
Part I

Cyclic codes and channel codes



CHAPTER 3: CYCLIC, STREAM and CHANNEL CODES -
SPECIAL DECODINGS

1. Cyclic codes are very special linear codes. They are of large interest and importance
for several reasons:

They posses a rich algebraic structure that can be utilized in a variety of ways.

They have extremely concise specifications.

Their encodings can be efficiently implemented using simple machinery - shift
registers.

Many of the practically very important codes are cyclic.

2. Channel codes are used to encode streams of data (bits). Some of them, as
Concatenated codes and Turbo codes, reach theoretical Shannon bound concerning
efficiency, and are currently used very often in practice.

3. List decoding is a new decoding technique capable to deal, in an approximate way,
with cases that many errors occur, and in many such cases this tchnique performs better
than the classical unique decoding technique - the one we dealt with so far.

4. Locally decodable codes can be seen as a theoretical extreme of coding theory with
deep theoretical implications.
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IMPORTANT NOTE

In order to specify a non-linear binary code with 2k codewords of length n one may need
to write down

2k

codewords of length n.

In order to specify a linear binary code of the dimension k with 2k codewords of length n
it is sufficient to write down

k

codewords of length n of a generator matrix of that code.

In order to specify a binary cyclic code with 2k codewords of length n it is sufficient to
write down

1

codeword of length n - a generator of the code C .
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BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if

(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever

a0, . . . an−1 ∈ C , then also an−1a0 . . . an–2 ∈ C and a1a2 . . . an−1a0 ∈ C .

Example

(i) Code C = {000, 101, 011, 110} is cyclic.
(ii) Hamming code Ham(3, 2): with the generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


is equivalent to a cyclic code.

(iii) The binary linear code {0000, 1001, 0110, 1111} is not cyclic, but it is equivalent to
a cyclic code. – to get a cyclic code exchange first two symbols in all codewords.

(iv) Is Hamming code Ham(2, 3) with the generator matrix[
1 0 1 1
0 1 1 2

]
(a) cyclic?
(b) or at least equivalent to a cyclic code?
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FREQUENCY of CYCLIC CODES

Comparing with linear codes, cyclic codes are quite scarce. For example, there are 11 811
linear [7,3] binary codes, but only two of them are cyclic.

Trivial cyclic codes. For any field F and any integer n ≥ 3 there are always cyclic the
following codes of length n over F :

No-information code - code consisting of just one all-zero codeword.

Repetition code - code consisting of all codewords (a, a, . . . ,a) for a ∈ F .

Single-parity-check code - code consisting of all codewords with parity 0.

No-parity code - code consisting of all codewords of length n

For some cases, for example for n = 19 and F = GF (2), the above four trivial cyclic
codes are the only cyclic codes.
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AN EXAMPLE of a CYCLIC CODE

Is the linear code with the following generator matrix cyclic?

G =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


It is. It has, in addition to the codeword 0000000, the following codewords

c1 = 1011100

c1 + c2 = 1110010

c2 = 0101110

c1 + c3 = 1001011

c1 + c2 + c3 = 1100101

c3 = 0010111

c2 + c3 = 0111001

and it is cyclic because the right shifts have the following impacts

c1 → c2,

c1 + c2 → c2 + c3,

c2 → c3,

c1 + c3 → c1 + c2 + c3,

c1 + c2 + c3 → c1 + c2

c3 → c1 + c3

c2 + c3 → c1
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POLYNOMIALS over GF(q)

A codeword of a cyclic code is usually denoted by

a0a1 . . . an−1

and to each such a codeword the polynomial

a0 + a1x + a2x
2 + . . .+ an−1x

n−1

is usually associated

– an ingenious idea!!.

NOTATION: Fq[x ] will denote the set of all polynomials f (x) over GF (q).

deg(f (x)) = the largest m such that xm has a non-zero coefficient in f (x).

Multiplication of polynomials If f (x), g(x) ∈ Fq[x ], then

deg(f (x)g(x)) = deg(f (x)) + deg(g(x)).

Division of polynomials For every pair of polynomials a(x), b(x) 6= 0 in Fq[x ] there exists
a unique pair of polynomials q(x), r(x) in Fq[x ] such that

a(x) = q(x)b(x) + r(x), deg(r(x)) < deg(b(x)).

