
Part I

Digital signatures

MURPHY LAW for CRYPTOGRAPHY

If there is a single security hole in a cryptosystem, the
exposure of a cryptosystem will make sure that someone
will eventually find it.

Even if this person is honest the discovery may ultimately
leak to malicious parties.

It is not suffcient that a cryptographic system is very
secure, or even perfectly sucure - practically it is desirable
that its implementations are secure enough what is vey
hard to achieve.

IV054 1. Digital signatures 2/54

MURPHY LAW for CRYPTOGRAPHY

If there is a single security hole in a cryptosystem, the
exposure of a cryptosystem will make sure that someone
will eventually find it.

Even if this person is honest the discovery may ultimately
leak to malicious parties.

It is not suffcient that a cryptographic system is very
secure, or even perfectly sucure - practically it is desirable
that its implementations are secure enough what is vey
hard to achieve.

IV054 1. Digital signatures 2/54

MURPHY LAW for CRYPTOGRAPHY

If there is a single security hole in a cryptosystem, the
exposure of a cryptosystem will make sure that someone
will eventually find it.

Even if this person is honest the discovery may ultimately
leak to malicious parties.

It is not suffcient that a cryptographic system is very
secure, or even perfectly sucure - practically it is desirable
that its implementations are secure enough what is vey
hard to achieve.

IV054 1. Digital signatures 2/54

MURPHY LAW for CRYPTOGRAPHY

If there is a single security hole in a cryptosystem, the
exposure of a cryptosystem will make sure that someone
will eventually find it.

Even if this person is honest the discovery may ultimately
leak to malicious parties.

It is not suffcient that a cryptographic system is very
secure, or even perfectly sucure - practically it is desirable
that its implementations are secure enough what is vey
hard to achieve.

IV054 1. Digital signatures 2/54

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries it is already desirable, or even necessay, to use in imporatnat
communications digital signatures and they have also legal significance.

IV054 1. Digital signatures 3/54

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries it is already desirable, or even necessay, to use in imporatnat
communications digital signatures and they have also legal significance.

IV054 1. Digital signatures 3/54

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries it is already desirable, or even necessay, to use in imporatnat
communications digital signatures and they have also legal significance.

IV054 1. Digital signatures 3/54

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries it is already desirable, or even necessay, to use in imporatnat
communications digital signatures and they have also legal significance.

IV054 1. Digital signatures 3/54

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries it is already desirable, or even necessay, to use in imporatnat
communications digital signatures and they have also legal significance.

IV054 1. Digital signatures 3/54

BASIC DEFINITION

Digital signature is a digital code (generated and
authenticated by a public key encryption)

which is
attached to an electronically transmitted document
to verify its contents and the sender’s identity.

IV054 1. Digital signatures 4/54

BASIC DEFINITION

Digital signature is a digital code (generated and
authenticated by a public key encryption) which is
attached to an electronically transmitted document

to verify its contents and the sender’s identity.

IV054 1. Digital signatures 4/54

BASIC DEFINITION

Digital signature is a digital code (generated and
authenticated by a public key encryption) which is
attached to an electronically transmitted document
to verify its contents and the sender’s identity.

IV054 1. Digital signatures 4/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A,

and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature,

is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→

signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification:

eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature,

is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→

signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:

eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→

signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification:

h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message: (w , dA(w)))→ signature verification: eA(dA(w)) = w?

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, the mapping eB :

signing the message: (w , eB(dA(w)))→ signature verification:
eA(dB(eB(dA(w)))) = w?

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that anybody can verify the signature:

signing the hash: (w , dA(h(w)))→ signature verification: h(w) = eA(da(h(w)))?

IV054 1. Digital signatures 5/54

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many ways and instances digital signatures provide a
new layer of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects.

Digital signatures, when properly implemented, are also
more difficult to forge than handwritten signatures.

Digital signatures employ public-key cryptography.

