMMARY

Symmetric cryptography relies on three algorithms:

Key generating algorithm which generates a secret key
in a cryptographically (pseudo)random way.

Encryption algorithm which transforms a plaintext into
a cryptotext using a secret key.

Decryption algorithm which transforms a cryptotext into
the original plaintext using the same secret key.

Secret key cryptosystems provide secure
transmission of messages along insecure channel
provided the secret keys are transmitted over an
extra secure channel.
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SECURITY of CRYPTOSYSTEMS

There are three fundamentally different ways a
cryptosystem /cipher can be seen as secure.

Unconditional security: is in the case it can be proven
that the cryptosystem cannot be broken no
matter how much power has the enemy
(eavesdropper).

Computational security is in the case it can be proven
that no eavesdropper can break the
cryptosystem in polynomial (reasonable) time..

Practical security is in the case no one was able to break
the cryptosystem so far after many years and
many attempts.
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WHO ARE CODEBREAKERS - DEVELOPMENTS

The vision of codebreakers has changed through the history, depending on the tools used
for encryption and cryptoanalysis.

Old times view: Cryptology is a black art and
crypanalysts communicate with dark spirits and even
they are followers of the devil.

Pre-computers era view: Codebreakers or
cryptanalysts are linguistic alchemists - a mystical
tribe attempting to discover meaningful texts in the
apparently meaningless sequences of symbols.

Current view Codebreakers and cryptanalysts are
artists that can superbly use modern mathematics,
informatics and computing supertechnology for
decrypting encrypted messages.
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CRYPTO VIEW of MODERN HISTORY

m First World War was the war of chemists
(deadly gases).

m Second World War was the war of physicists
(atomic bombs).

m Third World War will be the war of
informaticians (cryptographers and
cryptanalysts).
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BASIC TYPES of CLASSICAL SECRET-KEY
CIPHERS

Substitution ciphers: are ciphers where units of plaintext are replaced by parts of
cryptotext according a fixed rule.
Simple substitution ciphers operates on single letters.
Monoalphabethic (simple) substitution ciphers: are defined by a single
fixed permutation 7w with encoding

ex(a1az...an) = m(a1)mw(a2) ... m(an)

Polyalphabetic (simple) substitutions systems may use different
permutations at different positions of the plaintext.

Polygraphic (digraphic) substitution ciphers operate on larger, for
instance on the length two) substrings of the plaintext.

Transposition ciphers do not replace but only rearrange order of symbols in the
plaintext - sometimes in a complicated way.
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SHIFT CIPHER is a simple monoalphabetic cipher
that can be used to encrypt words in any alphabet.
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CAESAR (100 - 42 B.C.) CRYPTOSYSTEM - SHIFT CIPHER |

SHIFT CIPHER is a simple monoalphabetic cipher
that can be used to encrypt words in any alphabet.

In order to encrypt words in English alphabet we use:
Key-space: K ={1,2,...,25}

For any key k € K, the encryption algorithm ¢, for
SHIFT CIPHER SC(k) substitutes any letter by the letter
occurring k positions ahead (cyclically) in the alphabet.

The decryption algorithm dj for SC(k) substitutes any
letter by the one occurring k positions backward
(cyclically) in the alphabet.

IV054 1. Secret-key cryptosystems basics 20/93



Example & (EXAMPLE) =



Example e2(EXAMPLE) = GZCORNG,



Example &(EXAMPLE) = GZCORNG,
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SHIFT CIPHER SC(k) - SC(3) is called CAESAR SHIFT
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es(EXAMPLE) = HADPSOH,
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SHIFT CIPHER SC(k) - SC(3) is called CAESAR SHIFT

Example

EXAMPLE) = GZCORNG,
EXAMPLE) = HADPSOH,
HAL) = IBM,

COLD) = FROG

€
€3
€1
€3

P~~~ —~

ABCDEFGHIJKLMNOPQRSTUVWXYZ
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Example Find the plaintext to the following cryptotext obtained by the encryption with
SHIFT CIPHER with k = 7.
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SHIFT CIPHER SC(k) - SC(3) is called CAESAR SHIFT

Example & (EXAMPLE) = GZCORNG,
es(EXAMPLE) = HADPSOH,
er(HAL) = IBM,

es(COLD) = FROG
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example Find the plaintext to the following cryptotext obtained by the encryption with
SHIFT CIPHER with k = 7.

Decrypt the VHFUHW GH GHXA, VHFUHW GH GLHX,
cryptotext: VHFUHW GH WURLV, VHFUHW GH WRXV.

Numerical version of SC(k) is defined, for English, on the set {0,1,2,...,25} by the
encryption algorithm:

ex(i) = (i + k)(mod 26)
Numerical version of the cipher Atbash used in the Bible.

e(i)=25—1i
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EXAMPLE

Decrypt:

VHFUHW GH GHXA
VHFUHW GH GLHX,
VHFUHW GH WURLV
VHFUHW GH WRXV.

Solution:

Secret de deux
secret de Dieu,

secret de trois
secret de tous.
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VATSYAYANA CIPHER - SC(2)
Vatsyayana was a Hindu philosopher, believed to be the

author of Kamasutra and to live in the period 400 BC -
200 BC.
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VATSYAYANA CIPHER - SC(2)

Vatsyayana was a Hindu philosopher, believed to be the
author of Kamasutra and to live in the period 400 BC -
200 BC.

According to his Kamasutra, a girl needs to learn certain
arts and certain tricks: to cook,to read and to write, and
to send her lover secret messages which no one else would
be able to decipher.

Vatsyayana even described such a cipher which is actually
SC(2).

This system is now believed, by some, to be the oldest
cipher used.
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POLYBIOUS CRYPTOSYSTEM - |

It is a digraphic cipher developed by Polybious in 2nd
century BC.
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century BC.

Polybious was a Greek soldier, historian and for 17 years a
slave in Rome.
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POLYBIOUS CRYPTOSYSTEM - I

POLYBIOUS can be used to encrypt words of the English alphabet without J.
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POLYBIOUS CRYPTOSYSTEM - I

POLYBIOUS can be used to encrypt words of the English alphabet without J.

Key-space: Polybious checkerboards 5 x 5 with 25 English letters and with rows +
columns labeled by symbols.

Example:
[FlG|H[I]]J
A||A| B |C|D|E
BI|F|G|H|I|K
C|L|IM|N|JO|P
DIIQ|R|S|T]|U
E|V|IW|X]|Y]|Z

Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.

Example: KONIEC —
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Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.
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Key-space: Polybious checkerboards 5 x 5 with 25 English letters and with rows +
columns labeled by symbols.

Example:
[FlG|H[I]]J
A||A| B |C|D|E
BI|F|G|H|I|K
C|L|IM|N|JO|P
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Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.
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POLYBIOUS CRYPTOSYSTEM - I

POLYBIOUS can be used to encrypt words of the English alphabet without J.

Key-space: Polybious checkerboards 5 x 5 with 25 English letters and with rows +
columns labeled by symbols.

Example:
[FlG|H[I]]J
A||A| B |C|D|E
BI|F|G|H|I|K
C|L|IM|N|JO|P
DIIQ|R|S|T]|U
E|V|IW|X]|Y]|Z

Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.

Example: KONIEC —BJCICHBIAJAH
Decryption algorithm: 777
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FIRST INTERNET

Observation: Romans were able to created
powerful optical information communication
networks that allowed them to deliver information
and orders very fast along long distances and this
way to control efficiently huge territory and to
make their armies flexible because they could
deliver information and messages much faster than
using horses.
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FIRST INTERNET

Observation: Romans were able to created
powerful optical information communication
networks that allowed them to deliver information
and orders very fast along long distances and this
way to control efficiently huge territory and to
make their armies flexible because they could
deliver information and messages much faster than
using horses.

It is expected that Romans already used Polybious
cryptosystem.
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KERCKHOFF’s PRINCIPLE

The basic philosophy of modern cryptanalysis is embodied
in the following principle formulated in 1883 by Jean
Guillaume Hubert Victor Francois Alexandre
Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).
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The security of a cryptosystem must not depend on
keeping secret the encryption algorithm.
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KERCKHOFF’s PRINCIPLE

The basic philosophy of modern cryptanalysis is embodied
in the following principle formulated in 1883 by Jean
Guillaume Hubert Victor Francois Alexandre
Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).

The security of a cryptosystem must not depend on
keeping secret the encryption algorithm. The security
should depend only on keeping secret the key.
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BASIC REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))
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BASIC REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

Given e and a plaintext w, it should be easy to compute ¢ = e (w).
Given dk and a cryptotext c, it should be easy to compute w = dk(c).
A cryptotext ex(w) should not be much longer than the plaintext w.
It should be unfeasible to determine w from ex(w) without knowing d.

The so called avalanche effect should hold: A small change in the plaintext, or
in the key, should lead to a big change in the cryptotext (i.e. a change of one
bit of the plaintext should result in a change of all bits of the cryptotext, each
with the probability close to 0.5).
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BASIC REQUIREMENTS for GOOD CRYPTOSYSTEMS

[~ I I > |

(Sir Francis R. Bacon (1561 - 1626))

Given e and a plaintext w, it should be easy to compute ¢ = e (w).
Given dk and a cryptotext c, it should be easy to compute w = dk(c).
A cryptotext ex(w) should not be much longer than the plaintext w.
It should be unfeasible to determine w from ex(w) without knowing d.

The so called avalanche effect should hold: A small change in the plaintext, or
in the key, should lead to a big change in the cryptotext (i.e. a change of one
bit of the plaintext should result in a change of all bits of the cryptotext, each
with the probability close to 0.5).

The cryptosystem should not be closed under composition, i.e. not for every two
keys ki, ko there is a key k such that

er(w) = ek (ex (w)).

The set of keys should be very large.
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m Cryptotext should be unbreakable in practice.
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KERKHOFFS’ REQUIREMENTS - 1883

Cryptotext should be unbreakable in practice.

Cryptosystem should be convenient for the
correspondence.

The key should be easily remembered and changeable.
The cryptotext should be transmissible by telegraph.
The cryptosystem apparatus should be easily portable.

The encryption machine should be relatively easy to
use.
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FOUR DEVELOPMENTS THAT CHANGED METHODS and
IMPORTANCE of CRYPTOGRAPHY

m Wide use of telegraph - 1844,
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Wide use of radio transmission - 1895.

Wide use of encryption/decryption machines -
1930.
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FOUR DEVELOPMENTS THAT CHANGED METHODS and
IMPORTANCE of CRYPTOGRAPHY

Wide use of telegraph - 1844.
Wide use of radio transmission - 1895.

Wide use of encryption/decryption machines -
1930.

