Part |

Protocols to do seemingly impossible

WHAT TO THINK ABOUT?

What you should think about

IV054 1. Protocols to do seemingly impossible 2/69

ATTACKS on RSA IMPLEMENTATIONS

In 1995, Paul Kocher, an undergraduate of Stanford,

discovered that Eve could recover decryption exponent by

counting time (energy consumption) needed for

exponentiation during several decryptions.

The point is that if d = didi_1...d;, then at the

computation of c? in the i-th iteration, a multiplication is

performed only if d; = 1 (and that requires time and

energy).

IV054 1. Protocols to do seemingly impossible

3/69

FIRST EXAM

First exam will be on December 18 at 12.00 in B410
and not on December 21

Remaining exams will be at 12.00 in B410 in 2019
on

8.1, 15.1, 22.1

1V054 1. Protocols to do seemingly impossible 4/69

PROTOCOLS doing SEEMINGLY IMPOSSIBLE

CHAPTER 10: PROTOCOLS DOING
SEEMINGLY IMPOSSIBLE
and

ZERO-KNOWLEDGE PROTOCOLS

IV054 1. Protocols to do seemingly impossible 5/69

CRYPTOGRAPHIC PROTOCOLS

A protocol is an algorithm two (or more) parties have to follow to perform
a communication/cooperation.

A cryptographical protocol is a protocol to achieve secure
communication during some goal oriented cooperation.

In this chapter we first present several cryptographic protocols for such
basic cryptographic primitives as coin tossing, bit commitment and
oblivious transfer.

After that we deal with a variety of cryptographical protocols that allow to
solve easily some seemingly unsolvable problems.

Of special importance among them are so called zero-knowledge
protocols with which we will deal afterwards. They are counter-intuitive,
though very powerful and very useful protocols.

IV054 1. Protocols to do seemingly impossible 6/69

PRIMITIVES for CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are specifications how two parties,
let us call them again Alice and Bob,

m should prepare themselves for their communication
and
m should behave during their communication

in order to achieve their goal and have their
communication protected against an adversary.

Cryptographic protocols can be very complex. However,
they are often composed from several, very simple though
very special, protocols. These protocols are called
cryptographic (protocols) primitives. They will now be
discussed first.

IV054 1. Protocols to do seemingly impossible 7/69

PICTORIAL SCHEMES for PRIMITIVES of CRYPTOGRAPHIC
PROTOCOLS

Coin—flipping Bit commitment
A B A B
commit phase
b b
random

opening phasq

1/2 oblivious transfer

1/20T

1V054 1. Protocols to do seemingly impossible 8/69

DESCRIPTION of BASIC CRYPTOGRAPHIC PRIMITIVES

In coin-flipping protocols Alice and Bob can flip a coin over a distance in such a way
that neither of them can determine the outcome of the flip, but both can agree on the
outcome in spite of the fact that they do not trust each other.

In bit commitment protocols Alice can choose a bit and get committed to it in the
following sense: Bob has no way of learning Alice’s commitment (without Alice’s help)
and Alice has no way of changing her commitment.

Technically, Alice commits herself to a bit x using a commit(x) procedure, and reveals
her commitment, if needed, using open(x) procedure.

In 1-out-2 oblivious transfer protocols Alice transmits two messages first and second
to Bob. Bob can chose to receive first or second message, but not both, and gets it, in
such a way that Alice will have no idea which of them Bob will receive.

IV054 1. Protocols to do seemingly impossible 9/69

PROTOCOLS for COIN-FLIPPING/TOSSING BY PHONE

Coin-flipping by telephone:

Alice and Bob got divorced and they do not trust each other any longer. They want to
decide, communicating by phone only, who gets the car.

Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way function f.
Bob guesses which one of them is an encryption of the head. Alice tells Bob whether his
guess was correct. |f Bob does not believe her, Alice sends f to Bob.

Protocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, q secret.
Bob chooses randomly an integer x € {1,..., 5}, sends Alice y = x*> mod n and tells
Alice: if you guess x correctly, car will be yours.

Alice computes four square roots (xi,n — x1) and (x2, n — x2) of x

and

x{ = min(x1,n — x1),x5 = min(x2, n — x2).

Since x € {1,...
Alice then guesses whether x = x{ or x = x; and tells Bob her choice (for example by
reporting the position and value of the leftmost bit in which x{ and x; differ).

Bob tells Alice whether her guess was correct.

(Later, if necessary, Alice reveals p and q, and Bob reveals x.)

, 3}, then either x = x{ or x = x;.

IV054 1. Protocols to do seemingly impossible 10/69

COIN TOSSING - requirements and problems

Basic requirements: In any good coin tossing protocol both parties
should influence the outcome and should accept the outcome. In
addition, both outcomes should have the same probability.
Generalized requirements: for a coin tossing protocol:

The outcome of the protocol is an element from the set {0, 1,
reject}.

If both parties behave correctly, the outcome should be from the
set {0, 1}.

If it is not the case that both parties behave correctly, the outcome
should be reject.

Problem: In some coin tossing protocols one party can find out the
outcome sooner than the second party. In such a case if she is not happy
with the outcome she can disrupt the protocol — to produce reject or to say
"I do not continue in performing the protocol”. A way out is to require
that in case of correct behavior no outcome should have probability > %

IV054 1. Protocols to do seemingly impossible 11/69

COIN TOSSING USING a ONE-WAY FUNCTION

Protocol:

Alice chooses a one-way function f and informs Bob about the
definition domain of f - dom(f).

