
Part I

Linear codes



WISDOM

When you have eliminated impossible,

whatever remains,

however impossible

must be the TRUTH
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EXERCISES

For or solving the first set of exerises you have 3 weeks,

Seccond set of exercises is allready posted and solutions
should be delivered not latr than October 29.

All next sets of Exercises will be put on my web page
and into IS, always at 18.00 on Thurdays after my
lecture and solutions should be delvered in 2 weeks to
you.
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CHAPTER 2: LINEAR CODES

WHY LINEAR CODES?

Most of the important codes are special types of so-called linear codes.

Linear codes are of very large importance because they have

very concise description,
very nice properties,
very easy encoding

and, in general,

an easy to describe decoding.

Many practically important linear codes have also an efficient decoding.
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MATHEMATICS BEHIND - GALOIS FIELDS GF (q) – with q a
prime.

It is the set {0, 1, . . . , q − 1} with two operations

addition modulo q — + mod q

or +q or very simply +
multiplication modulo q — × mod q or ×q or very simply × or ·

Example — GF (3)

2 +3 2 = 1 2×3 2 = 1

Example — GF (7)

5 +7 5 = 3 5×7 5 = 4

Example — GF (11)

7 +11 8 = 4 7×11 8 = 1

Comment. To design linear codes we will use Galois fields GF (q) with q being a prime.
One can also use Galois fields GF (qk), k > 1, but their structure and operations are
defined in a more complex way, see the Appendix.
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REPETITIONS - I.

Given an alphabet Σ, any set C ⊂ Σ∗ is called a code and
its elements are called codewords.

By a coding/encoding of elements (messages) from a set
M by codewords from a code C we understand any
one-to-one mapping (encoder) e such that

e : M → C

.
Encoding (code) is called systematic if for any
m ∈ M ⊂ Σ∗

e(m) = mcm for some cm ∈ Σ∗
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SYSTEMATIC CODES I

A code is called systematic if its encoder transmit a message (an input dataword) w into
a codeword of the form wcw , or (w , cw ).That is if the codeword for the message w
consists of two parts: the message w itself (called also information part) and a
redundancy part cw

Nowadays most of the stream codes that are used in practice are systematic.

An example of a systematic encoder, that produces so called extended Hamming (8, 4, 1)
code is in the following figure.
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REPETITIONS - II.

1. A code C is said to be an (n,M, d) code, if

n is the length of codewords in C

M is the number of codewords in C

d is the minimal distance of C

2. A good code for encoding a set of messages should have:

Small n.

Large M;

Large d ;

Encoding should be fast; decoding reasonably efficient

Encodings of similar messages should be very different.

Error corrections potential should be large.
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FRAMEWORK

The goal of coding theory is to develop for a given set of
messgaes M ,

for example for the set of names of students/participants
of this crypto lecture,

a code - a set of codewords,

for example UČOs

and to send through a noisy chanel UČO of students
instead of their names,
in such a way that what will be received can be used to
determine name that had to be transmitted

IV054 1. Linear codes 9/61



FRAMEWORK

The goal of coding theory is to develop for a given set of
messgaes M ,

for example for the set of names of students/participants
of this crypto lecture,

a code - a set of codewords,

for example UČOs
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AN IDEA - I.

Let us assume that UČO of each student can be seen as its encoding.

Is it possible to give to each student in this class an UČO in such a way that the sum of
UČOs of any two student of this class will be again an UČO of some student of this
class?

The answer is NO and the proof of that is almost trivial.

Is it possible to give to each student UČO in such a way that bit-wise sums of binary
representations of UČOs of any two student of this class will be again binary
representations of UČOs of some students of this class?

In general, does it has a sense to look for such codes that some important sum of any
two codewords is again a codeword?
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class?

The answer is NO and the proof of that is almost trivial.
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UČOs of any two student of this class will be again an UČO of some student of this
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Is it possible to give to each student UČO in such a way that bit-wise sums of binary
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LINEAR CODES - I.

Linear codes are special sets of words of a fixed length n over an alphabet
Σq = {0, .., q − 1}, where q is a (power of) prime.

In the following two chapters F n
q (or V (n, q)) will be considered as the vector spaces of

all n-tuples over the Galois field GF (q) (with the elements {0, .., q − 1} and with
arithmetical operations modulo q.)