Wide use of internet.
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CRYPTANALYSIS ATTACKS I

The aim of cryptanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptanalytic attacks

Cryptotexts-only attack. The cryptanalysts get cryptotexts
¢ = ex(wr),...,cn = ex(wy) and try to infer the key k,
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Main types of cryptanalytic attacks

Cryptotexts-only attack. The cryptanalysts get cryptotexts

¢ = ex(wr),...,cn = ex(w,) and try to infer the key k,or as many of the
plaintexts wy, ..., w, as possible.

Known-plaintexts attack (given are some pairs [plaintext, cryptotext]) The
cryptanalysts know some pairs w;, ex(w;),1 < i < n, and try to infer k, or at
least w,1 for a new cryptotext ex(w,t1).

Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts).
The cryptanalysts choose plaintexts wa, ..., w, to get cryptotexts
ex(wi),...,ex(wy,), and try to infer k

IV054 1. Secret-key cryptosystems basics 31/93



CRYPTANALYSIS ATTACKS I

The aim of cryptanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptanalytic attacks

Cryptotexts-only attack. The cryptanalysts get cryptotexts

¢ = ex(wr),...,cn = ex(w,) and try to infer the key k,or as many of the
plaintexts wy, ..., w, as possible.

Known-plaintexts attack (given are some pairs [plaintext, cryptotext]) The
cryptanalysts know some pairs w;, ex(w;),1 < i < n, and try to infer k, or at
least w,1 for a new cryptotext ex(w,t1).

Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts).
The cryptanalysts choose plaintexts wa, ..., w, to get cryptotexts
ex(wi),...,ex(wy,), and try to infer k or at least w,1 for a new cryptotext
Chty1 = ek(Wn+1)-
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CRYPTANALYSIS ATTACKS I

The aim of cryptanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptanalytic attacks

Cryptotexts-only attack. The cryptanalysts get cryptotexts
¢ = ex(wr),...,cn = ex(w,) and try to infer the key k,or as many of the
plaintexts wy, ..., w, as possible.

Known-plaintexts attack (given are some pairs [plaintext, cryptotext]) The
cryptanalysts know some pairs w;, ex(w;),1 < i < n, and try to infer k, or at
least w,1 for a new cryptotext ex(w,t1).

Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts).
The cryptanalysts choose plaintexts wa, ..., w, to get cryptotexts
ex(wi),...,ex(wy,), and try to infer k or at least w,1 for a new cryptotext
Cnt1 = ex(wpi1). (For example, if they get temporary access to the
encryption machinery.)
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CRYPTANALYSIS ATTACKS - II.

@ Known-encryption-algorithm attack
The encryption algorithm e is given and the cryptanalysts try to get the decryption
algorithm dk.
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CRYPTANALYSIS ATTACKS - II.

@ Known-encryption-algorithm attack
The encryption algorithm e is given and the cryptanalysts try to get the decryption

algorithm dk.
Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)
The cryptanalysts know some pairs
[ei,dk(c)], 1<i<n,
where the cryptotexts ¢; have been chosen by the cryptanalysts. The aim is to
determine the key. (For example, if cryptanalysts get a temporary access to
decryption machinery.)
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What can a bad enemy, called usually Eve (eavesdropper), do?

m Eve can read (and try to decrypt) the message.
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What can a bad enemy, called usually Eve (eavesdropper), do?
Eve can read (and try to decrypt) the message.
Eve can try to get the key that was used and then decrypt all messages encrypted
with the same key.

Eve can change the message sent by Alice into another message, in such a way that
Bob will have the feeling, after he gets the changed message, that it was a message
from Alice.
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with the same key.
Eve can change the message sent by Alice into another message, in such a way that
Bob will have the feeling, after he gets the changed message, that it was a message
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Eve can pretend to be Alice and communicate with Bob, in such a way that Bob
thinks he is communicating with Alice.
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WHAT CAN BAD EVE DQO?

Let us assume that a clever Alice sends an encrypted message to Bob.

What can a bad enemy, called usually Eve (eavesdropper), do?
Eve can read (and try to decrypt) the message.
Eve can try to get the key that was used and then decrypt all messages encrypted
with the same key.

Eve can change the message sent by Alice into another message, in such a way that
Bob will have the feeling, after he gets the changed message, that it was a message

from Alice.
Eve can pretend to be Alice and communicate with Bob, in such a way that Bob
thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.
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BASIC GOALS of BROADLY UNDERSTOOD CRYPTOGRAPHY

Confidentiality: Eve should not be able to decrypt the message Alice sends to Bob.
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BASIC GOALS of BROADLY UNDERSTOOD CRYPTOGRAPHY

Confidentiality: Eve should not be able to decrypt the message Alice sends to Bob.
Data integrity: Bob wants to be sure that Alice's message has not been altered by Eve.

Authentication: Bob wants to be sure that only Alice could have sent the message he
has received.

Non-repudiation: Alice should not be able to claim that she did not send messages that
she has sent.

Anonymity: Alice does not want Bob to find out who sent the message
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The polygraphic cryptosystem presented in this slide was probably never used.



HILL CRYPTOSYSTEM I

The polygraphic cryptosystem presented in this slide was probably never used. In spite of
that this cryptosystem played an important role in the history of modern cryptography.
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We describe Hill cryptosystem for a fixed n and the English alphabet.
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Key-space: The set of all matrices M of degree n with elements from the set
{0,1,...,25} such that M 'mod 26 exists.
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HILL CRYPTOSYSTEM I

The polygraphic cryptosystem presented in this slide was probably never used. In spite of
that this cryptosystem played an important role in the history of modern cryptography.

We describe Hill cryptosystem for a fixed n and the English alphabet.

Key-space: The set of all matrices M of degree n with elements from the set
{0,1,...,25} such that M 'mod 26 exists.

Plaintext + cryptotext space: English words of length n.

Encoding: For a word w let ¢, be the column vector of length n of the integer codes of
symbols of w. (A—=0,B—1,C—2,...)

Encryption: ¢ = Mc, mod 26

Decryption: ¢, = M~ *c. mod 26
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Example: ABCDEFGHIJKLMNOPQRSTUVWXYZ



HILL CRYPTOSYSTEM - EXAMPLE

Example: ABCDEFGHIJKLMNOPQRSTUVWXY?Z

a7 o171
M_L 1} M _[9 16]
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Example: ABCDEFGHIJKLMNOPQRSTUVWXY?Z

a7 o171
M_L 1} M _[9 16]

Plaintext: w = LONDON
Encodinge: [ 13 14
ncodings: wio = |1,1, wap = | 5| Won = |5

12
25

21

Encryption : Mw,po = { ] , Mwnp = {16} , Mwon = [117}
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HILL CRYPTOSYSTEM - EXAMPLE

Example: ABCDEFGHIJKLMNOPQRSTUVWXY?Z

a7 o171
M_L 1} M _[9 16]

Plaintext: w = LONDON
Encodinge: [ 13 14
ncodings: wio = |1,1, wap = | 5| Won = |5

Encryption : Mw,po = B?] , Mwnp = ﬁé} , Mwon = [117}

Cryptotext: MZVQRB

Theorem

IfM:{aH al2],then M= L ["22 "312}
an2

an1 det M| —ap  an

Proof: Exercise
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INVERTING INTEGER MATRICES modulo n

The basic idea to compute M~ (mod n) is simple:

Use the usual method to invert M in terms of rational numbers, and then replace each
a/b by ab™!, where bb™' =1 (mod n).
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The basic idea to compute M~ (mod n) is simple:

Use the usual method to invert M in terms of rational numbers, and then replace each
a/b by ab™!, where bb™' =1 (mod n).
Example: Compute the inverse of the following matrix modulo 11:

11 1
M=|1 2 3 (mod 11).
1 4 9

The standard inverse of M in rational numbers is

6 -5 1
% -6 8 -2
2 -3 1
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INVERTING INTEGER MATRICES modulo n

The basic idea to compute M~ (mod n) is simple:

Use the usual method to invert M in terms of rational numbers, and then replace each
a/b by ab™!, where bb™' =1 (mod n).
Example: Compute the inverse of the following matrix modulo 11:

11 1
M=|1 2 3 (mod 11).
1 4 9

The standard inverse of M in rational numbers is

6 -5 1
—6 8 -2
2 -3 1

Since 27! = 6 (mod 11), the resulting matrix has the form
3 3
M7t=1| 8 4 10 (mod 11).
1 4
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SESTER S. HILL

Hill published his cryptosystem, based on the ideas of
Giovani Bathista Porta (1535-1615), in the paper

Cryptography in an algebraic alphabet

IV054 1. Secret-key cryptosystems basics 38/93



SESTER S. HILL

Hill published his cryptosystem, based on the ideas of
Giovani Bathista Porta (1535-1615), in the paper

Cryptography in an algebraic alphabet

in the journal American Mathematical Monthly in
1929.

Hill even tried to design a machine to use his cipher, but
without a success.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS

A cryptosystem is called secret-key cryptosystem if some secret piece of
information — the key — has to be agreed first between any two parties that have,
or want, to communicate through the cryptosystem.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS

A cryptosystem is called secret-key cryptosystem if some secret piece of
information — the key — has to be agreed first between any two parties that have,
or want, to communicate through the cryptosystem. Example: CAESAR, HILL.
Another name is symmetric cryptosystem (cryptography).

Two basic types of secret-key cryptosystems
m substitution based cryptosystems

m transposition based cryptosystems

Two basic types of substitution cryptosystems

= monoalphabetic cryptosystems — they use a fixed substitution — CAESAR,
POLYBIOUS

u polyalphabetic cryptosystems — substitution keeps changing during the encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely
specified by a permutation of letters, (number of permutations (keys) is 26!)
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AFFINE CRYPTOSYSTEMS

Example: Each AFFINE cryptosystem is given by two integers
0 <a,b<25 gcd(a,26) = 1.

Encryption: e, 5(x) = (ax + b) mod 26
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Example: Each AFFINE cryptosystem is given by two integers
0 <a,b<25 gcd(a,26) = 1.

Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5,
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Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.

Encryption: e, 5(x) = (ax + b) mod 26
Example
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AFFINE CRYPTOSYSTEMS

Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.
Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5, e3s5(x)=(3x+5)mod 26,
es5(3) =
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Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.

Encryption: e, 5(x) = (ax + b) mod 26

Example
a=3,b=5, e3s5(x)=(3x+5)mod 26,
e3,5(3) = 14,
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Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.
Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5, e3s5(x)=(3x+5)mod 26,
63,5(3) = 14, e375(15) =
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Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.
Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5, e3s5(x)=(3x+5)mod 26,
63,5(3) = 14, e375(15) = 24, e3,5(D) =
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0<a,b<25 gcd(a,26) = 1.
Encryption: e, 5(x) = (ax + b) mod 26

Example
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AFFINE CRYPTOSYSTEMS

Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.

Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5, e3s5(x)=(3x+5)mod 26,
63’5(3) = 14, 6375(15) = 24-7 63’5(D) = O, 63,5(P) =Y

ABCDEFGHIJKLMNOPQRSTUVWXY Z
0123456 7891011121314 151617 1819 2021 2223 2425
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AFFINE CRYPTOSYSTEMS

Example: Each AFFINE cryptosystem is given by two integers
0<a,b<25 gcd(a,26) = 1.
Encryption: e, 5(x) = (ax + b) mod 26

Example

a=3,b=5, e3s5(x)=(3x+5)mod 26,
63’5(3) = 14, 6375(15) = 24-7 63’5(D) = O, 63,5(P) =Y

ABCDEFGHIJKLMNOPQRSTUVWXY Z
0123456 7891011121314 151617 1819 2021 2223 2425

Decryption: d,(y) = a~*(y — b) mod 26
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The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a so called
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The distributions of letters in the cryptotext is then compared with some official
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The letter with the highest frequency in the cryptotext is likely to be the substitute for
the letter with highest frequency in the plaintext language .... The likelihood grows with
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CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a so called frequency count: the number of each letter in the cryptotext is counted.
The distributions of letters in the cryptotext is then compared with some official
distribution of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be the substitute for
the letter with highest frequency in the plaintext language .... The likelihood grows with
the length of cryptotext.

Frequency counts in English: and for other languages:
% % % English| %  German| %  Finnish| %  French| % ltalian| %  Spanish| %

E|1231 L |4.03 B|162 E 12.31 E 18.46 A 12.06 E 15.87 E 11.79 E 13.15
T 9.59 N 11.42 | 10.59 A 9.42 A 11.74 A 12.69

T[959 D|365 G|1.61 A 8.05 I 8.02 T 9.76 I 8.41 | 11.28 o 9.49

A[805 C|320 V|[093 o 7.94 R 7.14 N 8.64 S 7.90 () 9.83 S 7.60

O 794 U|310 K|0.52 N 7.19 S 7.04 E 8.11 T 7.29 N 6.88 N 6.95

N| 719 P|229 Q[0.20 | 7.18 A 5.38 S 7.83 N 7.15 L 6.51 R 6.25

1718 F|228 X|0.20 S 6.59 T 5.22 L 5.86 R 6.46 R 6.37 | 6.25

S| 659 M|225 J|0.10 R 6.03 U 5.01 o 5.54 U 6.24 T 5.62 L 5.94

R| 6.03 W| 203 Z|0.09 H 5.14 D 4.94 K 5.20 L 5.34 S 4.98 D 5.58

H|514 Y| 1388

70.02 24.71 5.27
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CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a so called frequency count: the number of each letter in the cryptotext is counted.
The distributions of letters in the cryptotext is then compared with some official
distribution of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be the substitute for
the letter with highest frequency in the plaintext language .... The likelihood grows with
the length of cryptotext.

Frequency counts in English: and for other languages:
% % % English| %  German| %  Finnish| %  French| % ltalian| %  Spanish| %

E|1231 L |4.03 B|162 E 12.31 E 18.46 A 12.06 E 15.87 E 11.79 E 13.15
T 9.59 N 11.42 | 10.59 A 9.42 A 11.74 A 12.69

T[959 D|365 G|1.61 A 8.05 I 8.02 T 9.76 I 8.41 | 11.28 o 9.49

A[805 C|320 V|[093 o 7.94 R 7.14 N 8.64 S 7.90 () 9.83 S 7.60

O 794 U|310 K|0.52 N 7.19 S 7.04 E 8.11 T 7.29 N 6.88 N 6.95

N| 719 P|229 Q[0.20 | 7.18 A 5.38 S 7.83 N 7.15 L 6.51 R 6.25

1718 F|228 X|0.20 S 6.59 T 5.22 L 5.86 R 6.46 R 6.37 | 6.25

S| 659 M|225 J|0.10 R 6.03 U 5.01 o 5.54 U 6.24 T 5.62 L 5.94

R| 6.03 W| 203 Z|0.09 H 5.14 D 4.94 K 5.20 L 5.34 S 4.98 D 5.58

H|514 Y| 1388

70.02 24.71 5.27

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, ED,
ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS.
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CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a so called frequency count: the number of each letter in the cryptotext is counted.
The distributions of letters in the cryptotext is then compared with some official
distribution of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be the substitute for
the letter with highest frequency in the plaintext language .... The likelihood grows with
the length of cryptotext.

Frequency counts in English: and for other languages:
% % % English| %  German| %  Finnish| %  French| % ltalian| %  Spanish| %

E|1231 L |4.03 B|162 E 12.31 E 18.46 A 12.06 E 15.87 E 11.79 E 13.15
T 9.59 N 11.42 | 10.59 A 9.42 A 11.74 A 12.69

T[959 D|365 G|1.61 A 8.05 I 8.02 T 9.76 I 8.41 | 11.28 o 9.49

A[805 C|320 V|[093 o 7.94 R 7.14 N 8.64 S 7.90 () 9.83 S 7.60

O 794 U|310 K|0.52 N 7.19 S 7.04 E 8.11 T 7.29 N 6.88 N 6.95

N| 719 P|229 Q[0.20 | 7.18 A 5.38 S 7.83 N 7.15 L 6.51 R 6.25

1718 F|228 X|0.20 S 6.59 T 5.22 L 5.86 R 6.46 R 6.37 | 6.25

S| 659 M|225 J|0.10 R 6.03 U 5.01 o 5.54 U 6.24 T 5.62 L 5.94

R| 6.03 W| 203 Z|0.09 H 5.14 D 4.94 K 5.20 L 5.34 S 4.98 D 5.58

H|514 Y| 1388

70.02 24.71 5.27

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, ED,
ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most common
trigrams are: THE, ING, AND, HER, ERE, ENT.
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FREQUENCY ANALYSIS for SEVERAL LANGUAGES

NEJCETNEJSI PISMENA V ZAPADOEVROPSKYCH JAZYCICH —————
Anglictina: ETAOINSHRDLU
Francouzitin: ENASRIUTOLDC
Néméinaz ENRISTUDAHGL
: EIAORLNTSCDP
EAOSRINLDCTU

n angictina

1 e

VWX Yz

Spanesing

,5
o b LG o

WYz

Halitina

: ;
| PY 1 Y1 BRPTY F L |
20 Frzncouzitina
sl M
En ﬁ §=§ ?ii
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OTHER CHARACTERISTICS of ENGLISH

V ANGLICTINE

Nejcastéjsi pismena: etaoinshrdlu
Nejcastéjsi prvni pismena: tasoicpbshm
Nejcastéjsi posledni pismena: etsdnryoflag
Nejcast€jsi dvojice pismen:  th er on an re he in ed nd ha at
Nejcast€jsi trojice pismen:  the and tha ent ion tio for nde
Nejcastéjsi zdvojeni pismen:  ss ee tt ff Il mm oo
Nejcastéjsi pismena nasledujicipoE: rdsnactmepwo
Nejcastjsi dvojpismennd slova:  of to in it is be as at so we he
Nejcastéjsi trojpismennd slova:  the and for are but not you all

Nejcastéjsi Ctyfpismennd slova:  that with have this will your from they
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FREQUENCY COUNTS in CZECH and SLOVAK

Czech Slovak

o 8.66 a 10.67
e 7.69 o 9.12
n 6.53 e 8.43
First resource a 6.21 ! >.74
t 5.72 n 5.74
v 4.66 s 5.02
s 4,51 t 4.92
i 4.35 v 4.60
/ 3.84 k 3.96

Czech Slovak
e 10.13 a 9.49
a 8.99 o 9.34
o 8.39 e 9.16
Second resource: ! 6.92 ! 6.81
n 6.64 n 6.34
s 5.74 s 5.94
r 5.33 r 5.12
t 4.98 t 5.06
v 4.50 v 4.85
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Discovery of FREQUENCY ANALYSIS - I.

It was discovered, in 1987, that this technique was already
described in 9th century in
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described in 9th century in
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Discovery of FREQUENCY ANALYSIS - I.

It was discovered, in 1987, that this technique was already
described in 9th century in

a manuscript on deciphering cryptographic messages
written by the” philosopher of the Arabs” called

Abu Yusuf Ya'qub ibn Is-haq ibn as-Sabbah ibn 'omran ibn
Ismail a-Kindi

He wrote 290 books on medicine, astronomy,
mathematics, music,...

Frequency analysis was originally used to study Koran, to
establish chronology of revelations by Muhammad in
Koran.
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Discovery of FREQUENCY ANALYSIS -
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CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLE

Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an
encryption algorithm

ea,b(x) = (ax + b) mod 26
where 0 < a, b < 25, gcd(a,26) = 1. (Number of keys: 12 x 26 = 312.)
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CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLE

Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an

encryption algorithm

where 0 < a, b < 25, gcd(a,26) = 1. (Number of keys: 12 x 26 = 312.)

e.,6(x) = (ax + b) mod 26

Example: Assume that an English plaintext is divided into blocks of 5 letters and
encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows:

How to find the
plaintext?

vy)

IWrXOUrCcz=zIsO

HJUH NBULS
NUUN BWNUA
XRLK GNBON
KXDH UZDLK
UMHU GSWHU
XBHJ UHCXK
KOLJ KCXLC
RWHS HBHIJU
XNOZ L JBXX
USWX GLLKZ
JKXS WHS SW
YXWN UGSWX
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OXTIIZIXXXCXLIL
mFX-ewmZ2XrwmCcCcCc
mFXTZ2wWOXwIZ2
XZ2ZITMXZXX-w

LRU

wv
=2
—

WCccZICNTCS

wm
-
<
X
T

ICWWCWKVSInC
WrIXWSEXwWS<
T < XXZXC
c<XCcCSCcXXCcxXxw0n
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CRYPTANALYSIS - CONTINUATION I

% % %
X-32 J-11 D-2 E|1231 L |4.03 B|162
g:gg g:g \F/f T|959 D365 G|161
. B A| 805 C|320 V|[0.93
Frequency analysis of plaintext and B-19 G- Pl olas u|310 K|os2
frequency table for English: N-t6 v-4 1.0 [T PI2290 Q1020
K-15 Z-4 Q-0 y ) :
S 18 C.3 1.0 S|65 M|225 Jlo10
. . _ _ w12 A > R| 603 W|203 z|0.09
First guess: E=X, T =U H|514 Y188
70.02 24.71 5.27
Encodings: 4a+ b =23 (mod 26)
xa+b=y 19a + b =20 (mod 26)