Bob chooses randomly r1, r» from dom(f) and sends them to Alice.
Alice sends to Bob one of the values f(r;) or f(r2).

Bob announces Alice his guess which of the two values he received.
Alice announces Bob whether his guess was correct (0) or not (1).

If Bob wants to verify correctness, Alice has to send to Bob the
specification of f.

The protocol is computationally secure. Indeed, to cheat, Alice should be
able to find, for randomly chosen r;, >, such one-way function f that

f(rl) = f(l’z).

1V054 1. Protocols to do seemingly impossible 12/69

BIT COMMITMENT - BASIC IDEA

COMMITMENT PHASE

Alice puts a bit b into a box, lock it using a key,
and sends the locked box, but not the key, to Bob.

Bob ask Alice which bit is in the box. In case Bob
does not believe what Alice says, the opening
phase follows:

OPENING PHASE

Alice is asked to send the key from the box to Bob
and she does that. Bob opens box and finds bit.

IV054 1. Protocols to do seemingly impossible 13/69

BIT COMMITMENT PROTOCOLS (BCP)

Basic ideas and solutions |

In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the
following sense:

Bob has no way of knowing which commitment Alice has made, and Alice has no way of
changing her commitment once she has made it; say after Bob announces his guess as to
what Alice has chosen.

An example of a " pre-computer era” bit commitment protocol is that Alice writes her
commitment on a paper, locks it in a box, sends the box to Bob and, later, in the
opening phase, she sends also the key to Bob.

Complexity era solution I. Alice chooses a one-way function f and an even (odd) x if she
wants to commit herself to 0 (1) and sends to Bob f(x) and f.

Problem: Alice may know an even x; and an odd x, such that f(x1) = f(x2).

Complexity era solution Il. Alice chooses a one-way function f, two random xi, x» and a
bit b she wishes to commit to, and sends to Bob (f(xi, x2, b), x1) - a commitment.

When time comes for Alice to reveal her bit, she sends to Bob f and the triple (x1, x2, b).

IV054 1. Protocols to do seemingly impossible 14/69

BIT COMMITMENT SCHEMES |

The basis of bit commitment protocols are bit commitment schemes:

A bit commitment scheme is a mapping 7 : {0,1} x X — Y, where X
and Y are finite sets.

A commitment to a b € {0,1}, or an encryption of b, is any value (called
a blow) f(b, x) where x € X.

Each bit commitment protocol has two phases:

Commitment phase: The sender sends a bit b he wants to commit to, in
an encrypted form, to the receiver.

Opening phase: If required, the sender sends to the receiver additional
information that enables the receiver to get b.

IV054 1. Protocols to do seemingly impossible 15/69

BIT COMMITMENT SCHEMES IlI

Each bit commitment scheme should have three properties:

Hiding (privacy): For no b € {0,1} and no x € X, it is feasible for Bob to
determine b from B = f(b, x).

Binding: Alice can "open” her commitment b, by revealing (opening) x
and b such that B = f(b, x), but she should not be able to open a
commitment (blow) B as both 0 and 1.

Correctness: If both, the sender and the receiver, follow the protocol, then
the receiver will always learn (recover) the committed value b.

1V054 1. Protocols to do seemingly impossible 16/69

BIT COMMITMENT with ONE-WAY FUNCTIONS

Commitment phase:
m Alice and Bob choose a one-way function f
m Bob sends a randomly chosen r; to Alice
m Alice chooses random r» and her committed bit b and sends to Bob
f(ry, r, b).
Opening phase:
m Alice sends to Bob » and b

= Bob computes 7(r;, ., b) and compares with the value he has already
received.

IV054 1. Protocols to do seemingly impossible 17/69

HASH FUNCTIONS and COMMITMENTS

A commitment to a data w, without revealing w, using a hash function h,
can be done as follows:

Commitment phase: To commit to a w choose a random r and make
public h(wr).

Opening phase: reveal r and w.

For this application the hash function h has to be one-way: from h(wr) it
should be unfeasible to determine wr.

IV054 1. Protocols to do seemingly impossible 18/69

TWO SPECIAL BIT COMMITMENT SCHEMES

Bit commitment scheme |. Let p, q be large primes, n = pg, m € QNR(n), X = Z.
Let n,m be public.

b 2

Commitment: f(b, x) = m°x® mod n for a random x from X.

Since computation of quadratic residues is in general unfeasible, this bit commitment
scheme is hiding.

Since m € QNR(n), there are no xi,x such that mxi = x; mod n and therefore the
scheme is binding.

Bit commitment scheme Il. Let p be a large Blum prime, X = Z7 =Y, a be a
primitive element of Z,.

f(b,x) =« mod p, if SLB(x) = b;
= o™ mod p, if SLB(x) # b.
where

SLB(x) = 0if x =0,1 (mod 4);
=1if x=2,3 (mod 4).

Binding property of this bit commitment scheme follows from the fact that in the case of
discrete logarithms modulo Blum primes there is no effective way to determine second
least significant bit (SLB) of the discrete logarithm.

IV054 1. Protocols to do seemingly impossible 19/69

MAKING COIN TOSSING FROM BIT COMMITMENT

Each bit commitment scheme can be used to solve coin tossing problem as follows:

Alice tosses a coin, and commits itself to its outcome ba (say to 0 (1) if the
outcome is head (tail)) and sends the commitment to Bob.