Definition A subset C ⊆ F n
q is a linear code if

1 u + v ∈ C for all u, v ∈ C
(if u = (u1, u2, . . . , un), v = (v1, v2. . . . , vn) then
u + v = (u1 +q v1, u2 +q v2 . . . , un +q vn))

2 au ∈ C for all u ∈ C , and all a ∈ GF (q)
if u = (u1, u2, . . . , un),, then au = (au1, au2, . . . , aun))

Lemma A subset C ⊆ F n
q is a linear code iff one of the following conditions is satisfied

1 C is a subspace of F n
q .

2 Sum of any two codewords from C is in C (for the case q = 2)

If C is a k-dimensional subspace of F n
q , then C is called [n, k]-code. It has qk codewords.

If the minimal distance of C is d , then it is said to be the [n, k, d ] code.
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LINEAR CODES - II.

If C is a linear [n, k] code, then it has several bases.

A base B of C is such a sets of k codewods of C that
each codeword of C is a linear combination of the
codewords from the base B.

Each base B of C is usually reperesented by a (k , n)
matrix, GB, so called a generator matrix of C , the i -th
row of which is the i -th codeword of B.
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EXERCISE

Which of the following binary codes are linear?
C1 = {00, 01, 10, 11} – YES
C2 = {000, 011, 101, 110} – YES
C3 = {00000, 01101, 10110, 11011} – YES
C5 = {101, 111, 011} – NO
C6 = {000, 001, 010, 011} – YES
C7 = {0000, 1001, 0110, 1110} – NO

How to create a linear code?

Notation: If S is a set of vectors of a vector space, then let 〈S〉 be the set of all linear
combinations of vectors from S .

Theorem For any subset S of a linear space, 〈S〉 is a linear space that consists of the
following words:

the zero word,

all words in S,

all sums of two or more words in S.

Example S = {0100, 0011, 1100}
〈S〉 = {0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111}.
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BASIC PROPERTIES of LINEAR CODES I

Notation: Let w(x) (weight of x) denote the number of non-zero entries of x .

Lemma If x , y ∈ F n
q , then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.
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w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a non-linear code with m codewords, then in order to determine h(C) one has
to make in general

(
m
2

)
= Θ(m2) comparisons in the worst case.

If C is a linear code with m codewords, then in order to determine h(C),m − 1
comparisons are enough.
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BASIC PROPERTIES of LINEAR CODES II

If C is a linear [n, k]-code, then it has many basis Γ consisting of k codewords and such
that each codeword of C is a linear combination of the codewords from any Γ.

Example

Code
C4 = {0000000, 1111111, 1000101, 1100010,

0110001, 1011000, 0101100, 0010110,
0001011, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001, 1110100}

has, as one of its bases, the set
{1111111, 1000101, 1100010, 0110001}.

How many different bases has a linear code?

Theorem A binary linear code of dimension k has

1
k!

∏k−1
i=0 (2k − 2i )

bases.
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EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords - from one of its basis.

IV054 1. Linear codes 16/61



EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords - from one of its basis.

IV054 1. Linear codes 16/61



EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords - from one of its basis.

IV054 1. Linear codes 16/61



EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords

- from one of its basis.

IV054 1. Linear codes 16/61



EXAMPLE

If a code C has 2200 codewords, then there is no way to
write down and/or to store all its codewords.

WHY

However, In case we have [2200, 200] linear code C , then to
specify/store fully C we need only to store

200
codewords - from one of its basis.

IV054 1. Linear codes 16/61



ADVANTAGES and DISADVANTAGES of LINEAR CODES I.

Advantages - are big.

1 Minimal distance h(C) is easy to compute if C is a linear code.

2 Linear codes have simple specifications.

To specify a non-linear code usually all codewords have to be listed.

To specify a linear [n, k]-code it is enough to list k codewords (of a basis).

Definition A k × n matrix whose rows form a basis of a linear [n, k]-code (subspace)
C is said to be the generator matrix of C .

Example One of the generator matrices of the binary code

C2 =


0 0 0
0 1 1
1 0 1
1 1 0

 is the matrix

(
0 1 1
1 0 1

)

and one of the generator matrices of the code

C4 is


1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1


3 There are simple encoding/decoding procedures for linear codes.
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ADANTAGES and DISADVANTAGES of LINEAR CODES II.