Solutions: a=5,b=3 > a~ ! =
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% % %
X-32 J-11 D-2 E|1231 L |4.03 B|162
g:gg g:g \F/f T|959 D365 G|161
. B A| 805 C|320 V|[0.93
Frequency analysis of plaintext and B-19 G- Pl olas u|310 K|os2
frequency table for English: N-t6 v-4 1.0 [T PI2290 Q1020
K-15 Z-4 Q-0 y ) :
S 18 C.3 1.0 S|65 M|225 Jlo10
. . _ _ w12 A > R| 603 W|203 z|0.09
First guess: E=X, T =U H|514 Y188
70.02 24.71 5.27
Encodings: 4a+ b =23 (mod 26)
xa+b=y 19a + b =20 (mod 26)

Solutions: a=5,b=3 — a1 =21
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CRYPTANALYSIS - CONTINUATION I

% % %
X-32 J-11 D-2 E[1231 L | 403 B|1.62
nIX 2 8 ¥ 2 tlese D|365 G|161
. B A| 805 C|320 V|[0.93
Frequency analysis of plaintext and B-19 6-5 Pl ol70 u[310 K|os
frequency table for English: N-t6 v-4 1.0 [T PI2290 Q1020
K-15 Z-4 Q-0 ) ) :
S 18 C.3 1.0 S|65 M|225 Jlo10
. e _ Wolt A R| 603 W|203 z|0.09
First guess: E=X, T =U H|514 Y| 188
70.02 24.71 5.27
Encodings: 4a+ b =23 (mod 26)
xa+b=y 19a + b =20 (mod 26)

Solutions: a=5,b=3 — a1 =21

H cryptolABCDEFGHIJKLMNOPQRSTUVWXYZ
TraHSIatlon table plain [PKFAVQLGBWRMHCXSNIDYTO JEZU

BHJUH NBULS VULRU SLYXH
ONUUN BWNUA XUSNL UYJSS
WXRLK GNBON UUNBW SWXKX
HKXDH UZDLK XBHJU HBNUO
NUMHU GSWHU XMBXR WXKXL
UXBHJ UHCXK XAXKZ SWKXX
LKOLJ KCXLC MXONU UBVUL
RRWHS HBHJU HNBXM B XRWX
KXNOZ LJBXX HBNFU BHJUH
LUSWX GLLKZ LJPHU ULSYX
BJKXS WHSSW XKXNB HBHIJU
HYXWN UGSWX GLLK

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO
OTMIT DMZEG, which does not make sense.
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CRYPTANALYSIS - CONTINUATION Il

Second guess: E=X,A=H
Equations 4a+ b =23 (mod 26)

b =7 (mod 26)
Solutions: a = 4 or a = 17 and therefore a = 17
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CRYPTANALYSIS - CONTINUATION Il

X,A=H

Second guess: E

23 (mod 26)
7 (mod 26)

17 and therefore a

4a+b

Equations

b=

17

4ora=

Solutions: a

This gives the translation table

crypto| ABCDEFGHI JKLMNOPQRSTUVWXY?Z
plain [VSPMJGDAXUROLITFCZWTQNKHEBY

<HWwLowow<gwz
W-XzZwWwwzITzm>d
MDODW—xEXZ2IDFI
OMITVWINWIOWN
FZEFE<<SIFZunnZ2L

zZoIrzz>za4zz2wn

S—-DWX—WwOC—x
OF—<unwuLun-0wo
ZZZVA>W—nDxO
XUlZuwwldlgcgcOoOwAn

F>—xZoeazw>Iuw
OZLO<CWODWET
Z—nn>SITaoaw<<nOkt
WI—>F<and0<AO
—nozazx<oQIz

C—xXx<ZDDF>Wk—
ZZ0=<<O<LTWI
SZ2IWIdnLI—FxuWw
<C—wUxrzZwxIwzZz>m
NLIC—Z202Ix0ong

and the following
plaintext from the
above cryptotext

49/93
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OTHER EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS

Symbols of the English alphabet will be replaced by squares with or without points and

with or without surrounding lines using the following rule:

A:|B: | C: J- | K- | L- S|T|U
D:|E:|F: M-| N-|O- V|IW|X
G:|H:| I P.1Q | R Y| Z
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OTHER EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS
Symbols of the English alphabet will be replaced by squares with or without points and
with or without surrounding lines using the following rule:
A:|B:|C J- | K| L S|T|U
D:|E: | F: M-|N-|O-  V|W|X
G:|H:| I P.1Q | R Y| Z
For example the plaintext:
WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER
results in the cryptotext:
N 15 I I e Iy I Y O
158 1 I I A I I I B
U a0 e JuUer
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OTHER EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS

Symbols of the English alphabet will be replaced by squares with or without points and
with or without surrounding lines using the following rule:

A:|B:|C J- | K| L S|T|U
D:|E: | F: M-|N-|O-  V|W|X
G:|H:| I P.1Q | R Y| Z
For example the plaintext:

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

results in the cryptotext:
O e ET
(150 1 I N I I e ) R R
U A0 e Ay
Garbage in between method: the message (plaintext or cryptotext) is supplemented by

“garbage letters".
1 2 3456 78910

H H | L O E Y O U
Richelieu \ HAVE vou 3
D E E P U N D E R
cryptosystem used MY S EKINCmY 32
sheets of card board LOVE LASTS g
X F ORE V ER I N 6:‘]
with holes. HYPERSPACE °
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EXTREME CASES for FREQUENCY ANALYSIS

In 1969 Georges Perec published, in France,

La Disparition
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In 1969 Georges Perec published, in France,
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a 200 pages novel
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EXTREME CASES for FREQUENCY ANALYSIS

In 1969 Georges Perec published, in France,
La Disparition

a 200 pages novel in which there is no occurence

of the letter "e".
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EXTREME CASES for FREQUENCY ANALYSIS

In 1969 Georges Perec published, in France,
La Disparition

a 200 pages novel in which there is no occurence

of the letter "e".

British translation, due to Gilbert Adair, has
appeared in 1994 under the title

A void
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Appendix A

The Opening Paragraph of A Void by Georges Perec,
translated by Gilbert Adair

Today, by radio, and also on giant hoardings, a rabbi, an admiral notorious
for his links to masonry, a trio of cardinals, a trio, too, of insignificant
politicians (bought and paid for by a rich and corrupt Anglo-Canadian
banking corporation),inform s all of how our country now risks dying of
starvation. A rumor, that's my initial thought as T switch off my radio, a
rumor or possibly a hoax. Propaganda, I murmur anxiously-as though, just
by saying so, I might allay my doubts-typical politicians’ da. But
public opinion gradually absorbs it as a fact. Individuals stare strutting
around with stout clubs. “Food, glorious food!” is a common cry (occa.
sionally sung to Bart’s music), with ordinary hardworking folk harassing
officials, both local and national, and cursing capitalists and captains of
industry. Cops shrink from going out on night shift. In Macon a mob
storms & municipal building. In Rocadamour ruffians rob a hangar full of
foodstuffs, pillaging tons of tuna fish, milk and cocoa, as also a vast quan-
tity of com-all of it, alas, totally unfit for human consumption. Without
fuss or ado, and naturally without any sort of trial, an indignant crowd
hangs 26 solicitors on a hastily built scaffold in front of Nancy’s law courts
(this Nancy is a town, not a woman) and ransacks a local journal, a dis-
gusting right-wing rag that is siding against it. Up and down this land of
ours looting has brought docks, shops and farms to a virtual standstill,

First published in France as La Disparition by Editions Denéel in 1969, and in

Great Britain by Harvill in 1994. Copyright © by Editions Dendel 1969: i






HOMOPHONIC CRYPTOSYSTEMS

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.
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HOMOPHONIC CRYPTOSYSTEMS

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.

They are substitution cryptosystems in which each letter is replaced by arbitrarily
chosen substitutes from fixed and disjoint sets of substitutes.
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HOMOPHONIC CRYPTOSYSTEMS

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.

They are substitution cryptosystems in which each letter is replaced by arbitrarily
chosen substitutes from fixed and disjoint sets of substitutes.

The number of substitutes of a letter is usually proportional to the frequency of the
letter.
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HOMOPHONIC CRYPTOSYSTEMS

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.

They are substitution cryptosystems in which each letter is replaced by arbitrarily
chosen substitutes from fixed and disjoint sets of substitutes.

The number of substitutes of a letter is usually proportional to the frequency of the
letter.

Though homophonic cryptosystems are not unbreakable, they are much more secure than
ordinary monoalphabetic substitution cryptosystems.

The first known homophonic substitution cipher is from 1401.
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Jindfich IV. Francouzsky

Homofonni tabulku Jind¥icha IV, (viz niZe) urcité navrhoval Frangois Viete, oficidlni
v kryptograf, ludtitel a matematik. Jde o praktickou a té¢innou §ifru, jakou Ize ce-
kat od autora, ktery zn4 viechny triky i jejich meze. Vétsina souhldsek m4 vice variant
podle jejich skutecné cetnosti. Slovnik obsahuje pouhd tfi slova.

~ Tabulka zahrnuje i znackovaci symbol: ==

 Tostadik oznaeni viech zatitkl i koncili bezvyznamnych isek, na rozdil od ozna-
ovéni textovych ¢asti z Montmorencyho tabulky.

>
w

Cc D E F G H | J L
X a4 X R Q0 eeeo &
¢ £ ¥ W #  #
< = we o W

0 P Q R S T U X Y
P 5 wm ff & & ¥
% a2 o & 9

e SIS

V kédovém seznamu najdeme jen t¥i slova:

odstavec = &k je= OL  yy= O



ich IV. Francouzsky
tabulku Jindficha IV. (viz nize) uréité navrhoval Francois Vitte, oficidlni
keyptogra, lustitel a matematik. Jde o praktickou a téinnou Sifru, jakou lze ée-
od autora, kterf znd viechny triky i jeich meze. Vetsina souhlések mé vice variant

jejich skute¢né Zetnosti. Slovnik obsahuje pouhd tFi slova.
‘Tabulka zahrnuje i znagkovaci symbol: <O

textovych &isti z Montmorencyho tabulky.

cC D E F G H | J L
WX a4 X R m 0 eee £
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- = e o W
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P 5w ff . & B 9x ¥
o 4 o & 9
* 9 5
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s w ¢ & °©
a w
M N O P Q R S T U X Y
d 3 > B 4 F kX 3 0w x #
94 o~ 3 L r 3 8 x ¢
ot x rof n
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key — a Playfair square is defined by a word w of length at most 25. In w repeated
letters are then removed, remaining letters of alphabets (except j) are then added
and resulting word is divided to form an 5 x 5 array (a Playfair square).
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key — a Playfair square is defined by a word w of length at most 25. In w repeated
letters are then removed, remaining letters of alphabets (except j) are then added
and resulting word is divided to form an 5 x 5 array (a Playfair square).
Encryption: of a pair of letters x, y

If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key — a Playfair square is defined by a word w of length at most 25. In w repeated
letters are then removed, remaining letters of alphabets (except j) are then added
and resulting word is divided to form an 5 x 5 array (a Playfair square).