IV054 1. Digital signatures 6/54

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many ways and instances digital signatures provide a
new layer of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects.

Digital signatures, when properly implemented, are also
more difficult to forge than handwritten signatures.

Digital signatures employ public-key cryptography.

IV054 1. Digital signatures 6/54

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many ways and instances digital signatures provide a
new layer of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects.

Digital signatures, when properly implemented, are also
more difficult to forge than handwritten signatures.

Digital signatures employ public-key cryptography.

IV054 1. Digital signatures 6/54

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many ways and instances digital signatures provide a
new layer of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects.

Digital signatures, when properly implemented, are also
more difficult to forge than handwritten signatures.

Digital signatures employ public-key cryptography.

IV054 1. Digital signatures 6/54

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many ways and instances digital signatures provide a
new layer of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects.

Digital signatures, when properly implemented, are also
more difficult to forge than handwritten signatures.

Digital signatures employ public-key cryptography.

IV054 1. Digital signatures 6/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No!

Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why?

Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the document/message
that is being signed.

IV054 1. Digital signatures 7/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users,

but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

IV054 1. Digital signatures 8/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob,

pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer

(without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it
suffices that Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, a tamperer T , can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

IV054 1. Digital signatures 9/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w)))

signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification:

h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately.

However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verify the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 10/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS –
SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages/documents).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

IV054 1. Digital signatures 11/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}

such that the following two conditions are satisfied:

IV054 1. Digital signatures 12/54

DIGITAL SIGNATURES SCHEMES II - conditions

Correctness:

For each message m from M and public key k from Kv , it should hold

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k from Kv , it should be computationally unfeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.

IV054 1. Digital signatures 13/54

DIGITAL SIGNATURES SCHEMES II - conditions

Correctness:

For each message m from M and public key k from Kv , it should hold

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k from Kv , it should be computationally unfeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.

IV054 1. Digital signatures 13/54

DIGITAL SIGNATURES SCHEMES II - conditions

Correctness:

For each message m from M and public key k from Kv , it should hold

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k from Kv , it should be computationally unfeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.

IV054 1. Digital signatures 13/54

DIGITAL SIGNATURES SCHEMES II - conditions

Correctness:

For each message m from M and public key k from Kv , it should hold

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k from Kv , it should be computationally unfeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.

IV054 1. Digital signatures 13/54

A COMMENT ON DIGITAL SIGNATURE SCHEMES

Sometimes it is required that a digital signature scheme
contains also a keys generation phase,

It is a phase that creates uniformly and randomly a secret
(signing) key (from a set of potential secret keys) and
outputs this secret key and the corresponding public
(verification) key.

IV054 1. Digital signatures 14/54

A COMMENT ON DIGITAL SIGNATURE SCHEMES

Sometimes it is required that a digital signature scheme
contains also a keys generation phase,

It is a phase that creates uniformly and randomly a secret
(signing) key (from a set of potential secret keys) and
outputs this secret key and the corresponding public
(verification) key.

IV054 1. Digital signatures 14/54

A COMMENT ON DIGITAL SIGNATURE SCHEMES

Sometimes it is required that a digital signature scheme
contains also a keys generation phase,

It is a phase that creates uniformly and randomly a secret
(signing) key (from a set of potential secret keys) and
outputs this secret key and the corresponding public
(verification) key.

IV054 1. Digital signatures 14/54

ADDITIONAL PROPERTIES Of DIGITAL SIGNATURES

Digital signatures can also provide so-called
non-repudiation. That means that the signer cannot
successfully claim that he did not signed a message,
while also claiming that his private key remains secret.

IV054 1. Digital signatures 15/54

ADDITIONAL PROPERTIES Of DIGITAL SIGNATURES

Digital signatures can also provide so-called
non-repudiation.

That means that the signer cannot
successfully claim that he did not signed a message,
while also claiming that his private key remains secret.