Example Divide x3 + x + 1 by x2 + x + 1 in F2[x ].
Definition Let f (x) be a fixed polynomial in Fq[x ]. Two polynomials g(x), h(x) are said
to be congruent modulo f (x), notation

g(x) ≡ h(x) (mod f (x)),

if g(x)− h(x) is divisible by f (x).
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EXAMPLES

If binary strings of length 7 are considered then

to the word 1010101 the following polynomial is
associated

1 + x2 + x4 + x6

to the word 1000001 the following polynomial is
associated: 1 + x6

The word starting with 2124 zeros and followed by one 1
has the polynomial representation:

x124

In the alphabet {0, 1, 2} 2x2 represents the string 002
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EXAMPLE

If x3 + x + 1 is divided by x2 + x + 1, then

x3 + x + 1 = (x2 + x + 1)(x − 1) + x

and therefore the result of the division is

x − 1

and the remainder is
x .
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NOTICE

A code C of the words of length n
is a set of codewords of length n

a0a1a2 . . . an−1

or C can be seen as
a set of polynomials of the degree (at most) n − 1

a0 + a1x + a2x
2 + . . . + an−1x

n−1
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GROUPS

A group G is a set of elements and an operation, call it *, with the following properties:

G is closed under *; that is if a, b ∈ G , so is a ∗ b.

The operation * is associative, that is a ∗ (b ∗ c) = (a ∗ b) ∗ c, for any a, b, c ∈ G .

G has an identity e element such that e ∗ a = a ∗ e = a for any a ∈ G .

Every element a ∈ G has an inverse a−1 ∈ G , such that a ∗ a−1 = a−1 ∗ a = e.

A group G is called an Abelian group if the operation ∗ is commutative, that is
a ∗ b = b ∗ a for any a, b ∈ G .

Example Which of the following sets is an (Abelian) group:

The set of real numbers with operation ∗ being: (a) addition; (b) multiplication.

The set of matrices of degree n and operation: (a) addition; (b) multiplication.

What happens if we consider only matrices with determinants not equal zero?
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RINGS and FIELDS

A ring R is a set with two operations + (addition) and · (multiplication) , having the
following properties:

R is closed under both operations + and ·.
R is an Abelian group under + (with a unity element for addition called zero).

The associative law for multiplication holds.

R has an identity element 1 for multiplication

The distributive law holds: a · (b + c) = a · b + a · c for all a, b, c ∈ R.

A ring is called a commutative ring if multiplication is commutative.

A field F is a set with two operations + (addition) and · (multiplication) , with the
following properties:

F is a commutative ring.

Non-zero elements of F form an Abelian group under multiplication.

A non-zero element g is a primitive element of a field F if all non-zero elements of F
are powers of g .
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RINGS of POLYNOMIALS

For any polynomial f (x), the set of all polynomials in Fq[x ] of degree less than deg(f (x)),
with addition and multiplication modulo f (x), forms a ring denoted Fq[x ]/f (x).

Example: Calculate (x + 1)2 in F2[x ]/(x2 + x + 1). It holds

(x + 1)2 = x2 + 2x + 1 ≡ x2 + 1 ≡ x (mod x2 + x + 1).

How many elements has Fq[x ]/f (x)?

Result |Fq[x ]/f (x)| = qdeg(f (x)).

Example: Addition and multiplication tables for F2[x ]/(x2 + x + 1)

+ 0 1 x 1+x
0 0 1 x 1+x
1 1 0 1+x x
x x 1+x 0 1

1+x 1+x x 1 0

• 0 1 x 1+x
0 0 0 0 0
1 0 1 x 1+x
x 0 x 1+x 1

1+x 0 1+x 1 x

Definition: A polynomial f (x) in Fq[x ] is said to be reducible if f (x) = a(x)b(x), where
a(x), b(x) ∈ Fq[x ] and

deg(a(x)) < deg(f (x)), deg(b(x)) < deg(f (x)).

If f (x) is not reducible, then it is said to be irreducible in Fq[x ].
Theorem The ring Fq[x ]/f (x) is a field if f (x) is irreducible in Fq[x ].
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RING (Factor ring) Rn = Fq[x ]/(x
n − 1)

Computation modulo xn − 1 in the ring Rn = Fq[x ]/(xn − 1)

Since xn ≡ 1 (mod (xn − 1)) we can compute f (x) mod (xn − 1) by replacing, in f (x),
xn by 1, xn+1 by x , xn+2 by x2, xn+3 by x3, . . .