Encryption: of a pair of letters x, y
If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.

If x and y are in different rows and columns they are replaced by symbols in the
opposite corners of rectangle created by x and y - the order is important and needs
to be agreed on.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key — a Playfair square is defined by a word w of length at most 25. In w repeated
letters are then removed, remaining letters of alphabets (except j) are then added
and resulting word is divided to form an 5 x 5 array (a Playfair square).

Encryption: of a pair of letters x, y
If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.
If x and y are in different rows and columns they are replaced by symbols in the
opposite corners of rectangle created by x and y - the order is important and needs
to be agreed on.

Example: PLAYFAIR is encrypted as LCNMNFSC
Playfair was used in World War | by British army.

S D z 1 U
H A F N G
Playfair square: B M V Y W
R P L C X
T O E K Q
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26x26 table is first designed with the i-th row
containing all symbols of alphabet, in the cyclic way, starting with i-th symbol of the
alphabet. This way i-th column represent the CAESAR shift CS(i — 1) starting with the
symbol of the first row.

Second step: For a plaintext w a key k has to be chosen that should be a word of the
same length as w.

Encryption: the i-th letter of the plaintext - w; - is encrypted by the letter from the
wi-row and k;-column of the table.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26x26 table is first designed with the i-th row
containing all symbols of alphabet, in the cyclic way, starting with i-th symbol of the
alphabet. This way i-th column represent the CAESAR shift CS(i — 1) starting with the
symbol of the first row.

Second step: For a plaintext w a key k has to be chosen that should be a word of the

same length as w.

Encryption: the i-th letter of the plaintext - w; - is encrypted by the letter from the
wi-row and k;-column of the table.
VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR
cryptosystem.

IMPORTANT EXAMPLES
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VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26x26 table is first designed with the i-th row
containing all symbols of alphabet, in the cyclic way, starting with i-th symbol of the
alphabet. This way i-th column represent the CAESAR shift CS(i — 1) starting with the
symbol of the first row.

Second step: For a plaintext w a key k has to be chosen that should be a word of the

same length as w.

Encryption: the i-th letter of the plaintext - w; - is encrypted by the letter from the
wi-row and k;-column of the table.
VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR
cryptosystem.

IMPORTANT EXAMPLES

VIGENERE-key cryptosystem: a short keyword p is chosen and periodically repeated to
form the key to be used
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VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26x26 table is first designed with the i-th row
containing all symbols of alphabet, in the cyclic way, starting with i-th symbol of the
alphabet. This way i-th column represent the CAESAR shift CS(i — 1) starting with the
symbol of the first row.

Second step: For a plaintext w a key k has to be chosen that should be a word of the
same length as w.

Encryption: the i-th letter of the plaintext - w; - is encrypted by the letter from the
wi-row and k;-column of the table.

VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR
cryptosystem.

IMPORTANT EXAMPLES

VIGENERE-key cryptosystem: a short keyword p is chosen and periodically repeated to
form the key to be used

k = Prefix, p*°
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26x26 table is first designed with the i-th row
containing all symbols of alphabet, in the cyclic way, starting with i-th symbol of the
alphabet. This way i-th column represent the CAESAR shift CS(i — 1) starting with the
symbol of the first row.

Second step: For a plaintext w a key k has to be chosen that should be a word of the
same length as w.

Encryption: the i-th letter of the plaintext - w; - is encrypted by the letter from the
wi-row and k;-column of the table.

VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR
cryptosystem.

IMPORTANT EXAMPLES

VIGENERE-key cryptosystem: a short keyword p is chosen and periodically repeated to
form the key to be used

k = Prefix, p*°
AUTOCLAVE-key cryptosystem: a short keyword is chosen and appended by plaintext

I D._c. S
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS IlI

VIGENERE and AUTOCLAVE cryptosystems

SX 132000V EFD>2X >

— X 15zZ00aQ0xwnkE>>32
—X 132000 wnkED>
—X13z0a0Qxwnk>
—"XJ4Zz0aQ0xwnk

43zZz0aQ0xwn
-=Z2000x
—~=zZ2000C

N4
-

)
X
-

T
o
w
w
o)
¢
@
<
N
>
x
B3

=zo0a
-=z0
X5z
xS
S X

DX

-

YZABCDEFGH
ZABCDEFGH
ABCDEFGH
BCDEFGH

X
Y
z
A

N<OULUOWWLUI-—
>NCOUVUQAWLUI-—"XJd5SZ00aQXxwnk>D>3X
X>N<oOUQWLOT
SX>NCOUVOAWLUT
SSIX>N<COUVAWLUI
D>IX>NCOUAOWLUI
FO>IX>NCOUAWLUOI —oX
NEFD>SIX>NCOUAWLUOI —oX
EOFD>IX>NICOUVAWLOIT —DX
CXVFD>TX>NICOUAWLOI -
LOXVEFD>ZIX>NICOVOWL OI —
0ALQOXVWED>IX>NCOUVAWLOT
ZO0QAOXWVWEFED>IX>NICOLUAWL OV
SzZ0QaO0XxWVED>IX>NCOLUOWLL
43Z000XwVEFD>IX>NICOLVAW
X 13Z00a0xunkFD>2IX>NI<OUA
STX J13Z0aQXVED>ITX>NICOU
— X J135Z00AOXWVED>TX>NIC@
I--"X13Z00a0XWEFD>2TX>NI
OI—-"XJ15Z200a0XWVWFD>2TX>N
LOUI—-DX13Z00a0CW0EFD>2TX>
WLOUI—-"X13Z00a0xunkED>2X
QWULUI-"X 1320000V EFD>Z2
VoOWLUVUI—-"XJ13Z200a0xXxwVED>
DUAWLUOUI—"XJ13200a0xwnkED
<COVOAWLUI—-"XJI3Z200Q0xwvi

igenére table:

Vv

T
o
w
w
o
v
o
<
N
>
x
B
>
=}

>

S X>N

58/93
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS IlI

VIGENERE and AUTOCLAVE cryptosystems

SX 132000V EFD>2X >

— X 15zZ00aQ0xwnkE>>32
—X 132000 wnkED>
—X13z0a0Qxwnk>
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ABCDEFGH
BCDEFGH

X
Y
z
A

N<OULUOWWLUI-—
>NCOUVUQAWLUI-—"XJd5SZ00aQXxwnk>D>3X
X>N<oOUQWLOT
SX>NCOUVOAWLUT
SSIX>N<COUVAWLUI
D>IX>NCOUAOWLUI
FO>IX>NCOUAWLUOI —oX
NEFD>SIX>NCOUAWLUOI —oX
EOFD>IX>NICOUVAWLOIT —DX
CXVFD>TX>NICOUAWLOI -
LOXVEFD>ZIX>NICOVOWL OI —
0ALQOXVWED>IX>NCOUVAWLOT
ZO0QAOXWVWEFED>IX>NICOLUAWL OV
SzZ0QaO0XxWVED>IX>NCOLUOWLL
43Z000XwVEFD>IX>NICOLVAW
X 13Z00a0xunkFD>2IX>NI<OUA
STX J13Z0aQXVED>ITX>NICOU
— X J135Z00AOXWVED>TX>NIC@
I--"X13Z00a0XWEFD>2TX>NI
OI—-"XJ15Z200a0XWVWFD>2TX>N
LOUI—-DX13Z00a0CW0EFD>2TX>
WLOUI—-"X13Z00a0xunkED>2X
QWULUI-"X 1320000V EFD>Z2
VoOWLUVUI—-"XJ13Z200a0xXxwVED>
DUAWLUOUI—"XJ13200a0xwnkED
<COVOAWLUI—-"XJI3Z200Q0xwvi

igenére table:

Vv

T
o
w
w
o
v
o
<
N
>
x
B
>
=}

>

S X>N

HAMBURG

Keyword:

Plaintext: INJEDEMMENSCHENGESICHTESTEHTSEINEG

Vigenere-key:

Autoclave-key:

Vigenere-encrypt..:

Autoclave-encrypt.:
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS IlI

VIGENERE and AUTOCLAVE cryptosystems
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CXVFD>TX>NICOUAWLOI -
LOXVEFD>ZIX>NICOVOWL OI —
0ALQOXVWED>IX>NCOUVAWLOT
ZO0QAOXWVWEFED>IX>NICOLUAWL OV
SzZ0QaO0XxWVED>IX>NCOLUOWLL
43Z000XwVEFD>IX>NICOLVAW
X 13Z00a0xunkFD>2IX>NI<OUA
STX J13Z0aQXVED>ITX>NICOU
— X J135Z00AOXWVED>TX>NIC@
I--"X13Z00a0XWEFD>2TX>NI
OI—-"XJ15Z200a0XWVWFD>2TX>N
LOUI—-DX13Z00a0CW0EFD>2TX>
WLOUI—-"X13Z00a0xunkED>2X
QWULUI-"X 1320000V EFD>Z2
VoOWLUVUI—-"XJ13Z200a0xXxwVED>
DUAWLUOUI—"XJ13200a0xwnkED
<COVOAWLUI—-"XJI3Z200Q0xwvi

igenére table:

Vv

I
&
'S
w
a
o
o
<
N
>
x
2
>
=}

>

S X>N

Yo

INJEDEMMENSCHENGESICHT
HAMBURGHAMBURGHAMBUR

HAMBURG

Keyword:
Plaintext
Vigenere-key:

Autoclave-key:

Vigenere-encrypt..:

Autoclave-encrypt.:
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS IlI

VIGENERE and AUTOCLAVE cryptosystems

NC<OUOWLUI-"XJ13Z0aQ0x0nkED>2X>
>NCOUVAQAWLUI—-X 1352000 xunkF>>2X
X>NCOUAWLUI-X 152000 nk-D2>2
SX>NCOUOAWLUI—OX 1520000k D>
SSX>NCOUVQAWLUI-—X 132000 nk>
OD>ZIX>NCOUVAWLUI—-"X 1320000+
FO>IX>NCOUAWLUOUI-—X 1520000
VMEFD>TX>NCOUQWULUI—X 152000
XOWFD>IX>NICOUAWLUOUTI—oXJ352000C
CXVFD>IX>NCOUVAWLUI—-—X 13200
LOXVFD>ZTX>NCOVOAWLUI—-"2XJI3Z0
CALOXWVFD>ZTX>NICOUVAOWLUVUI—-"X 132
ZO0QAOXWEFD>IX>NICOUAWLUI —2XJ3
SZ0AOXUVED>ITX>NICOUAWLUI —2OX
45Z000XWVEFD>IX>NICOUVAWLUOT —0X
X 13Z00a0@wnkFD>2IX>NICOQUAWLUYUI—>
SX J13Z0AaQXVEFD>ZIX>NCOUOWL OT —
—OX13Z0QaO0XUVEFED>IX>NICOLVAWLOTI
I--XJ3Z0a0XwnkEFD>IX>NICOLUAWL QO
OI--X13Z000XwVEFD>IX>NIOUVAWL
LOUI-OX153Z00a0CunkFD>TX>NIoUAW
WLOUI—-"XJd3Z2000X0kFD>IX>NIOUAO
QWULUI—-"XJd3Z00a0XNEFED>IX>NILOU
VOWLUI—--XJ35Z000XnEFD>IX>NICO
MUAWLOUI-—-XJ3Z000X0EFD>2TX>NC
<COVOWLUI—-OXYX I5Z000XKNFD>ITX>N

igenére table:

\

= - ==>>
< <<zzZ
ITI_TITaao
o o

o >
..Wrym
T2 20
LY 099D
dmmwmw_
5 & 5o
$E53853
y.mgtgt
o =.73.273
¥xas>a>5<«
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COMMENT

Autoclave-key cipher is also called autokey cipher.
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COMMENT

Autoclave-key cipher is also called autokey cipher.