Bob also tosses a coin and sends the outcome bg to Alice.
Alice opens her commitment to Bob (so he starts to know b,)
@ Both Alice and Bob compute b = ba & bs.

Observe that if at least one of the parties follows the protocol, that is it tosses a random
coin, the outcome is indeed a random bit.

Note: Observe that after step 2 Alice will know what the outcome is, but
Bob does not. So Alice can disrupt the protocol if the outcome is to be not
good for her. This is a weak point of this protocol.

1V054 1. Protocols to do seemingly impossible 20/69

BASIC TYPES of HIDING and BINDING

If the hiding or the binding property of a
commitment protocol depends on the complexity
of a computational problem, we speak about

computational hiding and computational binding.
In case, the binding or the hiding property does
not depend on the complexity of a computational

problem, we speak about unconditional hiding or
unconditional binding.

IV054 1. Protocols to do seemingly impossible 21/69

A COMMITMENT SCHEME BASED on DISCRETE LOGARITHM

Alice wants to commit herself to an m e {0,...,qg — 1}.

Scheme setting:
Bob randomly chooses primes p and q such that

ql(p — 1).

Bob chooses random generators g # 1 # v of the subgroup G of order g € Z,.Bob sends
P, d, g and v to Alice.

All following computations will be modulo p:

Commitment phase:

To commit to an m € {0,...,q — 1}, Alice chooses a random r € Z,, and sends
c=g"v™ to Bob.

Opening phase:

Alice sends r and m to Bob who then verifies whether c= g"v".

IV054 1. Protocols to do seemingly impossible 22/69

COMMITMENTS and ELECTRONIC VOTING

Let com(r, m) = g"v™ denote commitment to m in the commitment scheme based on discrete
logarithm. If ri, ro, my, my € Z,, then com(ri, m1) X com(r2, my) = com(r + r, mi + mo).
Commitment schemes with such a property are called homomorphic commitment schemes.

Homomorphic schemes can be used to cast yes-no votes of n voters Vi,..., V,, by the trusted
authority TA for whom er and dr are ElGamal encryption and decryption algorithms.
This works as follows: Each voter V; chooses his vote m; € {0,1}, a random r; € {0,...,q — 1}

and computes his voting commitment ¢; = com(r;, m;). Then V; makes ¢; public and sends
er(g") to TA and TA computes

dr <H er(@f”)) =][e"=¢".
i=1 =

n
where r = Z ri, and makes public g".
i=1
Now, anybody can compute the result s of voting from publicly known ¢; and g since

n
[1e
s i=1

v =

g’

n
with s = Z m;.
i=1
3

s can now be derived from v* by computing v, vZ v3, ...
of voters is not too large.

and comparing with v* if the number

IV054 1. Protocols to do seemingly impossible 23/69

OBLIVIOUS TRANSFER (OT) PROBLEM

Story: Alice knows a secret and wants to send
secret to Bob in such a way that he gets secret with
probability % and he knows whether he got secret,
but Alice has no idea whether he received secret.(Or
Alice has several secrets and Bob wants to buy one of them
but he does not want Alice to know which one he bought.)

Oblivious transfer problem: Design a protocol for
sending a message from Alice to Bob in such a way
that Bob receives the message with probability %
and " garbage” with the probability % Moreover, Bob
knows whether he got the message or garbage, but Alice
has no idea which one he got.

1V054 1. Protocols to do seemingly impossible 24/69

OBLIVIOUS TRANSFER PROTOCOL - continuation

Oblivious transfer problem: Design a protocol for sending a message from Alice to
Bob in such a way that Bob receives the message with probability % and " garbage”
with the probability % Moreover, Bob knows whether he got the message or garbage,
but Alice has no idea which one he got.

An Oblivious transfer protocol:

Alice chooses two large primes p and g and sends n = pq to Bob.

2

Bob chooses a random number x and sends y = x° mod n to Alice.

Alice computes four square roots +xi, £x> of y (mod n) and sends one of them to
Bob. (She can do it, but has no idea which of them is x.)

Bob checks whether the number he got is congruent to x. If yes, he has received no
new information. Otherwise, Bob has two different square roots modulo n and can
factor n. Alice has no way of knowing whether this is the case.

IV054 1. Protocols to do seemingly impossible 25/69

1-OUT-OF-2 OBLIVIOUS TRANSFER PROBLEM

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to
Bob in such a way that Bob can choose which of the messages he receives
(but he cannot choose both), but Alice cannot learn Bob's decision.

A generalization of 1-out-of-2 oblivious transfer problem is two-party
oblivious circuit evaluation problem:

Alice has a secret i and Bob has a secret | and they both know some
function f.

At the end of protocol the following conditions should hold:
Bob knows the value f(i,j), but he does not learn anything about i.

Alice learns nothing about j and nothing about f(i,j).

Note: The 1-out-of-2 oblivious transfer problem is the instance of the
oblivious circuit evaluation problem for i = (bo, b1), f(i,j) = bj.

IV054 1. Protocols to do seemingly impossible 26/69

1-out-2 OBLIVIOUS TRANSFER BOX

1-out-of-two oblivious transfer can be imagined as a box with three inputs
and one output.