Replacement of a word

w = a0a1 . . . an−1

by a polynomial

p(w) = a0 + a1x + . . .+ an−1x
n−1

is of large importance because

multiplication of p(w) by x in Rn corresponds to a single cyclic shift of w . Indeed,

x(a0 + a1x + . . . an−1x
n−1) = an−1 + a0x + a1x

2 + . . .+ an−2x
n−1
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An ALGEBRAIC SPECIFICATION of CYCLIC CODES

Theorem A binary code C of words of length n is cyclic if and only if it satisfies two
conditions

(i) a(x), b(x) ∈ C ⇒ a(x) + b(x) ∈ C

(ii) a(x) ∈ C , r(x) ∈ Rn ⇒ r(x)a(x) ∈ C

Proof

(1) Let C be a cyclic code. C is linear ⇒
(i) holds.
(ii)

If a(x) ∈ C , r(x) = r0 + r1x + . . . + rn−1x
n−1then

r(x)a(x) = r0a(x) + r1xa(x) + . . . + rn−1x
n−1a(x)

is in C by (i) because summons are cyclic shifts of a(x).

(2) Let (i) and (ii) hold
Taking r(x) to be a scalar the conditions (i) and (ii) imply linearity of C .
Taking r(x) = x the conditions (i) and (ii) imply cyclicity of C .
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OBSERVATION

There are also non-linear codes that have

cyclicity property.

A code equivalent to a cyclic code need not be

cyclic itself.

For instance, there are 30 distinct binary [7, 4]

Hamming codes, but only two of them are

cyclic.
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CONSTRUCTION of CYCLIC CODES

Notation For any f (x) ∈ Rn, we can define

〈f (x)〉 = {r(x)f (x) | r(x) ∈ Rn}

(with multiplication modulo xn − 1) to be a set of polynomials - a code.

Theorem For any f (x) ∈ Rn, the set 〈f (x)〉 is a cyclic code (generated by f ).

Proof We check conditions (i) and (ii) of the previous theorem.

(i) If a(x)f (x) ∈ 〈f (x)〉 and also b(x)f (x) ∈ 〈f (x)〉, then

a(x)f (x) + b(x)f (x) = (a(x) + b(x))f (x) ∈ 〈f (x)〉
(ii) If a(x)f (x) ∈ 〈f (x)〉, r(x) ∈ Rn, then

r(x)(a(x)f (x)) = (r(x)a(x))f (x) ∈ 〈f (x)〉
Example let C = 〈1 + x2〉, n = 3, q = 2.
In order to determine C we have to compute r(x)(1 + x2) for all r(x) ∈ R3.

R3 = {0, 1, x , 1 + x , x2, 1 + x2, x + x2, 1 + x + x2}.

Result

C = {0, 1 + x , 1 + x2, x + x2}
C = {000, 110, 101, 011}
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CHARACTERIZATION THEOREM for CYCLIC CODES

We show that all cyclic codes C have the form C = 〈f (x)〉 for some f (x) ∈ Rn.

Theorem Let C be a non-zero cyclic code in Rn. Then

there exists a unique monic polynomial g(x) of the smallest degree such that

C = 〈g(x)〉
g(x) is a factor of xn − 1.

Proof

(i) Suppose g(x) and h(x) are two monic polynomials in C of the smallest degree, say
d.
Then the polynomial w(x) = g(x)− h(x) ∈ C and it has a smaller degree than d
and a multiplication by a scalar makes out of w(x) a monic polynomial. Therefore
the assumption that g(x) 6= h(x) leads to a contradiction.

(ii) If a(x) ∈ C , then for some q(x) and r(x)

a(x) = q(x)g(x) + r(x), (wheredeg r(x) < deg g(x)).
and therefore

r(x) = a(x)− q(x)g(x) ∈ C .

By minimality condition

r(x) = 0

oand therefore a(x) ∈ 〈g(x)〉.
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CHARACTERIZATION THEOREM for CYCLIC CODES -
continuation

(iii) It has to hold, for some q(x) and r(x)

xn − 1 = q(x)g(x) + r(x) with deg r(x) < deg g(x)

and therefore

r(x) ≡ −q(x)g(x) (mod xn − 1) and
r(x) ∈ C ⇒ r(x) = 0⇒ g(x) is therefore a factor of xn − 1.

GENERATOR POLYNOMIALS - definition

Definition If

C = 〈g(x)〉,

for a cyclic code C , then g is called the generator polynomial for the code C .
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HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe to get all cyclic codes of the
given length n in GF(q)

Indeed, all we need to do is to find all factors (in GF(q)) of

xn − 1.

Problem: Find all binary cyclic codes of length 3.

Solution: Make decomposition

x3 − 1 = (x − 1)(x2 + x + 1)︸ ︷︷ ︸
both factors are irreducible in GF(2)

Therefore, we have the following generator polynomials and cyclic codes of length 3.