So called running-key cipher uses very long key that
is a passage from a book (for example from Bible).
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BLAISE de VIGENERE (1523-1596)
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HISTORICAL COMMENT

The encryption method that is commonly called as
Vigenere method was actually discovered in 1553
by Giovan Batista Belaso.
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VIGENERE CRYPTOSYSTEM

Vigenére work culminated in his Traicté des Chiffres -
“A treatise on secret writing” in 1586.
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VIGENERE CRYPTOSYSTEM

Vigenére work culminated in his Traicté des Chiffres -
“A treatise on secret writing” in 1586.

VIGENERE cryptosystem was practically not used for
the next 200 years, in spite of its perfection.
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VIGENERE CRYPTOSYSTEM

Vigenére work culminated in his Traicté des Chiffres -
“A treatise on secret writing” in 1586.

VIGENERE cryptosystem was practically not used for
the next 200 years, in spite of its perfection.

It seems that the reason for ignorance of the
VIGENERE cryptosystem was its apparent complexity.
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Task 1 — to find the length of the keyword



CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

Task 1 — to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).
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CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

Task 1 — to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).

Basic observation: If a subword of a plaintext is repeated at a distance that is a
multiple of the length of the keyword, then the corresponding subwords of the
cryptotext have to be the same.
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CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

Task 1 — to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).

Basic observation: If a subword of a plaintext is repeated at a distance that is a
multiple of the length of the keyword, then the corresponding subwords of the
cryptotext have to be the same.

Example, cryptotext:

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

IV054 1. Secret-key cryptosystems basics 63/93



CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

Task 1 — to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).

Basic observation: If a subword of a plaintext is repeated at a distance that is a
multiple of the length of the keyword, then the corresponding subwords of the
cryptotext have to be the same.

Example, cryptotext:
CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring “CHR” occurs in positions 1, 21, 41, 66: expected keyword length is therefore
5.
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CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

Task 1 — to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).

Basic observation: If a subword of a plaintext is repeated at a distance that is a
multiple of the length of the keyword, then the corresponding subwords of the
cryptotext have to be the same.

Example, cryptotext:

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring “CHR” occurs in positions 1, 21, 41, 66: expected keyword length is therefore
5.

Method. Determine the greatest common divisor of the distances between identical
subwords (of length 3 or more) of the cryptotext.
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Charles Babbage (1791-1871)
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Friedman method to determine the length of the keyword:



FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the length of the keyword: Let n; be the
number of occurrences of the i-th letter in the cryptotext.
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FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the length of the keyword: Let n; be the
number of occurrences of the i-th letter in the cryptotext.

Let L be the length of the keyword.
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FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the length of the keyword: Let n; be the
number of occurrences of the i-th letter in the cryptotext.

Let L be the length of the keyword.
Let n be the length of the cryptotext.
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FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the length of the keyword: Let n; be the
number of occurrences of the i-th letter in the cryptotext.

Let L be the length of the keyword.
Let n be the length of the cryptotext.

Then it holds, as shown on next slide:

L 0.027n ,_ i ni(n; — 1)
~ (n—1)/ —0.038n+0.065" 4 n(n—1)

IV054 1. Secret-key cryptosystems basics 65/93



FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the length of the keyword: Let n; be the
number of occurrences of the i-th letter in the cryptotext.

Let L be the length of the keyword.
Let n be the length of the cryptotext.

Then it holds, as shown on next slide:

26

0.027n B Z ni(n; — 1)

L= | =
(n—1)/ —0.038n + 0.065’ n(n—1)

i=1

Once the length of the keyword is found it is easy to determine the
key using the frequency analysis method for monoalphabetic
cryptosystems.
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DERIVATION of the FRIEDMAN METHOD I

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w.
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DERIVATION of the FRIEDMAN METHOD |

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.
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DERIVATION of the FRIEDMAN METHOD I

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.

@ Let p; be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet.
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DERIVATION of the FRIEDMAN METHOD I

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.

@ Let p; be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same is

Z?il Pi2
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DERIVATION of the FRIEDMAN METHOD I

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.

@ Let p; be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same is

Z?il P
For an English text one has
S22 p? =0.065
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DERIVATION of the FRIEDMAN METHQOD |

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.

@ Let p; be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same is

262
i=1 Pi
For an English text one has
S22 p? =0.065
For a randomly chosen text:

SR P =20 5 = 0038
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DERIVATION of the FRIEDMAN METHQOD |

Let n be the length of a cryptotext w and o; be the number of occurrences of the
i-th symbol of the alphabet in w. The probability that if one selects a pair of
symbols from w, then they are the same is

_ B 0(0-1) _ x26 ()
I==5 =X

and it is called the index of coincidence.

@ Let p; be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same is

Z?il Pi2
For an English text one has
S22 p? =0.065
For a randomly chosen text:
Sy P =207 5 = 0.038
In addition it holds:
I =32 P
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DERIVATION of the FRIEDMAN METHOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S S S3 . 5
X1 X2 X3 ceeXL

XL+1 XL+2 XL+3 XL

XoL+1  Xol42  X2l43 ... X3L
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Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S S S3 . 5
X1 X2 X3 ceeXL

XL+1 XL+2 XL+3 XL

XoL+1  Xol42  X2l43 ... X3L

First observation Each column is obtained using the CAESAR cryptosystem.
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DERIVATION of the FRIEDMAN METHQOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S1 S S3 L. S,
X1 X2 X3 . XL

XL+1 XL+2 XL+3 XL

X241 X2[+2  X2L+43 ... X31

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

the same column is 0.065.
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DERIVATION of the FRIEDMAN METHQOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S1 S S3 L. S,
X1 X2 X3 . XL

XL+1 XL+2 XL+3 XL

X241 X2[+2  X2L+43 ... X31

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

the same column is 0.065.
different columns is 0.038.
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DERIVATION of the FRIEDMAN METHQOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S S S3 . 5
X1 X2 X3 ceeXL

XL+1 XL+2 XL+3 XL

XoL+1  Xol42  X2l43 ... X3L

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in
u the same column is 0.065.
u different columns is 0.038.
n(n—L)

The number of pairs of letters in the same column: L. 2(# —1) = 272
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DERIVATION of the FRIEDMAN METHQOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S S S3 . 5
X1 X2 X3 ceeXL

XL+1 XL+2 XL+3 XL

XoL+1  Xol42  X2l43 ... X3L

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

m the same column is 0.065.

m different columns is 0.038.

The number of pairs of letters in the same column: L- - 2(#—1) = %
_ 2 20—
The number of pairs of letters in different columns: L(L2 v, 7= z (ZLL b

The expected number A of pairs of equals letters is A = "(';ZL) -0.065 + % -0.038
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DERIVATION of the FRIEDMAN METHQOD - II.

Assume that a cryptotext is writen into L columns headed by the letters of the keyword

key letters ‘ S1 S S3 L. S,
X1 X2 X3 . XL

XL+1 XL+2 XL+3 XL

X241 X2[+2  X2L+43 ... X31

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

the same column is 0.065.
different columns is 0.038.

. . n(n —L
The number of pairs of letters in the same column: L- - 2(#—1) = %
. T CLL=1) 2 _ n?(L—1)
The number of pairs of letters in different columns: =5~ - ’L’—z = =5
The expected number A of pairs of equals letters is A = n( -0.065 + ~ (L V. 0.038

(n

Since | = % = 13y [0-027n + L(0.038n — 0.065)]
one gets the formula for L from one of the previous slides.
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key
(obtained using Kasiski method) do
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Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key

(obtained using Kasiski method) do
write cryptotext in an array with m columns - row by row;
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key

(obtained using Kasiski method) do
write cryptotext in an array with m columns - row by row;
check if index of coincidence of each column is high;
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key

(obtained using Kasiski method) do
write cryptotext in an array with m columns - row by row;
check if index of coincidence of each column is high;
if yes you have the length of key;
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key

(obtained using Kasiski method) do
write cryptotext in an array with m columns - row by row;
check if index of coincidence of each column is high;
if yes you have the length of key;

to decode columns use decoding method for Caesar
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ONE-TIME PAD CRYPTOSYSTEM - Vernam’s cipher

Binary case:
plaintext w
key k are all binary words of the same length
cryptotext ¢
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ONE-TIME PAD CRYPTOSYSTEM - Vernam’s cipher

Binary case:
plaintext w
key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k
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ONE-TIME PAD CRYPTOSYSTEM - Vernam’s cipher

Binary case:
plaintext w

key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k

Example:
w = 101101011
k = 011011010
¢ = 110110001
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ONE-TIME PAD CRYPTOSYSTEM — Vernam’s cipher

Binary case:
plaintext w

key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k

Example:
w = 101101011
k = 011011010
¢ = 110110001

What happens if the same key is used twice or 3 times for encryption?
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ONE-TIME PAD CRYPTOSYSTEM — Vernam’s cipher

Binary case:
plaintext w

key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k

Example:
w = 101101011
k = 011011010
¢ = 110110001

What happens if the same key is used twice or 3 times for encryption?