INPUTS: Alice inputs: Xp and Xj;
......... Bob inputs a bit i

OUTPUT: Bob gets as the output: X;

Alice BOB Alice BOB
o] ! ot |
X, - 12 OT Xy — —X
IV054 1. Protocols to do seemingly impossible 27/69

AN IMPLEMENTATION of OBLIVIOUS TRANSFER PROTOCOLS

Alice generates two key pairs for a PKC P and sends both her public
keys p1, p» to Bob.

Bob chooses a random secret key k for a SKC S, encrypts it by one of
Alice’s public keys, p1 or p», and sends the outcome to Alice.

Alice uses her two secret keys to decrypt the message she received.
One of the outcomes is garbage g, another one is k, but she does not
know which one is k.

Alice encrypts her two secret messages, one with k, another with g and
sends them to Bob.

Bob uses S with k to decrypt both messages he got and one of the
attempts is successful. Alice has no idea which one.

1V054 1. Protocols to do seemingly impossible 28/69

BIT COMMITMENT from 1-out-2 oblivious transfer

Using 1-out-of-2 oblivious transfer box (OT-box) one can design a bit commitment
scheme as follows:

COMMITMENT PHASE:

Alice selects a random bit r and her commitment bit b;

Alice inputs xop = r and x; = r & b into the OT-box.

Alice sends a message to Bob telling him that his turn follows.

Bob selects a random bit c, inputs c into the OT-box and records the output x..

OPENING PHASE:
Alice sends r and b to Bob.
Bob checks to see if xc = r & (bc)

IV054 1. Protocols to do seemingly impossible 29/69

MENTAL POKER PLAYING by PHONE by Alice and Bob

Basic requirements (for playing poker with 52 cards):
Initial hands (sets of 5 cards) of both players are equally likely.
The initial hands of Alice and Bob are disjoint.
Both players always know their own hands but not that of the opponent.
Each player can detect, eventually, cheating of the other player.

A commutative cryptosystem is used with all functions kept secret.

Players agree on some numbers wi, ..., ws> as the names of 52 cards.
Protocol:
Bob encrypts cards with eg, and tells eg(w1), ..., eg(ws2), in a randomly chosen

order, to Alice.
Alice chooses five of the items eg(w;) as Bob's hand and tells them Bob.
Alice chooses another five of eg(w;), encrypts them with es and sends them to Bob.

Bob applies ds to all five values ea(es(w;)) he got from Alice and sends ea(w;) to
Alice as Alice’s hand. At this point both players have their hands and poker can
start.

IV054 1. Protocols to do seemingly impossible 30/69

MENTAL POKER by PHONE with THREE PLAYERS

Alice encrypts 52 cards w, ..., ws, with e4 and sends encryptions, in a random
order, to Bob.
Bob, who cannot decode the encryptions, chooses 5 of them, randomly. He encrypts
them with eg, and sends eg(ea(w;)) to Alice and the remaining 47 encryptions
ea(w;) to Carol.
Carol, who cannot decode any of the encryptions, chooses five of them randomly,
encrypts them also with her key and sends Alice ec(ea(w;)).
Alice, who cannot read encrypted messages from Bob and Carol, decrypt them with
her key and sends back to the senders,

five dA(eB(eA(W,-))) = eg(w,-) to Bob,

five da(ec(ea(w;))) = ec(w;) to Carol.
Bob and Carol decrypt encryptions they got to learn their hands.

Carol chooses randomly 5 other messages ea(w;) from the remaining 42 and sends
them to Alice.

Alice decrypt messages to learn her hand.

Additional cards can be dealt with in a similar manner. If either Bob or Carol wants a
card, they take an encrypted message ea(w;) and go through the protocol with Alice. If
Alice wants a card, whoever currently has the deck sends her a card.

IV054 1. Protocols to do seemingly impossible 31/69

ZERO-KNOWLEDGE PROOFS/PROTOCOLS

Loosely speaking, zero-knowledge proofs of an assertion
are proofs that yield nothing beyond the validity of the
assertion.

In other words, a verifier obtaining such a proof gains only
a conviction in the validity of the assertion.

One way to understand it is by saying that anything that
can be efficiently computable from a zero-knowledge proof
can also be efficiently computable under the
belief/understanding that the assertion being proved is
true.

There are various types of zero-knowledge protocols - of
identity, of membership, of knowledge, ...

1V054 1. Protocols to do seemingly impossible 32/69

ZERO-KNOWLEDGE PROOFS and CRYPTOGRAPHY

Zero-knowledge proofs are fascinating and extremely useful
cryptographic tools.

Their fascinating nature is due to their seemingly
contradictions: zero-knowledge proofs are both convincing
and yet yield nothing beyond the assertion being proved.

Their applicability in cryptography is vast. For example,
they are used to force malicious parties to behave honestly,
according to a predetermined protocol, while maintaining
privacy i.e. the protocol may require communicating
parties to provide zero-knowledge proofs of the

orrectness of their secret-based actions
privacy-protection), without revealing these

secrets.

IV054 1. Protocols to do seemingly impossible 33/69

WHAT is a PROOF?

What is a proof?
m The concept of proof was one of main achievements of the Golden Era of Greek
science/mathematics/geometry - 6th - 3rd century BC.
m After that the concept of proof was almost forgotten for more than 2000 years.

m A need to precise the concept of proof arose again at the very beginning of 20th
century due to the existence very strange functions and paradoxes in set theory.

m Hilbert formalized the concept of proof. A sequence of statements each of which is
either an axiom or can be derived from previous ones using one of the deduction
rules - a proof should be checkable by machines.

m Later, it has turned out that such a concept of proof, producing "absolute truth”,
maybe sometimes much stronger than needed.

m By Manin: Proof is whatever convinces me.

m Zero-knowledge proofs and probabilistic proofs represent a new type of proofs —
proofs that provide convincing evidence — so much convincing as needed.