Generator polynomials
1

x + 1
x2 + x + 1

x3 − 1 ( = 0)

Code in R3

R3

{0, 1 + x , x + x2, 1 + x2}
{0, 1 + x + x2}

{0}

Code in V (3, 2)
V (3, 2)

{000, 110, 011, 101}
{000, 111}
{000}
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DESIGN of GENERATOR MATRICES for CYCLIC CODES

Theorem Suppose C is a cyclic code of codewords of length n with the generator
polynomial

g(x) = g0 + g1x + . . . + gr x
r .

Then dim (C) = n − r and a generator matrix G1 for C is

G1 =


g0 g1 g2 . . . gr 0 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 0 . . . 0
0 0 g0 g1 g2 . . . gr 0 . . . 0
. . . . . . . . .
0 0 . . . 0 0 . . . 0 g0 . . . gr


Proof

(i) All rows of G1 are linearly independent.
(ii) The n − r rows of G represent codewords

g(x), xg(x), x2g(x), . . . , xn−r−1g(x) (*)

(iii) It remains to show that every codeword in C can be expressed as a linear
combination of vectors from (*).

Indeed, if a(x) ∈ C , then
a(x) = q(x)g(x).

Since deg a(x) < n we have deg q(x) < n − r .
Hence

q(x)g(x) = (q0 + q1x + . . . + qn−r−1x
n−r−1)g(x)

= q0g(x) + q1xg(x) + . . . + qn−r−1x
n−r−1g(x).
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n−r−1g(x).
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EXAMPLE

The task is to determine all ternary codes of length 4 and generators for them.
Factorization of x4 − 1 over GF (3) has the form

x4 − 1 = (x − 1)(x3 + x2 + x + 1) = (x − 1)(x + 1)(x2 + 1)

Therefore, there are 23 = 8 divisors of x4 − 1 and each generates a cyclic code.

Generator polynomial Generator matrix
1 I4

x − 1

−1 1 0 0
0 −1 1 0
0 0 −1 1


x + 1

1 1 0 0
0 1 1 0
0 0 1 1


x2 + 1

[
1 0 1 0
0 1 0 1

]
(x − 1)(x + 1) = x2 − 1

[
−1 0 1 0
0 −1 0 1

]
(x − 1)(x2 + 1) = x3 − x2 + x − 1

[
−1 1 −1 1

]
(x + 1)(x2 + 1)

[
1 1 1 1

]
x4 − 1 = 0

[
0 0 0 0

]
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EXAMPLE - II

In order to determine all binary cyclic codes of length 7, consider decomposition

x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1)

Since we want to determine binary codes, all computations should be modulo 2 and
therefor all minus signs can be replaced by plus signs. Therefore

x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)

Therefore generators for 23 binary cyclic codes of length 7 are

1, a(x) = x + 1, b(x) = x3 + x + 1, c(x) = x3 + x2 + 1

a(x)b(x), a(x)c(x), b(x)c(x), a(x)b(x)c(x) = x7 + 1
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ENCODING with CYCLIC CODES I

Encoding using a cyclic code can be done by a multiplication of two polynomials - a
message (codeword) polynomial and the generating polynomial for the code.

Let C be a cyclic [n, k]-code over a Galois field with the generator polynomial

g(x) = g0 + g1x + . . .+ gr−1x
r−1 of degree r − 1 = n − k − 1.

If a message vector m is represented by a polynomial m(x) of the degree k, then m is
encoded, by a polynomial c(x), using the generator matrix G(x), induced by g(x), as
follows:

m⇒ c(x) = m(x)g(x),

Such an encoding can be realized by the shift register shown in Figure below, where
input is the k-bit to-be-encoded message, followed by n − k 0’s, and the output will be
the encoded message.

input

output

Shift-register for encoding a cyclic code. Small circles represent multiplication by
the corresponding constant,

⊕
nodes represent modular additions, squares are shift

cells.
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Shift-register for encoding a cyclic code. Small circles represent multiplication by
the corresponding constant,

⊕
nodes represent modular additions, squares are shift

cells.
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EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small
circles represent multiplication by the corresponding
constant,

⊕
nodes represent modular addition,

squares are delay elements.
The input (message) is given by a polynomial
mk−1xk−1 + . . .m2x2 + m1x + m0

and therefore the input to the shift register is the word

mk−1mk−2 . . .m2m1m0 →→→

IV054 1. Cyclic codes and channel codes 26/78



EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small
circles represent multiplication by the corresponding
constant,

⊕
nodes represent modular addition,

squares are delay elements.