Disadvantages of linear codes are small:

1 Linear q-codes are not defined unless q is a power of a
prime.

2 The restriction to linear codes might be a restriction to
weaker codes than sometimes desired.
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EQUIVALENCE of LINEAR CODES I

Definition Two linear codes on GF (q) are called equivalent if one can be obtained from
another by the following operations:

(a) permutation of the words or positions of the code;

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two k × n matrices generate equivalent linear [n, k]-codes over F n
q if one

matrix can be obtained from the other by a sequence of the following operations:

(a) permutation of the rows

(b) multiplication of a row by a non-zero scalar

(c) addition of one row to another

(d) permutation of columns

(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert
a generator matrix to one of an equivalent code.
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EQUIVALENCE of LINEAR CODES II

Theorem Let G be a generator matrix of an [n, k]-code. Rows of G are then linearly
independent .By operations (a) - (e) the matrix G can be transformed into the form:
[Ik |A] where Ik is the k × k identity matrix, and A is a k × (n − k) matrix.

Example 
1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
1 1 1 0 0 0 1

→


1 1 1 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 1 0
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EQUIVALENCE of LINEAR CODES II
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ENCODING with LINEAR CODES

is a vector × matrix multiplication

Let C be a linear [n, k]-code over F n
q with a generator k × n matrix G .

Theorem C has qk codewords.

Proof Theorem follows from the fact that each codeword of C can be expressed uniquely
as a linear combination of the basis codewords/vectors.

Corollary The code C can be used to encode uniquely qk messages.
(Let us identify messages with elements of F k

q .)

Encoding of a message u = (u1, . . . , uk) using the generator matrix G :

u · G =
∑k

i=1 ui ri where r1, . . . , rk are rows of G .

Example Let C be a [7, 4]-code with the generator matrix

G=


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


A message (u1, u2, u3, u4) is encoded as:???
For example:
0 0 0 0 is encoded as? ..... 0000000
1 0 0 0 is encoded as? ..... 1000101
1 1 1 0 is encoded as? ..... 1110100
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is a vector × matrix multiplication

Let C be a linear [n, k]-code over F n
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is a vector × matrix multiplication

Let C be a linear [n, k]-code over F n
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q .)
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i=1 ui ri where r1, . . . , rk are rows of G .

Example Let C be a [7, 4]-code with the generator matrix

G=
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0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1
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A message (u1, u2, u3, u4) is encoded as:???
For example:
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is a vector × matrix multiplication
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UNIQUENESS of ENCODING

with linear codes

Theorem If G = {wi}ki=1 is a generator matrix of a binary linear code C of length n and
dimension k, then the set of codewords/vectors

v = uG

ranges over all 2k codewords of C as u ranges over all 2k messages of length k.
Therefore,

C = {uG | u ∈ {0, 1}k}

Moreover,

u1G = u2G

if and only if

u1 = u2.

Proof If u1G–u2G = 0, then

0 =
∑k

i=1 u1,iwi −
∑k

i=1 u2,iwi =
∑k

i=1(u1,i − u2,i )wi

And, therefore, since wi are linearly independent, u1 = u2.
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LINEAR CODES as SYSTEMATIC CODES

Since to each linear [n, k]-code C there is a generator
matrix of the form G = [Ik |A] an encoding of a dataword
w with G has the form

wG = w · wA

Each linear code is therefore equivalent to a systematic
code.
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DECODING of LINEAR CODES - BASICS

Decoding problem: If a codeword: x = x1 . . . xn is sent

and the word y = y1 . . . yn is received,

then e = y–x = e1 . . . en is said to be the error vector.

The decoder must therefore decide, given y ,

which x was sent,

or, equivalently, which error e occurred.
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DECODING of LINEAR CODES - METHOD of COSETS

Decoding problem: If a codeword: x = x1 . . . xn is sent and the word y = y1 . . . yn is
received, then e = y–x = e1 . . . en is said to be the error vector. The decoder must
decide, from y , which x was sent, or, equivalently, which error e occurred.

To describe so called Decoding cosets method the concept of cosets has to be
introduced:

Definition Suppose C is an [n, k]-code over F n
q and u ∈ F n

q . Then the set

u + C = {u + x | x ∈ C}
is called a coset (u-coset) of C in F n

q .