IV054 1. Digital signatures 15/54

ADDITIONAL PROPERTIES Of DIGITAL SIGNATURES

Digital signatures can also provide so-called
non-repudiation. That means that the signer cannot
successfully claim that he did not signed a message,
while also claiming that his private key remains secret.

IV054 1. Digital signatures 15/54

ADDITIONAL PROPERTIES Of DIGITAL SIGNATURES

Digital signatures can also provide so-called
non-repudiation. That means that the signer cannot
successfully claim that he did not signed a message,
while also claiming that his private key remains secret.

IV054 1. Digital signatures 15/54

BREAKING DIGITAL SIGNATURE SYSTEMS

An encryption system is considered as broken if
one can determine (at least a part of) plaintexts
from at least some cryptotexts (and at least
sometimes).

A digital signature system is considered as broken
if one can (at least sometimes) forge (at least
some) signatures.

In both cases, a more ambitious goal is to find
the private key.

IV054 1. Digital signatures 16/54

BREAKING DIGITAL SIGNATURE SYSTEMS

An encryption system is considered as broken if
one can determine (at least a part of) plaintexts
from at least some cryptotexts (and at least
sometimes).

A digital signature system is considered as broken
if one can (at least sometimes) forge (at least
some) signatures.

In both cases, a more ambitious goal is to find
the private key.

IV054 1. Digital signatures 16/54

BREAKING DIGITAL SIGNATURE SYSTEMS

An encryption system is considered as broken if
one can determine (at least a part of) plaintexts
from at least some cryptotexts (and at least
sometimes).

A digital signature system is considered as broken
if one can (at least sometimes) forge (at least
some) signatures.

In both cases, a more ambitious goal is to find
the private key.

IV054 1. Digital signatures 16/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known, but not chosen, by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

IV054 1. Digital signatures 17/54

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

IV054 1. Digital signatures 18/54

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

IV054 1. Digital signatures 18/54

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

IV054 1. Digital signatures 18/54

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

IV054 1. Digital signatures 18/54

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

IV054 1. Digital signatures 18/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer.

Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer. Three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

IV054 1. Digital signatures 19/54

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.

IV054 1. Digital signatures 20/54

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.

IV054 1. Digital signatures 20/54

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea?

No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.

IV054 1. Digital signatures 20/54

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.

IV054 1. Digital signatures 20/54

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.
IV054 1. Digital signatures 20/54

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and says that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

IV054 1. Digital signatures 21/54

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice.

Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and says that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

IV054 1. Digital signatures 21/54

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and says that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

IV054 1. Digital signatures 21/54

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and says that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

IV054 1. Digital signatures 21/54

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and says that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

IV054 1. Digital signatures 21/54

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

IV054 1. Digital signatures 22/54

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

IV054 1. Digital signatures 22/54

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

IV054 1. Digital signatures 22/54

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

IV054 1. Digital signatures 22/54

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

IV054 1. Digital signatures 22/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.

n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);

If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;

Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;

The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the versifier V computes x2

and h(wU) and verifies that they are equal.

IV054 1. Digital signatures 23/54

IMPORTANT FACTS

Fact 1

If, for integers a, b and a prime p,

a ≡ b (mod (p − 1))

then for any integer x
xa ≡ xb(mod p)

Fact 2

If a, b, n, x are integers and gcd(x , n) = 1, then

a ≡ b (modφ(n)) implies xa ≡ xb (modn)

IV054 1. Digital signatures 24/54

IMPORTANT FACTS

Fact 1

If, for integers a, b and a prime p,

a ≡ b (mod (p − 1))

then for any integer x
xa ≡ xb(mod p)

Fact 2

If a, b, n, x are integers and gcd(x , n) = 1, then

a ≡ b (modφ(n)) implies xa ≡ xb (modn)

IV054 1. Digital signatures 24/54

PROOF

Let

a ≡ b mod (p − 1)

then

xa = xk(p−1)+b

for some k , any x and therefore

xa = xb(xp−1)k ≡ xb mod p

by Fermat’s little theorem.