IV054 1. Protocols to do seemingly impossible 34/69

ZERO-KNOWLEDGE PROOFS/PROTOCOLS - I.

Very informally, a zero-knowledge proof protocol allows one party, usually
called PROVER, to convince another party, called VERIFIER, that
PROVER has some knowledge (a secret, a proof of a theorem,...), or that
something holds, without revealing to the VERIFIER ANY information
about his knowledge (secret, proof,...) or how to show that.

In the rest of this chapter we present and illustrate very basic ideas of
zero-knowledge proof protocols and their importance for cryptography.

Zero-knowledge proof protocols are a special type of so-called interactive
proof systems.

By a theorem we understand in the following a claim that a specific object
has a specific property. For example, that a specific graph is 3-colorable.

IV054 1. Protocols to do seemingly impossible 35/69

AN ILLUSTRATIVE EXAMPLE

(A cave with a magic door opening on a secret word)

Alice knows a secret word opening the door in cave. How can she convince Bob about it
without revealing this secret word?

Bobg@ e Alice

IV054 1. Protocols to do seemingly impossible 36/69

HISTORY of NOTHING HISTORY of ZERO

In the middle ages zero took on religious overtones.

In many contexts it was forbidden to discuss zero. By doing that people feared
committing heresy.

At that time people feared that things they did not understood were the works of
the devil.

HISTORY of NOTHING At various times, and by various people, it was actually forbidden to explicit mention
zero and negative numbers.

They were sometimes referred to explicitly in print as "forbidden” or "evil".
Symbol that stood for nothing was considered as an evil sign and works of Satan.

It was not until the sixteenth century that zero began to play a useful role in
commerce.

IV054 1. Protocols to do seemingly impossible 37/69 IV054 1. Protocols to do seemingly impossible 38/69

OLD HISTORY of VACUUM NEW HISTORY of VACUUM

In 1654 Otto von Guericke invented the first vacuum pump and performed his

Informally vacuum is a space void of matter. famous experiment showing that teams of horses could not separate two

Vacuum was a frequent topic of philosophical debates since ancient times. hemispheres from which the air has been evacuated.
Aristotle believed that no void could occur naturally. In classical field theory in physics vacuum is defined as a region of time and space
In 13-14 century leading scholars inclined to see vacuum as supernatural void. where all components of the stress-energy tensor are zero - that is a region empty of

Speculations went on at that time that even God could not create vacuum. This energy and momentum.

idea was shot down in 1277 by Bishop Etienne Tempier who claimed that should not In quantum field theory and quantum mechanics the vacuum is quantum (ground)
be no restrictions on the power of God. state with the lowest possible energy.
Empirically the topic of vacuum was studied only in 17th century. String theory is believed to have huge number of vacua - the so-called string theory

landscape of it.

IV054 1. Protocols to do seemingly impossible 39/69 V054 1. Protocols to do seemingly impossible 40/69

ZERO-KNOWLEDGE PROOFS/PROTOCOLS - II.

A zero-knowledge proof or protocol is an interactive process by which one party (the
Prover) can convince another party (the Verifier) that a a particular statement is true,
without conveying any additional information apart from the fact that the statement is
indeed true.

For the case where the ability to prove the statement requires that the Prover has some
secret information, zero-knowledge requirement implies that that the verifier will not be
able to prove the statement to anyone else.

Notice that the notion of zero-knowledge applies only if the statement being proven is
the fact that the Prover has a certain knowledge - a secret information. Otherwise, the
statement would not be proven in zero-knowledge way, since at the end of the protocol
the verifier would gain an additional information - namely the information that the prover
has knowledge of the required secret information.

This is a particular case known as zero-knowledge proof of knowledge.

IV054 1. Protocols to do seemingly impossible 41/69

INTERACTIVE PROOF PROTOCOLS

In an interactive proof system there are two parties

m A (strong - all powerful) Prover, often called Peggy (a randomized algorithm that
uses a private random number generator);

m A poor Verifier, often called Vic (a polynomial time randomized algorithm that uses
a private random number generator).

Prover knows some secret, or a knowledge, or a fact about a specific object, and wishes
to convince Vic, through a communication with him, that he has the above knowledge.
For example, both Prover and Verifier posses an input x and Prover wants to convince
Verifier that x has a certain Property and that Prover knows how to prove that.
The interactive proof system consists of several rounds. In each round Prover and Verifier
alternatively do the following.

Receive a message from the other party.

Perform a (private) computation.

Send a message to the other party.

Communication starts usually by a challenge of Verifier and a response of Prover.
At the end, Verifier either accepts or rejects Prover's attempts to convince Verifier.

IV054 1. Protocols to do seemingly impossible 42/69

INTERACTIVE PROOF SYSTEMS

An interactive proof protocol is said to be an interactive proof system for a
secret/knowledge or a decision problem IT if the following properties are satisfied provided
that Prover and Verifier posses an input x (or Prover has secret knowledge) and Prover
wants to convince Verifier that x has certain properties and that Prover knows how to
prove that (or that Prover knows the secret).

(Knowledge) Completeness: If x is a yes-instance of I1, or Peggy knows the secret, then
Vic always accepts Peggy's " proof” for sure.