Example Let C = {0000, 1011, 0101, 1110}
Cosets:
0000 + C = C ,
1000 + C = {1000, 0011, 1101, 0110},
0100 + C = {0100, 1111, 0001, 1010} = 0001 + C ,
0010 + C = {0010, 1001, 0111, 1100}.

Are there some other cosets in this case?
Theorem Suppose C is a linear [n, k]-code over F n

q . Then

(a) every vector of F n
q is in some coset of C ,

(b) every coset contains exactly qk elements,
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NEAREST NEIGHBOUR DECODING SCHEME

Each vector having minimum weight in a coset is called a coset leader.

1. Design a (Slepian) standard array for an [n, k]-code C - that is a qn−k × qk array of
the form:

codewords coset leader codeword 2 . . . codeword 2k

coset leader + . . . +
. . . + + +

coset leader + . . . +
coset leader

where codewords of C are in the first row and elements of each coset are in a special
row, with some of the cosets leaders in the frst column.
Example

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

A received word y is decoded as the codeword in the first row of the column in which y
occurs.
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A NATURAL QUESTION

How good are particular linear codes?
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PROBABILITY of GOOD ERROR CORRECTION

What is the probability that a received word will be decoded correctly -that is as the
codeword that was sent (for binary linear codes and binary symmetric channel)?

Probability of an error in the case of a given error vector of weight i is

pi (1− p)n−i .

Therefore, it holds.

Theorem Let C be a binary [n, k]-code, and for i = 0, 1, . . . , n let αi be the number of
coset leaders of weight i . The probability Pcorr (C) that a received vector, when decoded
by means of a standard array, is the codeword which was sent is given by

Pcorr (C) =
∑n

i=0 αip
i (1− p)n−i .

Example For the [4, 2]-code of the last example

α0 = 1, α1 = 3, α2 = α3 = α4 = 0.

Hence

Pcorr (C) = (1− p)4 + 3p(1− p)3 = (1− p)3(1 + 2p).

If p = 0.01, then Pcorr = 0.9897
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PROBABILITY of GOOD ERROR DETECTION

Suppose a binary linear code is used only for error detection.

The decoder will fail to detect errors which have occurred if the received word y is a
codeword different from the codeword x which was sent, i. e. if the error vector
e = y − x is itself a non-zero codeword.

The probability Pundetect(C) that an incorrect codeword is received is given by the
following result.

Theorem Let C be a binary [n, k]-code and let Ai denote the number of codewords of C
of weight i . Then, if C is used for error detection, the probability of an incorrect message
being received is

Pundetect(C) =
∑n

i=0 Aip
i (1− p)n−i .

Example In the case of the [4, 2] code from the last example

A2 = 1 A3 = 2
Pundetect(C) = p2(1− p)2 + 2p3(1− p) = p2 − p4.

For p = 0.01

Pundetect(C) = 0.00009999.
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ALTERNATIVE APPROACH to DECODING

SYNDROMES APPROACH to DECODING
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DUAL CODES

Inner product of two vectors (words)

u = u1 . . . un, v = v1 . . . vn

in F n
q is an element of GF (q) defined (using modulo q operations) by

u · v = u1v1 + . . .+ unvn.

Example In F 4
2 : 1001 · 1001 = 0

In F 4
3 : 2001 · 1210 = 2

1212 · 2121 = 2

If u · v = 0 then words (vectors) u and v are called orthogonal words.

Given a linear [n, k]-code C , then the dual code of C , denoted by C⊥, is defined by

C⊥ = {v ∈ F n
q | v · u = 0 for all u ∈ C}.

Lemma Suppose C is an [n, k]-code having a generator matrix G . Then for v ∈ F n
q

v ∈ C⊥ ⇔ vG> = 0,

where G> denotes the transpose of the matrix G .
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PARITY CHECK MATRICES

Each [n, n − k] generator matrix H of an dual

code C⊥ of an [n, k] liner code C is said to be a

parity check matrix for the code C ,
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PARITE CHECKS versus ORTHOGONALITY

For understanding of the role the parity checks play for linear codes, it is important to
understand the relation between orthogonality and general parity checks.