IV054 1. Digital signatures 25/54

PROOF

Let

a ≡ b mod (p − 1)

then

xa = xk(p−1)+b

for some k , any x and therefore

xa = xb(xp−1)k ≡ xb mod p

by Fermat’s little theorem.

IV054 1. Digital signatures 25/54

PROOF

Let

a ≡ b mod (p − 1)

then

xa = xk(p−1)+b

for some k , any x and therefore

xa = xb(xp−1)k ≡ xb mod p

by Fermat’s little theorem.

IV054 1. Digital signatures 25/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

IV054 1. Digital signatures 26/54

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature
(with x - secret; p, q and y = qx mod p - public):

sig(w, r) = (a, b);

where r is random and a = qr mod p; b = (w − xa)r−1 (mod p − 1).

1 First suppose Eve tries to forge signature for a new message w, without knowing x.
If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

lgaqwy−a,

(because ab ≡ qr(w−xa)r−1 ≡ qw−xa ≡ qwy−a) what is infeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation

yaab ≡ qxaqrb ≡ qw (mod p).

It is not known whether this equation can be solved for any given b efficiently.

2 If Eve chooses a and b and tries to determine w such that (a,b) is signature of w,
then she has to compute discrete logarithm

lgqy
aab.

Hence, Eve can not sign a “random” message this way.

IV054 1. Digital signatures 27/54

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature
(with x - secret; p, q and y = qx mod p - public):

sig(w, r) = (a, b);

where r is random and a = qr mod p; b = (w − xa)r−1 (mod p − 1).

1 First suppose Eve tries to forge signature for a new message w, without knowing x.
If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

lgaqwy−a,

(because ab ≡ qr(w−xa)r−1 ≡ qw−xa ≡ qwy−a) what is infeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation

yaab ≡ qxaqrb ≡ qw (mod p).

It is not known whether this equation can be solved for any given b efficiently.

2 If Eve chooses a and b and tries to determine w such that (a,b) is signature of w,
then she has to compute discrete logarithm

lgqy
aab.

Hence, Eve can not sign a “random” message this way.

IV054 1. Digital signatures 27/54

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature
(with x - secret; p, q and y = qx mod p - public):

sig(w, r) = (a, b);

where r is random and a = qr mod p; b = (w − xa)r−1 (mod p − 1).

1 First suppose Eve tries to forge signature for a new message w, without knowing x.
If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

lgaqwy−a,

(because ab ≡ qr(w−xa)r−1 ≡ qw−xa ≡ qwy−a) what is infeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation

yaab ≡ qxaqrb ≡ qw (mod p).

It is not known whether this equation can be solved for any given b efficiently.

2 If Eve chooses a and b and tries to determine w such that (a,b) is signature of w,
then she has to compute discrete logarithm

lgqy
aab.

Hence, Eve can not sign a “random” message this way.

IV054 1. Digital signatures 27/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme.

It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

IV054 1. Digital signatures 28/54

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)

IV054 1. Digital signatures 29/54

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)

IV054 1. Digital signatures 29/54

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)

IV054 1. Digital signatures 29/54

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)

IV054 1. Digital signatures 29/54

DIGITAL SIGNATURE STANDARD II

Signing and Verification

Signing of a 160-bit plaintext w

choose random 0 < k < q

compute a = (r k mod p) mod q

compute b = k−1(w + xa) mod q where kk−1 ≡ 1 (mod q)

signature: sig(w, k) = (a, b)

Verification of signature (a, b)

compute z = b−1 mod q

compute u1 = wz mod q, u2 = az mod q

verification:

verK (w , a, b) = true ⇔ (ru1yu2 mod p) mod q = a

IV054 1. Digital signatures 30/54

DIGITAL SIGNATURE STANDARD II

Signing and Verification

Signing of a 160-bit plaintext w

choose random 0 < k < q

compute a = (r k mod p) mod q

compute b = k−1(w + xa) mod q where kk−1 ≡ 1 (mod q)

signature: sig(w, k) = (a, b)

Verification of signature (a, b)

compute z = b−1 mod q

compute u1 = wz mod q, u2 = az mod q

verification:

verK (w , a, b) = true ⇔ (ru1yu2 mod p) mod q = a

IV054 1. Digital signatures 30/54

From ElGamal to DSA - II

In DSA a 160 bit message is signed using 320-bit signature, but computation is done
modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can be
reduced modulo q without affecting the verification condition.