If a=widk,o=wdk,czs=ws Dk
then
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ONE-TIME PAD CRYPTOSYSTEM — Vernam’s cipher

Binary case:
plaintext w

key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k

Example:
w = 101101011
k = 011011010
¢ = 110110001

What happens if the same key is used twice or 3 times for encryption?
If a=widk,o=wdk,czs=ws Dk
then

ado=wdw
adbca=wdws
b =wdws
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ONE-TIME PAD CRYPTOSYSTEM — Vernam’s cipher

Binary case:
plaintext w

key k are all binary words of the same length
cryptotext ¢

Encryption: c=wdk

Decryption: w=c®k

Example:
w = 101101011
k = 011011010
¢ = 110110001

What happens if the same key is used twice or 3 times for encryption?
If a=widk,o=wdk,czs=ws Dk
then

ado=wdw
adbca=wdws
b =wdws
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NEVER USE ONE-TIME PAD TWICE WITH THE SAME KEY

The reuse of keys by Soviet Union spies (due to the
maanufacturer’s accidental duplication of one-time-pad

pages) enabled US cryptanalysts to unmask the atomic spy
Klaus Fuchs in 1949,
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PERFECT SECRET-KEY CRYPTOSYSTEMS- |I.

By Shannon a cryptosystem is secure if a posterior
distribution of the plaintext P after we know the
cryptotext C is equal to the a priory distribution of the
plaintext.
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PERFECT SECRET-KEY CRYPTOSYSTEMS- |I.

By Shannon a cryptosystem is secure if a posterior
distribution of the plaintext P after we know the
cryptotext C is equal to the a priory distribution of the
plaintext.

Formally, for all pairs plaintext p and cryptotext ¢ such
that Prob[C = c] # 0 it holds that

Prob[P = p|C = c] = Prob[P = p].
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PERFECT SECRET-KEY CRYPTOSYSTEMS- |I.

By Shannon a cryptosystem is secure if a posterior
distribution of the plaintext P after we know the
cryptotext C is equal to the a priory distribution of the
plaintext.

Formally, for all pairs plaintext p and cryptotext ¢ such
that Prob[C = c] # 0 it holds that

Prob[P = p|C = c] = Prob[P = p].

Example ONE-TIME PAD cryptosystem is perfectly secure
because for any pair c, p there exists a key k such that

c=k®p.
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One-time pad cryptosystem is perfectly secure because

For any cryptotext
c=ce...c



PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
C=CC...Cph
and any plaintext

pP=pip2...pn
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PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
C=CC...Cph

and any plaintext
P =pip2...pPn
there exists a key (and all keys were chosen with the same probability)

k=kiko...kn=pDc

such that
c=pDk
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PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
C=CC...Cph

and any plaintext
P =pip2...pPn
there exists a key (and all keys were chosen with the same probability)

k=kiko...kn=pDc

such that
c=pDk

Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.
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PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
C=CC...Cph

and any plaintext
P =pip2...pPn
there exists a key (and all keys were chosen with the same probability)

k=kiko...kn=pDc

such that
c=pDk

Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.

Yes: ONE-TIME PAD cryptosystem is used in critical applications

It suggests an idea how to construct practically secure cryptosystems.

IV054 1. Secret-key cryptosystems basics 72/93



PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
C=CC...Cph
and any plaintext
p=pip2...pn
there exists a key (and all keys were chosen with the same probability)

k:klkz...kn:p@c

such that
c=pDk

Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.

Yes: ONE-TIME PAD cryptosystem is used in critical applications

It suggests an idea how to construct practically secure cryptosystems.
IDEA: Find a simple way to generate almost perfectly random key shared by both
communicating parties and make them to use this key for one-time pad encoding
and decoding!!!!
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PERFECT SECRECY of ONE-TIME PAD ONCE MORE

For
every cryptotext ¢
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PERFECT SECRECY of ONE-TIME PAD ONCE MORE

For

every cryptotext ¢
every element p of the set of plaintexts has the same
probability

that p was the plaintext the encryption of which provided
c as the cryptotext.
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CURRENT ROLE of SUBSTITUTION SYSTEMS

m Substitution ciphers alone are no longer of use.
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However, from a sufficiently abstract perspective,
modern bit-oriented block ciphers (DES, AES,...) can
be viewed as substitution ciphers on enormously large
binary alphabets.
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CURRENT ROLE of SUBSTITUTION SYSTEMS

Substitution ciphers alone are no longer of use.

They can be used in a combination with other ciphers
as product ciphers.

However, from a sufficiently abstract perspective,
modern bit-oriented block ciphers (DES, AES,...) can
be viewed as substitution ciphers on enormously large
binary alphabets.

Moreover, modern block ciphers often include smaller
substitution tables, called S-boxes.
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2
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how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a7C2d2614f2 I-7/3m1 n804q3r2s4 t8V12X1
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a7czd2e14f2 I-7/3m1 n804q3r2s4 t8V12X1

what stands for: “data aequatione quodcumque fluentes quantitates involvente, fluxiones
invenire et vice versa”
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a762d2e14f2 I-7/3m1 n804q3r2s4 t8V12X1

what stands for: “data aequatione quodcumque fluentes quantitates involvente, fluxiones
invenire et vice versa”

Example
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I—Iwn-—
—4z4H4nz=
mmmI«
—oOounmm
oOm—+4 =20
cuomom
moIm<Z
Orxrdwm<Z
Z—w0n-—m
onmn =2

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a762d2e14f2 I-7/3m1 n804q3r2s4 t8V12X1

what stands for: “data aequatione quodcumque fluentes quantitates involvente, fluxiones
invenire et vice versa”
Example a’cdef3g?i?jkmn®o®prs*t?u’z

Solution: 77
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This will be an example showing that cryptanalysis often require qualified guessing.



KEYWORD CAESAR CRYPTOSYSTEM

This will be an example showing that cryptanalysis often require qualified guessing.
Keyword Caesar cryptosystem is given by choosing an integer 0 < kK < 25 and a
string, called keyword, of length at most 25 with all letters different.
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This will be an example showing that cryptanalysis often require qualified guessing.
Keyword Caesar cryptosystem is given by choosing an integer 0 < kK < 25 and a
string, called keyword, of length at most 25 with all letters different.

The keyword is then written bellow the English alphabet letters, beginning with
the k-symbol, and the remaining letters are written in the alphabetic order and
cyclically after the keyword.
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KEYWORD CAESAR CRYPTOSYSTEM

This will be an example showing that cryptanalysis often require qualified guessing.
Keyword Caesar cryptosystem is given by choosing an integer 0 < kK < 25 and a
string, called keyword, of length at most 25 with all letters different.

The keyword is then written bellow the English alphabet letters, beginning with
the k-symbol, and the remaining letters are written in the alphabetic order and
cyclically after the keyword.

Example: keyword: HOW MANY ELKS, k =8

0 8
ABCDEFGHIJKLMNOPQRSTUVWXYZ
PQRTUVXZHOWMANYELKSBCDFGI J
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KEYWORD CAESAR - Example |

Example Decrypt the following cryptotext encrypted using the KEYWORD CAESAR and

determine the keyword and k

TF

TU

FQN I Q

ZCRTIC

I VD

X >
2+
=
N
VX
o<
oD
CI
a v
T
O X
X
o xx
w o
w =
L
N
[ONU)
L m
> >
<>
X L
[exes

BV ANHC

UP C

uv

MCFECXU

DTUP

UPC FEQXC UPC FUVBC
IUQTIF FUVICF
Uprp C u
Q
\%
C

V R

o X

— X <

Z2=Z=0 >
X ooum-—

A A
F
FF
V E
PQ
S

(CACRY)

N F N
QGC
F C
cC T M
UPQU KVN
RQXTATUK VR UPMVD
UrPC FUVICF

UV E
T

DCCoCUVUD
>—-—QCCooa o
X>=2>Da>A

77/93
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KEYWORD CAESAR - Example Il

Step 1. Make the
frequency counts:

IV054 1. Secret-key cryptosystems basics

Number Number Number
u 32 X 8 W 3
C 31 K 7 Y 2
Q 23 N 7 G 1
F 22 E 6 H 1
\% 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 o 0
| 14 4 5 S 0
A 8 D 4
180=74.69% 54=22.41% 7=2.90%
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KEYWORD CAESAR - Example Il

Step 1. Make the Number Number Number
U 32 X 8 w 3
frequency counts: c 31 K 7 M 2
Q 23 N 7 G 1
F 22 E 6 H 1
\% 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 o 0
| 14 4 5 S 0
A 8 D 4
180=74.69% 54=22.41% 7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.
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KEYWORD CAESAR - Example Il

Step 1. Make the Number Number Number
U 32 X 8 w 3
frequency counts: c 31 K 7 M 2
Q 23 N 7 G 1
F 22 E 6 H 1
\% 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 [e] 0
| 14 z 5 S 0
A 8 D 4
180=74.69% 54=22.41% 7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.They must be A and I. Since
T occurs once and Q three times it is likely that T is | and Q is A.
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KEYWORD CAESAR - Example Il

Step 1. Make the Number Number Number
U 32 X 8 w 3
frequency counts: c 31 K 7 M 2
Q 23 N 7 G 1
F 22 E 6 H 1
\% 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 [e] 0
| 14 4 5 S 0
A 8 D 4
180=74.69% 54=22.41% 7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.They must be A and I. Since
T occurs once and Q three times it is likely that T is | and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only once.
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KEYWORD CAESAR - Example Il

Step 1. Make the Number Number Number
U 32 X 8 w 3
frequency counts: c 3 K 7 vl 2
Q 23 N 7 G 1
F 22 E 6 H 1
\% 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 o 0
| 14 4 5 S 0
A 8 D 4
180=74.69% 54=22.41% 7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.They must be A and I. Since
T occurs once and Q three times it is likely that T is | and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only once.
Hence

UPC is likely to be THE.
Let us now decrypt the remaining letters in the high frequency group: F,V,I

From the words TU, TF = F=S
From UV = V=0
From VI = I=N
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CONTINUATION

So we have: T=I, Q=A, U=T, P=H, C=E, F=S, V=0, I=N and now in

cmX -
<<O

ccuvcccuoucr<
TO T

CUCS<<X<U00O0-
TN TO—-—<X -
NOOC

W)
o
c
O
<

cC—0 -

NOTMTMUCOLO
ZCnNn>r>»cC

TU TF
cCZ WK
K WTY
BV ANHC
vV BC
QAAK

Q FQNIQ
CFFQMK
MV E CMAK
PQBC
VDT I'Y

we have several words with only one unknown letter what leads to another guesses and

the table:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
LVEWPSKMN?Y?RU?HAF?1 TOBCGD

This leads to the keyword CRYPTOGRAPHY GIVES ME FUN and k =4 -
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SHANNON'’s CONTRIBUTIONS to
UNDERSTANDING CIPHERS

m For understanding the quality of secret key ciphers of large importance was Clause
Shannon's paper A Communication Theory of Secrecy systems.
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= Shannon introduced several advance mathematical technique to scientific
cryptography.
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m One of the main contribution of the above Shannon’s paper was the development of
a measure, called unicity distane,
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SHANNON'’s CONTRIBUTIONS to
UNDERSTANDING CIPHERS

m For understanding the quality of secret key ciphers of large importance was Clause
Shannon's paper A Communication Theory of Secrecy systems.