If binary words x and y are orthogonal, then the word y
has even number of ones (1’s) in the positions determined
by ones (1’s) in the word x .

This implies that if words x and y are orthogonal, then x is a parity check word for y and
y is a parity check word for x .

Exercise: Let the word

100001

be orthogonal to all words of a set S of binary words of length 6.What can we say about
the words in S?

Answer: All words of S have at the end the same symbol as at the beginning.
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EXAMPLE

For the [n, 1]-repetition (binary) code C , with the generator matrix

G = (1, 1, . . . , 1)

the dual code C⊥ is [n, n − 1]-code with the generator matrix G⊥, described by

G⊥ =


1 1 0 0 . . . 0
1 0 1 0 . . . 0

. . .
1 0 0 0 . . . 1


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PARITY CHECK MATRICES I

Example If

C5 =


0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

,

then C⊥5 = C5.

If

C6 =


0 0 0
1 1 0
0 1 1
1 0 1

, then C⊥6 =

(
0 0 0
1 1 1

)
.

Theorem Suppose C is a linear [n, k]-code over F n
q , then the dual code C⊥ is a linear

[n, n − k]-code.

Definition A parity-check matrix H for an [n, k]-code C is any generator matrix of C⊥.
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PARITY CHECK MATRICES

Definition A parity-check matrix H for an [n, k]-code C is any generator matrix of C⊥.

Theorem If H is a parity-check matrix of C , then

C = {x ∈ F n
q | xH> = 0},

and therefore any linear code is completely specified by a parity-check matrix.

Example Parity-check matrix for

C5 =


0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

 is

(
1 1 0 0
0 0 1 1

)

and for

C6 is
(
1 1 1

)
The rows of a parity check matrix are parity checks on codewords. They actually say that
certain linear combinations of elements of every codeword are zeros modulo 2.
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SYNDROME DECODING

Theorem If G = [Ik |A] is the standard form generator matrix of an [n, k]-code C , then a
parity check matrix for C is H = [A>|In−k ].
Example

Generator matrix G =

∣∣∣∣∣∣∣∣I4
∣∣∣∣∣∣∣∣
1 0 1
1 1 1
1 1 0
0 1 1

∣∣∣∣∣∣∣∣ ⇒ parity check m. H =

∣∣∣∣∣∣
1 1 1 0
0 1 1 1
1 1 0 1

∣∣∣∣∣∣ I3
∣∣∣∣∣∣

Definition Suppose H is a parity-check matrix of an [n, k]-code C . Then for any y ∈ F n
q

the following word is called the syndrome of y :

S(y) = yH>.

Lemma Two words have the same syndrome iff they are in the same coset.
Syndrom decoding Assume that a standard array of an [n, k] code C is given and, in
addition, let in the last n − k columns the syndrome for each coset be given.

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣∣
1 0 1 1
0 0 1 1
1 1 1 1
1 0 0 1

∣∣∣∣∣∣∣∣
0 1 0 1
1 1 0 1
0 0 0 1
0 1 1 1

∣∣∣∣∣∣∣∣
1 1 1 0
0 1 1 0
1 0 1 0
1 1 0 0

∣∣∣∣∣∣∣∣
0 0
1 1
0 1
1 0

When a word y is received, then compute S(y) = yH>, then locate S(y) in the
“syndrome column”. Afterwords locate y in the same row and decode y as the codeword
in the same column and in the first row.
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KEY OBSERVATION for SYNDROM COMPUTATION

When preparing a “syndrome decoding” it is sufcient to store only two columns: one for
coset leaders and one for syndromes.

Example

coset leaders syndromes
l(z) z

0000 00
1000 11
0100 01
0010 10

Decoding procedure

Step 1 Given y compute S(y).

Step 2 Locate z = S(y) in the syndrome column.

Step 3 Decode y as y − l(z).

Example If y = 1111, then S(y) = 01 and the above decoding procedure produces

1111–0100 = 1011.

Syndrom decoding is much faster than searching for a nearest codeword to a received
word. However, for large codes it is still too inefficient to be practical.

In general, the problem of finding the nearest neighbour in a linear code is NP-complete.
Fortunately, there are important linear codes with really efficient decoding.
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HAMMING CODES

An important family of simple linear codes that are easy to encode and decode, are
so-called Hamming codes.