This allowed to change ElGamal verification condition: y aab = qw .

IV054 1. Digital signatures 31/54

From ElGamal to DSA - II

In DSA a 160 bit message is signed using 320-bit signature, but computation is done
modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can be
reduced modulo q without affecting the verification condition.

This allowed to change ElGamal verification condition: y aab = qw .

IV054 1. Digital signatures 31/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.

2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and
then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.

3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.

3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n

= r 2
i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j =

r 2
i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏
j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏
j=1

v
bij
j mod n = r 2

i

k∏
j=1

(v−1
j)bij

k∏
j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

IV054 1. Digital signatures 32/54

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full
view of Walter, even though the messages themselves that
they exchange contain no secret information?

IV054 1. Digital signatures 33/54

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full
view of Walter, even though the messages themselves that
they exchange contain no secret information?

IV054 1. Digital signatures 33/54

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full
view of Walter, even though the messages themselves that
they exchange contain no secret information?

IV054 1. Digital signatures 33/54

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full
view of Walter, even though the messages themselves that
they exchange contain no secret information?

IV054 1. Digital signatures 33/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)

Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

IV054 1. Digital signatures 34/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s.

y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk)

= (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let M = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

IV054 1. Digital signatures 35/54

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2n allows
to sign any of the given 2n messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as
Lamport one-time signatures and its security depends
on their security.

The main reason why Merkle Signature Scheme is
of interest, is that it is believed to be resistant to
potential attacks using quantum computers.

IV054 1. Digital signatures 36/54

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2n allows
to sign any of the given 2n messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as
Lamport one-time signatures and its security depends
on their security.

The main reason why Merkle Signature Scheme is
of interest, is that it is believed to be resistant to
potential attacks using quantum computers.

IV054 1. Digital signatures 36/54

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2n allows
to sign any of the given 2n messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as
Lamport one-time signatures and its security depends
on their security.

The main reason why Merkle Signature Scheme is
of interest, is that it is believed to be resistant to
potential attacks using quantum computers.

IV054 1. Digital signatures 36/54

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2n allows
to sign any of the given 2n messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as
Lamport one-time signatures and its security depends
on their security.

The main reason why Merkle Signature Scheme is
of interest, is that it is believed to be resistant to
potential attacks using quantum computers.

IV054 1. Digital signatures 36/54

WILL WE HAVE (QUITE SOON) QUANTUM COMPUTERS?

Who knows.

The possibility of having quite soon powerful quantum
computers starts to be so realistic that in US decision
has been made, on a very-high level of cares for
national security, that the next generation of
cryptographic primitives’ standards (for encryptions,
digital signatures, hash functions,...) should be secure
even in case quantum computers would be available.

IV054 1. Digital signatures 37/54

WILL WE HAVE (QUITE SOON) QUANTUM COMPUTERS?

Who knows.

The possibility of having quite soon powerful quantum
computers starts to be so realistic that in US decision
has been made, on a very-high level of cares for
national security, that the next generation of
cryptographic primitives’ standards (for encryptions,
digital signatures, hash functions,...) should be secure
even in case quantum computers would be available.

IV054 1. Digital signatures 37/54

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings.

At first one needs to generate
public keys PKi and secret keys SKi for all 2n messages mi , using Lamport signature
scheme, and to compute also h(PKi) for all i ≤ 2n.