= Shannon introduced several advance mathematical technique to scientific
cryptography.

m Shannon demonstrated several important features of the statical nature of natural
languages that makes solution to many problems of ciphers very straightforward.

m One of the main contribution of the above Shannon’s paper was the development of
a measure, called unicity distane, of the cryptohgraphic strength of the ciphers
when encoding messages of natural languages.
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).
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The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).
m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5.
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).

m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).

m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?

m One can find two fully satisfactory solutions: RIVER, WATER
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).

m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?

m One can find two fully satisfactory solutions: RIVER, WATER and many
nonsatisfactory as KHDOP, SXOOS, but not the unique plaintext.
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).

m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?

m One can find two fully satisfactory solutions: RIVER, WATER and many
nonsatisfactory as KHDOP, SXOOS, but not the unique plaintext.

m Example 2: Let cryptotext FJIKFPO was obtained by encrypting an English text
using a monoalphabetic substitution cipher. Can we find the unique plaintext?
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely the key that was used).

m Example 1: Let WNAIW be the cryptotext obtained by encoding an English word
by Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?

m One can find two fully satisfactory solutions: RIVER, WATER and many
nonsatisfactory as KHDOP, SXOOS, but not the unique plaintext.

m Example 2: Let cryptotext FJIKFPO was obtained by encrypting an English text
using a monoalphabetic substitution cipher. Can we find the unique plaintext?

m Possible plaintexts are thatis, ofyour, season, oxford, thatof,.... but there is no
way to determine the plaintext uniquely.
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UNICITY DISTANCE - BASIC RESULT

The expected unicity distance Uc k. of a cipher C and a key set K for a plaintext

language L can be shown to be:
Ve, - He
CKL= P,
where H is the entropy of the key space (e.g 128 for
plaintext redundancy in bits per character.

2128 equiprobably keys), Dy is the
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UNICITY DISTANCE - BASIC RESULT

The expected unicity distance Uc k. of a cipher C and a key set K for a plaintext

language L can be shown to be:
Uc ey = He
CKL= P,
where H is the entropy of the key space (e.g 128 for
plaintext redundancy in bits per character.

2128 equiprobably keys), Dy is the

Redundancy: Each character in English can convey Ig(26) = 4.7 bits of information.

However, the average amount of actual information carried per character in a meaningful
English text is only about 1.5 bits per character.
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UNICITY DISTANCE - BASIC RESULT

The expected unicity distance Uc k. of a cipher C and a key set K for a plaintext

language L can be shown to be:
Uc ey = He
CKL= P,
where H is the entropy of the key space (e.g 128 for
plaintext redundancy in bits per character.

2128 equiprobably keys), Dy is the

Redundancy: Each character in English can convey Ig(26) = 4.7 bits of information.

However, the average amount of actual information carried per character in a meaningful
English text is only about 1.5 bits per character.

So the plaintext redundancy is 4.7 — 1.5 = 3.2.
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EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! az 2884,
Assuming that all keys (permutations) are are equally probable we have
Hk = 1g(26!) = 88.4 bits.
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EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! ~ 284,
Assuming that all keys (permutations) are are equally probable we have
Hk = 1g(26!) = 88.4 bits.

Since for English text D; = 3.2, we have for the unicity distance

88.4
U=—=28
3.2
Conclusion Given at least 28 characters of the cryptotext it should be

possible, at least theoretically, to find unique plaintext (and key).
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Assuming that all keys (permutations) are are equally probable we have
Hk = 1g(26!) = 88.4 bits.

Since for English text D; = 3.2, we have for the unicity distance

88.4
U=——=28
3.2
Conclusion Given at least 28 characters of the cryptotext it should be
possible, at least theoretically, to find unique plaintext (and key).

Other ciphers: = Atbash cipher: Number of keys: 1; unicity distance: O characters

IV054 1. Secret-key cryptosystems basics 83/93



EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! ~ 284,
Assuming that all keys (permutations) are are equally probable we have
Hk = 1g(26!) = 88.4 bits.

Since for English text D; = 3.2, we have for the unicity distance

88.4
U=——=28
3.2
Conclusion Given at least 28 characters of the cryptotext it should be
possible, at least theoretically, to find unique plaintext (and key).
Other ciphers: = Atbash cipher: Number of keys: 1; unicity distance: O characters
u Ceaser cipher: Number of keys: 25; unicity distance: 2 characters
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EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! ~ 284,
Assuming that all keys (permutations) are are equally probable we have
Hk = 1g(26!) = 88.4 bits.

Since for English text D; = 3.2, we have for the unicity distance

88.4
U=—=28
3.2
Conclusion Given at least 28 characters of the cryptotext it should be

possible, at least theoretically, to find unique plaintext (and key).

Other ciphers: = Atbash cipher: Number of keys: 1; unicity distance: O characters
u Ceaser cipher: Number of keys: 25; unicity distance: 2 characters
u Affine cipher: Number of keys: 311; unicity distance: 3
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EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! ~ 284,
Assuming that all keys (permutations) are are equally probable we have

Hx = lg(26!) = 88.4 bits.

Since for English text D; = 3.2, we have for the unicity distance

88.4
U= 32 = 28

Conclusion Given at least 28 characters of the cryptotext it should be
possible, at least theoretically, to find unique plaintext (and key).

m Atbash cipher: Number of keys: 1; unicity distance: 0 characters

u Ceaser cipher: Number of keys: 25; unicity distance: 2 characters

u Affine cipher: Number of keys: 311; unicity distance: 3

u Playfair cipher: Number of keys: 25!; unicity distance: 27

Other ciphers:

IV054 1. Secret-key cryptosystems basics 83/93






m Observe that Unicity distance is only a theoretical minimum.



COMMENTS

Observe that Unicity distance is only a theoretical minimum.

In general one may need much more characters to reliably break a cipher - say 100
for simple monoalphabetic substitution cipher.
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COMMENTS

Observe that Unicity distance is only a theoretical minimum.

In general one may need much more characters to reliably break a cipher - say 100
for simple monoalphabetic substitution cipher.

Unicity distance is a useful theoretical measure, but it does not say much about
security of a block cipher when attacked by an adversary with real-world (limited)
resources.
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for simple monoalphabetic substitution cipher.

Unicity distance is a useful theoretical measure, but it does not say much about
security of a block cipher when attacked by an adversary with real-world (limited)
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Unicity distance is not a measure of how much cryptotext is needed for
ctyptanalysis,
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COMMENTS

Observe that Unicity distance is only a theoretical minimum.

In general one may need much more characters to reliably break a cipher - say 100
for simple monoalphabetic substitution cipher.

Unicity distance is a useful theoretical measure, but it does not say much about
security of a block cipher when attacked by an adversary with real-world (limited)
resources.

Unicity distance is not a measure of how much cryptotext is needed for
ctyptanalysis, but how much cryptotext is required for there to be only one
reasonable solution for cryptanalysis.
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Redundancy of natural languages is of the key importance for cryptanalysis.



UNICITY DISTANCE of CRYPTOSYSTEMS - INFORMALLY

Redundancy of natural languages is of the key importance for cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a character would
carry Ig 26 = 4.7 bits of Information.
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UNICITY DISTANCE of CRYPTOSYSTEMS - INFORMALLY

Redundancy of natural languages is of the key importance for cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a character would
carry Ig 26 = 4.7 bits of Information.

The estimated average amount of information carried per letter in a meaningful English
text is 1.5 bits.
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UNICITY DISTANCE of CRYPTOSYSTEMS - INFORMALLY

Redundancy of natural languages is of the key importance for cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a character would
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Would all letters of a 26-symbol alphabet have the same probability, a character would
carry Ig 26 = 4.7 bits of Information.

The estimated average amount of information carried per letter in a meaningful English
text is 1.5 bits.

The unicity distance of a cryptosystem is the minimum length of the cryptotext required
by a computationally unlimited adversary to recover the unique encryption key.

Empirical evidence indicates that if a simple substitution cryptosystem is applied to a a

meaningful English message, then about 25 cryptotext characters are enough for an
experienced cryptanalyst to recover the plaintext.
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If K is chosen random, then H(K) = |K
randomly chosen letters in English,
H(K) = |K| = Ig(26) = 4.7 bits.

H(M) has been empirically found to be 2.9 bits for
English.

. so for

Therefore the unicity distance for English is 1 when
M| = (4.7/1.8)|K|
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IRI BRATER, GENF



ANAGRAMS - EXAMPLES
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IRI BRATER, GENF Brieftragerin
FRANK PEKL, REGEN

PEER ASSSTIL, MELK

INGO DILMR, PEINE

EMIL REST, GERA

KARL SORDORT, PEINE
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German:

English:

IRI BRATER, GENF

Brieftragerin

FRANK PEKL, REGEN
PEER ASSSTIL, MELK

INGO DILMR, PEINE
EMIL REST, GERA

KARL SORDORT, PEINE

algorithms
antagonist
compressed
coordinate
creativity
deductions
descriptor
impression
introduces
procedures

logarithms
stagnation
decompress
decoration
reactivity
discounted
predictors
permission
reductions
reproduces
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Krankenpfleger
Kapellmeister
Diplomengineer

Lagermeister
Personaldirector
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In this set-up communicating parties, say Alice and Bob, shared some secret
information, called the codebook.

Such a codebook can be a simple letter-to-letter substitution or a more complex
word-by-word substitution.

Communication: A sender encrypts her message using secret codebook and the
receiver uses the same codebook to decrypt the encrypted message.

An eavesdropper cannot, in theory, decrypt the message because she does not posses
the secret codebook.

A more modern term for "codebook” is the "key".

Codebooks were intensively used during the first World War. Some had up 100 000
encoding rules. The fact that allies were able to obtained huge codebooks from
several destroyed war ships helped Allies much.

Till recently it was assumed that secret codebooks are necessary for secret
communication.
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For several centuries so called " Nomenclators” were used for encryption an
decryption.

Nomenclators were in use from the end of 14th century for 450 years.

Nomenclators combined a substitution cryptosystem (in which symbols were replaced
by numbers) with codebook ciphers in which words were replaced by numbers.

At the beginning codebooks had codes only for names of people (therefore such a
name - nomenclators), later codes were used also for names of places and so on.

Some nomenclators had huge codebooks, up to 50 000 entries.

Famous was the nomenclator designed by very famous French cryptologist Rosignol,
for Ludvig XIV, that was not broken for several hundred of years.

It was the design of the telegraph and the need for field ciphers to be used in
combat that ended the massive use of nomenclators and started a new history of
cryptography dominated by polyalphabetic substitution cryptosystems.
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