(Knowledge) Soundness: If x is a no-instance of 1, or Peggy does not know the secret,
then Vic accepts Peggy's " proof’ only with very small probability.

CHEATING

u If the Prover and the Verifier of an interactive proof system fully follow the protocol
they are called honest Prover and honest Verifier.

m A Prover who does not know secret or proof and tries to convince the Verifier is
called cheating Prover.

m A Verifier who does not follow the behaviour specified in the protocol is called a
cheating Verifier.

IV054 1. Protocols to do seemingly impossible 43/69

INTERACTIVE PROOF SYSTEMS INTUITIVELY

Loosely speaking, an interactive proof is a game between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the verifier of
the validity of some assertion.

An interactive proof should allow the prover to convince the verifier of the validity of any
true assertion, whereas no prover strategy may fool the verifier with not negligible

probability to accept false assertions.

Intuitively, one may think about interactions between verifier and prover as consisting of
"tricky” questions asked by the verifier to which the prover has to reply " convincingly”.

1V054 1. Protocols to do seemingly impossible 44/69

GRAPH ISOMORPHISM - EXAMPLE

Are the following two graphs isomorphic?

GRAPH ISOMORPHISM - EXAMPLE

Here is isomorphism of the graphs from the previous slide.

*n
IV054 1. Protocols to do seemingly impossible 45/69 IV054 1. Protocols to do seemingly impossible 46/69
Problem 2. S}
> - dhow the followi -aphs :
ving two graphs are not isomorphic:
e — e
- L4 \
/ / \ /// ~ "
o e \ //
()

IV054 1. Protocols to do seemingly impossible 47/69 V054 1. Protocols to do seemingly impossible 48/69

EXAMPLE - GRAPH NON-ISOMORPHISM

A simple interactive proof protocol exists for a computationally very hard graph
non-isomorphism problem.
Input: Two graphs Gi and G, with the set of nodes {1,...,n}.

Protocol: Repeat n times the following steps:

Vic chooses randomly an integer i € {1,2} and a permutation 7 of {1,..., n}.Vic

then computes the image H of G; under the permutation 7 and sends H to Peggy.
Peggy determines the value j such that G, is isomorphic to H, and sends j to Vic.

Vic checks to see if i = j.

Vic accepts Peggy’s proof if i = j in each of n rounds.
Completeness: If G; is not isomorphic to Gz, then probability that Vic accepts is 1
because Peggy will have no problem to answer correctly.

Soundness: If G is isomorphic to Gy, then Peggy can deceive Vic if and only if she
correctly guesses n times those i's Vic chooses randomly. The probability that this can
happen is 27",

Observe that Vic's computations can be performed in polynomial time (with respect to
the size of graphs).

IV054 1. Protocols to do seemingly impossible 49/69

ZERO-KNOWLEDGE PROOFS

Informally speaking, an interactive proof systems has the property of being
zero-knowledge if the Verifier, that interacts with the honest Prover of the
system, learns nothing from their interaction beyond the validity of the
statement being proved.

There are several variants of zero-knowledge protocols that differ in the
specific way the notion of learning nothing is formalized.

In each variant it is viewed that a particular Verifier learns nothing if there
exists a polynomial time simulator whose output is indistinguishable from
the output of the Verifier after interacting with the Prover on any possible
instance of the problem.

Different variants of zero-knowledge proof systems concern the strength of
this distinguishability. In particular, perfect or statistical zero-knowledge
refer to the situation where the simulator’s output and the Verifier's output
are indistinguishable in an information theoretic sense.

Computational zero-knowledge refer to the case there is no polynomial time
distinguishability.

IV054 1. Protocols to do seemingly impossible 50/69

ZERO-KNOWLEDGE PROOF PROTOCOLS - VERY INFORMALLY

Very informally An interactive " proof protocol” at which a
Prover tries to convince a Verifier about the truth of a
statement, or about possession of a knowledge, is called
"zero-knowledge” protocol if the Verifier does not learn
from communication anything more except that the
statement is true or that Prover has knowledge (secret)
she claims to have.

Example The proof n = 670592745 = 12345 x 54321 is
not a zero-knowledge proof that n is not a prime.

IV054 1. Protocols to do seemingly impossible 51/69

ZERO-KNOWLEDGE PROOF PROTOCOLS - MORE FORMALLY

Informally, a zero-knowledge proof is an interactive proof protocol that provides highly
convincing evidence that a statement is true or that Prover has certain knowledge (of a
secret) and that Prover knows a (standard) proof of it while providing not a single bit of
information about the proof (knowledge or secret). (In particular, Verifier who got
convinced about the correctness of a statement cannot convince the third person about that.)

More formally A zero-knowledge proof of a theorem T is an interactive two party
protocol, in which Prover is able to convince Verifier who follows the same protocol, by
the overwhelming statistical evidence, that T is true, if T is indeed true, but no Prover is
able to convince Verifier that T is true, if this is not so.

In addition, during interactions, Prover does not reveal to Verifier any other information,
except whether T is true or not. Consequently, whatever Verifier can do after he gets
convinced, he can do just believing that T is true.

Similar arguments hold for the case Prover possesses a secret.