Definition Let r be an integer and H be an r × (2r − 1) matrix columns of which are all
non-zero distinct words from F r

2 . The code having H as its parity-check matrix is called
binary Hamming code and denoted by Ham(r , 2).

Example

Ham(2, 2) : H =

[
1 1 0
1 0 1

]
⇒ G =

[
1 1 1

]

Ham(3, 2) = H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

⇒ G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


Theorem Hamming code Ham(r , 2)

is [2r − 1, 2r–1− r ]-code,

has minimum distance 3,

and is a perfect code.

Properties of binary Hamming codes Coset leaders are precisely words of weight ≤ 1.
The syndrome of the word 0 . . . 010 . . . 0 with 1 in j-th position and 0 otherwise is the
transpose of the j-th column of H.
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HAMMING CODES - DECODING

Decoding algorithm for the case the columns of H are
arranged in the order of increasing binary numbers the
columns represent.

Step 1 Given y compute syndrome S(y) = yH>.

Step 2 If S(y) = 0, then y is assumed to be the
codeword sent.

Step 3 If S(y) 6= 0, then assuming a single error, S(y)
gives the binary position of the error.
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EXAMPLE

For the Hamming code given by the parity-check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


and the received word

y = 1101011,

we get syndrome

S(y) = 110

and therefore the error is in the sixth position.

Hamming code was discovered by Hamming (1950), Golay (1950).

It was conjectured for some time that Hamming codes and two so called Golay codes are
the only non-trivial perfect codes.

Comment

Hamming codes were originally used to deal with errors in long-distance telephon calls.
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ADVANTAGES of HAMMING CODES

Let a binary symmetric channel be used which with probability q correctly transfers a
binary symbol.

If a 4-bit message is transmitted through such a channel, then correct transmission of the
message occurs with probability q4.

If Hamming (7, 4, 3) code is used to transmit a 4-bit message, then probability of correct
decoding is

q7 + 7(1− q)q6.

In case q = 0.9 the probability of correct transmission is 0.6561 in the case no error
correction is used and 0.8503 in the case Hamming code is used - an essential
improvement.
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SOME BASIC IMPORTANT CODES

Hamming (7, 4, 3)-code. It has 16 codewords of length 7. It can be used to send
27 = 128 messages and can be used to correct 1 error.

Golay (23, 12, 7)-code. It has 4 096 codewords. It can be used to transmit 8 388 608
messages and can correct 3 errors.

Quadratic residue (47, 24, 11)-code. It has

16 777 216 codewords

and can be used to transmit

140 737 488 355 238 messages

and correct 5 errors.

Hamming and Golay codes are the only non-trivial perfect codes. They are also
special cases of quadratic residue codes.
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GOLAY CODES - DESCRIPTION

Golay codes G24 and G23 were used by Voyager I and Voyager II to transmit color pictures
of Jupiter and Saturn. Generation matrix for G24 has the following very simple form:

G =



1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0



G24 is (24, 12, 8)-code and the weights of all codewords are multiples of 4. G23 is obtained
from G24 by deleting last symbols of each codeword of G24. G23 is (23, 12, 7)-code.
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0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0



G24 is (24, 12, 8)-code and the weights of all codewords are multiples of 4. G23 is obtained
from G24 by deleting last symbols of each codeword of G24. G23 is (23, 12, 7)-code.
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GOLAY CODES - CONSTRUCTION

Matrix G for Golay code G24 has actually a simple and
regular construction.

The first 12 columns are formed by a unitary matrix I12,
next column has all 1’s.

Rows of the last 11 columns are cyclic permutations of the
first row which has 1 at those positions that are squares
modulo 11, that is

0, 1, 3, 4, 5, 9.
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TWO SIMPLY DEFINED CODES

Maximum length code is [2m − 1,m, 2m−1]-code with the generator matrix whose
columns are all binary representations of numbers from 1 to 2m − 1.

Hadamard code HC2n , n = 1, 2, ... is the code with generator matrices defined
recursively as

M2 =

[
0 0
0 1

]
and

M2n =

[
M2n−1 M2n−1

M2n−1
¯M2n−1n

]
where M̄n is the complementary matrix to Mn (with 0 and 1 interchanged).
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EXAMPLE

Hadamard code

M4 =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


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REED-MULLER CODES

This is an infinite, recursively defined, family of so called RMr,m binary linear
[2m, k, 2m−r ]-codes with

k = 1 +

(
m

1

)
+ . . .+

(
m

r

)
.