As the next step a complete binary tree with 2n leaves is designed and the value h(PKi)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored. The hash assigned
this way to the root is the public key of the Merkle signature scheme and the tree is
called Merkle tree. See next figure for a Merkle tree.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 38/54

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings. At first one needs to generate
public keys PKi and secret keys SKi for all 2n messages mi , using Lamport signature
scheme, and to compute also h(PKi) for all i ≤ 2n.

As the next step a complete binary tree with 2n leaves is designed and the value h(PKi)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored. The hash assigned
this way to the root is the public key of the Merkle signature scheme and the tree is
called Merkle tree. See next figure for a Merkle tree.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 38/54

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings. At first one needs to generate
public keys PKi and secret keys SKi for all 2n messages mi , using Lamport signature
scheme, and to compute also h(PKi) for all i ≤ 2n.

As the next step a complete binary tree with 2n leaves is designed and the value h(PKi)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored.

The hash assigned
this way to the root is the public key of the Merkle signature scheme and the tree is
called Merkle tree. See next figure for a Merkle tree.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 38/54

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings. At first one needs to generate
public keys PKi and secret keys SKi for all 2n messages mi , using Lamport signature
scheme, and to compute also h(PKi) for all i ≤ 2n.

As the next step a complete binary tree with 2n leaves is designed and the value h(PKi)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored. The hash assigned
this way to the root is the public key of the Merkle signature scheme and the tree is
called Merkle tree. See next figure for a Merkle tree.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 38/54

MERKLE SIGNATURE - III.

Signature generation. To sign a message mi , this message is at first signed using the
one-use signature scheme with keys (PKi , SKi).

This signature plus a sequence of n
hashes chosen from all those nodes that are needed to compute the hash of the
root, is the Merkle signature. See the next Figure where the one-use sinature inhe
black node and a sequence of gray nodes form the final signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 39/54

MERKLE SIGNATURE - III.

Signature generation. To sign a message mi , this message is at first signed using the
one-use signature scheme with keys (PKi , SKi). This signature plus a sequence of n
hashes chosen from all those nodes that are needed to compute the hash of the
root, is the Merkle signature.

See the next Figure where the one-use sinature inhe
black node and a sequence of gray nodes form the final signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 39/54

MERKLE SIGNATURE - III.

Signature generation. To sign a message mi , this message is at first signed using the
one-use signature scheme with keys (PKi , SKi). This signature plus a sequence of n
hashes chosen from all those nodes that are needed to compute the hash of the
root, is the Merkle signature. See the next Figure where the one-use sinature inhe
black node and a sequence of gray nodes form the final signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 39/54

MERKLE SIGNATURE - III.

Signature generation. To sign a message mi , this message is at first signed using the
one-use signature scheme with keys (PKi , SKi). This signature plus a sequence of n
hashes chosen from all those nodes that are needed to compute the hash of the
root, is the Merkle signature. See the next Figure where the one-use sinature inhe
black node and a sequence of gray nodes form the final signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

IV054 1. Digital signatures 39/54

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.

They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks: an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

IV054 1. Digital signatures 40/54

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.
They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks: an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

IV054 1. Digital signatures 40/54

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.
They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks:

an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

IV054 1. Digital signatures 40/54

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.
They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks: an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

IV054 1. Digital signatures 40/54

TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.

Bob computes z = h(w);

Bob computes z’ = h(z ‖ pub); – { ‖} denotes concatenation

Bob computes y = sig(z’);

Bob publishes (z, pub, y) in the next day newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.

IV054 1. Digital signatures 41/54

TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.

Bob computes z = h(w);

Bob computes z’ = h(z ‖ pub); – { ‖} denotes concatenation

Bob computes y = sig(z’);

Bob publishes (z, pub, y) in the next day newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.

IV054 1. Digital signatures 41/54

TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.

Bob computes z = h(w);

Bob computes z’ = h(z ‖ pub); – { ‖} denotes concatenation

Bob computes y = sig(z’);

Bob publishes (z, pub, y) in the next day newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.