1V054 1. Protocols to do seemingly impossible 52/69

FORMAL DEFINITION of ZERO-KNOWLEDGE

In the following definition both prover (P) and verifier (V)
as well as a simulator (S) will be Turing machines.
An interactive proof system with (P, V) for a language L
is zero-knowledge if for any polynomial time randomized
verifier V' there exists polynomial randomized simulator S
such that

Vx el

S(x) — —{ the value produced by the simulator S}

is undistinguishable from what can be obtained from the
transcript of the communication between P and V for the
Input x.

IV054 1. Protocols to do seemingly impossible 53/69

AGE DIFFERENCE FINDING PROTOCOL

Alice and Bob want to find out who of them is older without disclosing any other

information about their age.

The following protocol is based on a public-key cryptosystem, in which it is assumed that

neither Bob nor Alice are older than 100 years.
Protocol Let age of Bob be j; and age of Alice be i.

Bob chooses a random x € {1,..., 100}, computes k = ea(x) and sends to Alice s

—k-j.

Alice first computes the numbers y, = da(s + v); 1 < u < 100, then chooses a large

random prime p and computes numbers

z, =y, mod p, 1< u<100 *
and verifies that for all u # v
|zy — z,| >2and z, # 0 (**)

(If this is not the case, Alice choose a new p, repeats computations in (*) and

checks (**) again.)
Finally, Alice sends Bob the following sequence (order is important).
Z1y. .., ZiyZiv1 +1,...,zi00 + 1, p

/ / / /
as Zy, .., Zjy Zig1y - - -5 21005 P

Bob checks whether j-th number in the above sequence is congruent to x modulo p.

If yes, Bob knows that i > j, otherwise i < j.
i>j=zj =2z =y = da(k) = x (mod p)
i<j=z =z +1+# y; = da(k) = x (mod p)

IV054 1. Protocols to do seemingly impossible

54/69

MILLIONAIRE

The previous problem is ofter referred to as Millionaire
problem that want to know who of them is richer
without disclosing any additional information about
their wealth.

The problem is also often seen as an example of
two-party (multi-party) secure computation at
which both parties want to know some outcomes that
depends on their inputs, but they do not want to
disclose any information about their inputs.

IV054 1. Protocols to do seemingly impossible 55/69

3-COLORABILITY of GRAPHS

1V054 1. Protocols to do seemingly impossible

56/69

3-COLORABILITY of GRAPHS - EXAMPLE

Are the nodes of the following graph colorable by three colors in such a way that no edge
connects nodes of the same color?

Yes, they are:

IV054 1. Protocols to do seemingly impossible 57/69

3-COLORABILITY of GRAPHS

With the following protocol Peggy can convince Vic that a particular graph G, known to
both of them, is 3-colorable and that Peggy knows such a coloring, without revealing to
Vic any information how such coloring looks.

1 red e ered)=xn
2 green e egreen) =y
3blue e e3(blue) =y3
4 red es esred) = ya

e5(blue) = Vs
es(green) = ys
(a) (b)
Protocol: Peggy colors the graph G = (V, E) with colors (red, blue, green) and she
performs with Vic |E|*- times the following interactions, where vi, . . ., v, are nodes of V.

5 blue e
6 green e

H Peggy chooses a random permutation of colors, recolors G, and encrypts, for i =
1,2,...,n, the color ¢; of node v; by an encryption procedure e; — for each i different.
Peggy then removes colors from nodes, labels the i-th node of G with cryptotext
yi = €i(¢i), and designs Table (b).

Peggy finally shows Vic the graph with nodes labeled by cryptotexts.

B Vic chooses an edge and asks Peggy to show him coloring of the corresponding
nodes.

B Peggy shows Vic entries of the table corresponding to the nodes of the chosen edge.

@ Vic performs desired encryptions to verify that nodes really have colors as shown.
1V054 1. Protocols to do seemingly impossible 58/69

A MORE CONCISE ZERO-KNOWLEDGE PROTOCOL FOR
GRAPH COLORING

Common Input: A graph G = (V,E), V={1,...,n}, n=|V].
Peggy’s Input: A coloring ¢ — {1,2,3}.
Repeat t|E| times the following steps in order soundness error be smaller than e~ .

= Peggy selects a random permutation 7 on {1,2,3} and commits herself to Vic for all
values 7((7)).

m Vic chooses randomly an edge e = (j, k) and sends it to Peggy {asking her to show
coloring of its nodes}.

m Peggy decommit herself to reveal 7(j) and (k).
m Vic checks whether colors are different and match the commitment received in the
first step.

Zero-knowledge proofs for other NP-complete problems can be obtained using the
standard reduction.

IV054 1. Protocols to do seemingly impossible 59/69

HISTORY of ZERO-KNOWLEDGE PROOFS

Research in zero-knowledge proofs have been motivated by identification problems and an
approach where one party wants to prove his identity by demonstrating some secret
knowledge (say a password) but does not want that other parties learn anything about
this knowledge.

The concept o zero-knowledge proofs was first published in 1985 by Shafi Goldwasser,
Silvio Micali and Charles Rackoff.

Early version of their paper were from 1985 and were rejected three times from major
conferences (FOCS83, STOC84, FOCS84).

The wide applicability of zero-knowledge proofs was first demonstrated in 1986 by
Goldreich, Micali, Wigderson, who showed how to construct zero-knowledge proofs for
any NP-set.

1V054 1. Protocols to do seemingly impossible 60/69

ZERO-KNOWLEDGE PROOF for GRAPH ISOMORPHISM

Input: Given are two graphs G; and G, with the set of nodes {1,...,n}.
Repeat the following steps n times:
Peggy chooses a random permutation 7 of {1,...,n}, i € {0,1}, and computes H
to be the image of G; under the permutation 7, and sends H to Vic.