The generator matrix Gr,m for RMr,m code has the form

Gr,m =

[
Gr−1,m

Qr

]
where Qr is a matrix with dimension

(
m
r

)
× 2m where

G0,m is a row vector of the length 2m with all elements 1.

G1,m is obtained from G0,m by adding columns that are binary representations of the
column numbers.

Matrix Qr is obtained by considering all combinations of r rows of G1,m and by
obtaining products of these rows/vectors, component by component. The result of
each of such a multiplication constitues a row of Qr .
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EXAMPLE

G1,4 =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


and

Q2 =


0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1



Codes R(m − r − 1,m) and R(r ,m) are dual codes.
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REED-MULLER CODES II

Reed-Muller codes form a family of codes defined recursively with interesting properties
and easy decoding.

If D1 is a binary [n, k1, d1]-code and D2 is a binary [n, k2, d2]-code, a binary code C of
length 2n is defined as follows C = {u | u + v ,where u ∈ D1, v ∈ D2}.

Lemma C is [2n, k1 + k2,min{2d1, d2}]-code and if Gi is a generator matrix for Di ,

i = 1, 2, then

[
G1 G1

0 G2

]
is a generator matrix for C .

Reed-Muller codes R(r ,m), with 0 ≤ r ≤ m are binary codes of length n = 2m.R(m,m)
is the whole set of words of length n,R(0,m) is the repetition code.

If 0 < r < m, then R(r + 1,m + 1) is obtained from codes R(r + 1,m) and R(r ,m) by
the above construction.

Theorem The dimension of R(r ,m) equals 1 +
(
m
1

)
+ . . .+

(
m
r

)
. The minimum weight of

R(r ,m) equals 2m−r . Codes R(m − r − 1,m) and R(r ,m) are dual codes.
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SINGLETON and PLOTKIN BOUNDS

To determine distance of a linear code can be computationally hard task. For that reason
various bounds on distance can be much useful.

Singleton bound: If C is a q-ary (n,M, d)-code, then

M ≤ qn−d+1

Proof Take some d − 1 coordinates and project all codewords to the remaining
coordinates.

The resulting codewords have to be all different and therefore M cannot be larger than
the number of q-ary words of the length n − d − 1.

Codes for which M = qn−d+1 are called MDS-codes (Maximum Distance Separable).

Corollary: If C is a binary linear [n, k, d ]-code, then

d ≤ n − k + 1.

So called Plotkin bound says

d ≤ n2k−1

2k − 1
.

Plotkin bound implies that q-nary error-correcting codes with d ≥ n(1− 1/q) have only
polynomially many codewords and hence are not very interesting.
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SHORTENING and PUNCTURING of LINEAR CODES

If C is a q-ary linear [n, k, d ]-code, then

D = {(x1, . . . , xn−1)|(x1, . . . , xn−1, 0) ∈ C}. is a linear code - a shortening of the code C .

If d > 1, then D is a linear [n − 1, k ′, d∗]-code, where k ′ ∈ {k − 1, k} and d∗ ≥ d , a so
calle shortening of the code C .

If C is a q-ary linear [n, k, d ]-code and

E = {(x1, . . . , xn−1)|(x1, . . . , xn−1, x) ∈ C , for some x ≤ q},

then E is a linear code - a puncturing of the code C .

If d > 1, then E is an [n − 1, k, d∗] code where d∗ = d − 1 if C has a minimum weight
codeword with wit non-zero last coordinate and d∗ = d otherwise.

When d = 1, then E is an [n − 1, k, 1] code, if C has no codeword of weight 1 whose
nonzero entry is in last coordinate; otherwise, if k > 1, then E is an [n − 1, k − 1, d∗]
code with d∗ > 1
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REED-SOLOMON CODES

An important example of MDS-codes are q-ary Reed-Solomon codes RSC(k, q), for
k ≤ q.

They are codes a generator matrix of which has rows labelled by polynomials X i ,
0 ≤ i ≤ k − 1, columns labeled by elements 0, 1, . . . , q − 1 and the element in the row
labelled by a polynomial p and in the column labelled by an element u is p(u).