IV054 1. Digital signatures 41/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.

The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

IV054 1. Digital signatures 42/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

IV054 1. Digital signatures 43/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w)))

= sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

IV054 1. Digital signatures 44/54

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w (observe that vX = eX and
sx = dx for each user x).

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

IV054 1. Digital signatures 45/54

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w (observe that vX = eX and
sx = dx for each user x).

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

IV054 1. Digital signatures 45/54

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w (observe that vX = eX and
sx = dx for each user x).

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

IV054 1. Digital signatures 45/54

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w (observe that vX = eX and
sx = dx for each user x).

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

IV054 1. Digital signatures 45/54

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w (observe that vX = eX and
sx = dx for each user x).

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

IV054 1. Digital signatures 45/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

IV054 1. Digital signatures 46/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

IV054 1. Digital signatures 47/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

IV054 1. Digital signatures 48/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U have a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice gets, using an authority, Bob’s verification algorithm vB .

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, gets vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

IV054 1. Digital signatures 49/54

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

IV054 1. Digital signatures 50/54

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

IV054 1. Digital signatures 50/54

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

IV054 1. Digital signatures 50/54

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

IV054 1. Digital signatures 50/54

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.

In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal digital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

IV054 1. Digital signatures 51/54

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.

The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal digital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

IV054 1. Digital signatures 51/54

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989

ElGamal digital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

IV054 1. Digital signatures 51/54

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal digital signatures were invented in 1984.

In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

IV054 1. Digital signatures 51/54

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal digital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

IV054 1. Digital signatures 51/54

APPENDIX

APPENDIX

IV054 1. Digital signatures 52/54

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance.

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

IV054 1. Digital signatures 53/54

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance.

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

IV054 1. Digital signatures 53/54

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance.

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

IV054 1. Digital signatures 53/54

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance.

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

IV054 1. Digital signatures 53/54

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance.

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

IV054 1. Digital signatures 53/54

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

IV054 1. Digital signatures 54/54

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

IV054 1. Digital signatures 54/54

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

IV054 1. Digital signatures 54/54

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

IV054 1. Digital signatures 54/54

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

IV054 1. Digital signatures 54/54

	Digital signatures
	Murphy law for cryptography
	CHAPTER 7: Digital signatures
	Basic definition
	Basic ideas
	Additional properties of digital signatures
	Digital Signatures - Observation
	Digital signatures – basic requirements
	Digital signatures - a problem
	Why to sign hashes of messages and not messages themselves
	A scheme of digital signature systems – a simplified version
	Digital Signature Schemes I
	Digital Signature Schemes II - conditions
	A comment on digital signature schemes
	Additional properties of digital signatures
	Breaking digital signature systems
	Attacks models on digital signatures
	Levels of breaking of digital signatures
	A digital signature of one bit
	From RSA cryptosystem to RSA signatures
	RSA signatures and their attacks
	Encryptions versus signatures
	Rabin signatures
	Important facts
	Proof
	ElGamal signatures
	Security of ElGamal signatures
	From ElGamal to DSA I
	Digital Signature Standard
	Digital Signature Standard
	From ElGamal to DSA
	Fiat-Shamir signature scheme
	Sad story
	Ong-Schnorr-Shamir subliminal channel scheme
	Lamport one-time signatures
	Merkle signatures - I.
	Should we care about quantum computers
	Merkle signatures - II.
	Merkle signatures - III.
	GMR signature scheme
	Timestamping
	Blind signatures
	Chaum’s blind signatures
	Digital signatures with encryption and resending
	A surprising attack to the previous scheme
	Another MAN-IN-THE-MIDDLE attack
	Probabilistic signature schemes - PSS
	Diffie-Hellman Public Establishment of Secret Keys
	Authenticated Diffie-Hellman key exchange
	Threshold Signature Schemes
	HISTORY of DIGITAL SIGNATURES
	Appendix
	General observations - I
	General observations - II