B Vic chooses randomly j € {1,2} and sends it to Peggy. {This way Vic asks for
isomorphism between H and G;.}

B Peggy creates a permutation p of {1,...,n} such that p specifies isomorphism
between H and G; and Peggy sends p to Vic.
{If i = 1 Peggy takes p = m; if i = 2 Peggy takes p = oo, where o is a fixed
isomorphic mapping of nodes of G, to Gi.}

@ Vic checks whether H provides the isomorphism between G; and H.

Vic accepts Peggy's " proof’ if H is the image of G; in each of the n rounds.

Completeness. It is obvious that if Gi and G, are isomorphic then Vic accepts with
probability 1.

Soundness: If graphs G; and G, are not isomorphic, then Peggy can deceive Vic only if
she is able to guess in each round the j Vic chooses and then sends as H the graph G;.
However, the probability that this happens is 27".

Observe that Vic can perform all computations in polynomial time. However, why is this
proof a zero-knowledge proof?

IV054 1. Protocols to do seemingly impossible 61/69

WHY is the last "PROOF” a "ZERO-KNOWLEDGE PROOF”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G; and
G, are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G; and Go.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
Gi1) and Gi or Gy, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G; and G,.
Information that Vic can receive during the protocol, called transcript, contains:

m The graphs G; and Gp.

m All messages i transmitted during communications by Peggy and Vic.

m Random numbers (permutations) r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((Gl, GZ); (H17 il, I’1). c ey (Hm in~, rn))-

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.

IV054 1. Protocols to do seemingly impossible 62/69

SIMULATOR

A simulator for the previous graph isomorphism protocol.
= (Gl, GQ),
m forj=1tondo
= Chose randomly /; € {1,2}.
» Chose p; to be a random permutation of {1,... n}.
= Compute H; to be the image of G; under p;;
= Concatenate (H;, i;, pj) at the end of T.

IV054 1. Protocols to do seemingly impossible 63/69

CONSEQUENCES and FORMAL DEFINITION

The fact that a simulator can forge transcripts has several important consequences.

m Anything Vic can compute using the information obtained from the transcript can
be computed using only a forged transcript and therefore participation in such a
communication does not increase Vic capability to perform any computation.

m Participation in such a proof does not allow Vic to prove isomorphism of G; and Gp.

m Vic cannot convince someone else that G; and G are isomorphic by showing the
transcript because it is indistinguishable from a forged one.

Formal definition of what this means that a forged transcript "looks like" a real one:
Definition Suppose that we have an interactive proof system for a decision problem Tl
and a polynomial time simulator S.
Denote by I'(x) the set of all possible transcripts that could be produced during the
interactive proof communication for a yes-instance x.
Denote F(x) the set of all possible forged transcripts produced by the simulator S.
For any transcript T € ['(x), let pr(T) denote the probability that T is the transcript
produced during the interactive proof. Similarly, for T € F(x), let ps(T) denote the
probability that T is the transcript produced by S.
If T(x) = F(x) and, for any T € I'(x), pr(T) = pr(T) , then we say that the interactive
proof system is a zero-knowledge proof system.

1V054 1. Protocols to do seemingly impossible 64/69

Is the above interactive protocol for graph non-isomorphism also a
zero-knowledge protool?

NO

Because....

IV054 1. Protocols to do seemingly impossible

65/60

Why?

IV054 1. Protocols to do seemingly impossible 66,69

APPENDIX

APPENDIX

IV054 1. Protocols to do seemingly impossible

66/69

WHAT IS A PROOF?

A proof is whatever convinces me (M. Even).
A nice proof makes us wiser (Yu. Manin).

A proof is a sequence of statements each of
them is either an axiom or follows from previous
statements by am easy deduction rule - whether
a to-be-proof is indeed a proof it should be
checkeable by a computer. (A proof is therefore
a computation process.)

1V054 1. Protocols to do seemingly impossible 67/69

HISTORY of PROOFS

The concept of the proof (of a theorem from axioms) was introduced during the first
golden era of mathematics, in Greece, 600-300 BC.

Most of their proofs were actually proofs of correctness of geometric algorithms.
After 300 BC, Greek's ideas concerning proofs were actually ignored for 2000 years.

During the second golden era of mathematics, in 17th century, the concept of the
proof did not play very important role. Famous was encouragement of those times
" Go on, God will be with you" whenever rigour of some methods or correctness of
some theorem was questioned.

An understanding that proofs are important has developed again at the end of 19th
century and especially at the beginning of 20th century because

a lot of counter-intuitive phenomena have appeared in mathematics (for example a
function that is everywhere continuous but has nowhere derivative);

paradoxes have appeared in the set theory. - For example, Does there exist a set of all
sets?

IV054 1. Protocols to do seemingly impossible 68/69

A PROBLEM and ITS SOLUTION

The term zero-knowledge is a bit misleading in case of
" zero-knowledge proof of membership” (in a language L).

The reason being that in the basic setting the Prover
reveals one bit of knowledge to the Verifier (namely
weather the input belong to L).

However, it is possible to resolve this problem by
considering zero-knowledge proofs of knowledge about
knowledge.

In such a setting the goal is not to prove that input is (or
is not) in the given language, but that Prover knows
whether the input is (or is not) in the language.

IV054 1. Protocols to do seemingly impossible 69/69