RSC(k, q) code is [q, k, q − k + 1] code.

Example Generator matrix for RSC(3, 5) code is1 1 1 1 1
0 1 2 3 4
0 1 4 4 1


Interesting property of Reed-Solomon codes:

RSC(k, q)⊥ = RSC(q − k, q).

Reed-Solomon codes are used in digital television, satellite communication, wireless
communication, barcodes, compact discs, DVD,. . . They are very good to correct burst
errors - such as ones caused by solar energy.
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SOCCER GAMES BETTING SYSTEM

Ternary Golay code with parameters (11, 729, 5) can be
used to bet for results of 11 soccer games with potential
outcomes 1 (if home team wins), 2 (if guest team wins)
and 3 (in case of a draw).

If 729 bets are made, then at least one bet has at least 9
results correctly guessed.

In case one has to bet for 13 games, then one can usually
have two games with pretty sure outcomes and for the rest
one can use the above ternary Golay code.
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LDPC (Low-Density Parity Check) - CODES

A LDPC code is a binary linear code whose parity check matrix is very sparse - it
contains only very few 1’s.

A linear [n, k] code is said to be a regular [n, k, r , c] LDPC code if r << n, c << n − k
and its parity-check matrix has exactly r 1’s in each row and exactly c 1’s in each
column.

In the recent years LDPC codes are replacing in many important applications other types
of codes for the following reasons:

1 LDPC codes are in principle also very good channel codes, so called Shannon
capacity approaching codes, they allow the noise threshold to be set arbitrarily
close to the theoretical maximum - to Shannon limit - for symmetric channel.

2 Good LDPC codes can be decoded in time linear to their block length using special
(for example ”iterative belief propagation”) approximation techniques.

3 Some LDPC codes are well suited for implementations that make heavy use of
parallelism.

Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to
sparsity constrains. Such LDPC codes are proven to be good with a high probability.
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parallelism.

Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to
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DISCOVERY and APPLICATION of LDPC CODES

LDPC codes were discovered in 1960 by R.C. Gallager in
his PhD thesis, but were ignored till 1996 when linear time
decoding methods were discovered for some of them.

LDPC codes are used for: deep space communication;
digital video broadcasting; 10GBase-T Ethernet, which
sends data at 10 gigabits per second over Twisted-pair
cables; Wi-Fi standard,....
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BI-PARTITE (TANNER) GRAPHS REPRESENTATION of LDPC
CODES

An [n, k] LDPC code can be represented by a bipartite graph between a set of n top
”variable-nodes (v-nodes)” and a set of bottom (n− k) ”parity check nodes (pc-nodes)”.
Variable nodes:

= = = = = =

+ + +

a a a a a a1 2 3 4 5 6

Parity check nodes:

The corresponding parity check matrix has n − k rows and n columns and i-th column
has 1 in the j-th row exactly in case if i-th v-node is connected to j-th c-node.

H =

 1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0


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TANNER GRAPHS - CONTINUATION

The LDPC-code with the Tanner bipartite graph for (6, 3) LDPC-code.

= = = = = =

+ + +

a a a a a a1 2 3 4 5 6

has the parity check matrix

H =

 1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0


and therefore the following constrains have to be satisfied:

a1 + a2 + a3 + a4 = 0

a3 + a4 + a6 = 0

a1 + a4 + a5 = 0
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DECODING

Since for the LDPC-code with the Tanner bipartite graph for (6, 3) LDPC-code.

= = = = = =

+ + +

a a a a a a1 2 3 4 5 6

the following constrains have to be satisfied:

a1 + a2 + a3 + a4 = 0

a3 + a4 + a6 = 0

a1 + a4 + a5 = 0

Let the word ?01?11 be received.From the second equation it follows that the second
unknown symbol is 0. From the last equation it then follows that the first unknown
symbol is 1.
Using so called iterative belief propagation techniques, LDPC codes can be decoded in
time linear to their block length.
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DESIGN of LDPC codes

Some good LDPC codes were designed through
randomly chosen parity check matrices.

Some LDPC codes are based on Reed-Solomon codes,
such as the RS-LDPC code used in the 10-gigabit
Ethernet standard.
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