The input (message) is given by a polynomial
mk−1xk−1 + . . .m2x2 + m1x + m0

and therefore the input to the shift register is the word

mk−1mk−2 . . .m2m1m0 →→→

IV054 1. Cyclic codes and channel codes 26/78



EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small
circles represent multiplication by the corresponding
constant,

⊕
nodes represent modular addition,

squares are delay elements.
The input (message) is given by a polynomial
mk−1xk−1 + . . .m2x2 + m1x + m0

and therefore the input to the shift register is the word

mk−1mk−2 . . .m2m1m0 →→→

IV054 1. Cyclic codes and channel codes 26/78



EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small
circles represent multiplication by the corresponding
constant,

⊕
nodes represent modular addition,

squares are delay elements.
The input (message) is given by a polynomial
mk−1xk−1 + . . .m2x2 + m1x + m0

and therefore the input to the shift register is the word

mk−1mk−2 . . .m2m1m0 →→→
IV054 1. Cyclic codes and channel codes 26/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...

IV054 1. Cyclic codes and channel codes 27/78



EXAMPLES of CYCLIC CODES

EXAMPLES of CYCLIC CODES
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GOLAY CODES - DESCRIPTION

Golay codes G24 and G23 were used by spacecraft Voyager I and Voyager II to transmit
color pictures of Jupiter and Saturn. Generator matrix for G24 has the form

G =



1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0



G24 is (24, 12, 8)-code and the weights of all codewords are multiples of 4. G23 is
obtained from G24 by deleting last symbols of each codeword of G24. G23 is
(23, 12, 7)-code. It is a perfect code.
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GOLAY CODE II

Golay code G23 is a (23, 12, 7)-code and can be defined also as the cyclic code generated
by the codeword

11000111010100000000000

This code can be constructed via factorization of x23 − 1.

Golay code G24 was used in NASA Deep Space Missions - in spacecraft Voyager 1 and
Voyager 2. It was also used in the US-government standards for automatic link
establishment in High Frequency radio systems.

Golay codes are named to honour Marcel J. E. Golay - from 1949.
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POLYNOMIAL CODES

A Polynomial code, with codewords of length n, generated by a (generator)
polynomial g(x) of degree m < n over a GF(q) is the code whose codewords are
represented exactly by those polynomials of degree less than n that are divisible by g(x).

Example: For the binary polynomial code with n = 5 and m = 2 generated by the
polynomial g(x) = x2 + x + 1 all codewords are of the form:

a(x)g(x)

where
a(x) ∈ {0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}

what results in the code with codewords

00000, 00111, 01110, 01001,

11100, 11011, 10010, 10101.
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REED-MULLER CODES

Reed-Muller code RM(d , r) is the code of k codewords of length n = 2r and distance
2r−d , where

k =
r∑

s=0

(
d

s

)
.

RM(d , r) code is generated by the set of all up to d inner products of the codewords vi ,
0 ≤ i ≤ r , where v0 = 12r and vi are prefixes of the word {1i0i}∗.

Example 1: RM(1, 3) code is generated by the codewords

v0 = 11111111

v1 = 10101010

v2 = 11001100

v3 = 11110000

Example 2: RM(2, 3) code is generated by the codewords

v0, v1, v2, v3, v1 · v2, v1 · v3, v2 · v3

where, for example v1 · v3 = 10100000
Special cases of Reed-Muller codes are Hadamard code and Reed-Solomon code.
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BCH CODES and REED-SOLOMON CODES

BCH codes and Reed-Solomon codes belong to the most important codes for
applications.

Definition A polynomial p is said to be a minimal polynomial for a complex number x
in GF (q) if p(x) = 0 and p is irreducible over GF (q).

Definition A cyclic code of codewords of length n over GF (q), where q is a power of a
prime p, is called BCH code1 of the distance d if its generator g(x) is the least common
multiple of the minimal polynomials for

ωl , ωl+1, . . . , ωl+d−2

for some l, where

ω is the primitive n-th root of unity.

If n = qm − 1 for some m, then the BCH code is called primitive.

Applications of BCH codes: satellite communications, compact disc players,disk drives,
two-dimensional bar codes,...
Comments: For BCH codes there exist efficient variations of syndrome decoding. A
Reed-Solomon code is a special primitive BCH code.

1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes in 1959.
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REED-SOLOMON CODES - basic idea behind - I

A message of k symbols can be encoded by viewing these symbols as coefficients of a
polynomial of degree k − 1 over a finite field of order N, evaluating this polynomial at
more than k distinct points and sending the outcomes to the receiver.

Having more than k points of the polynomial allows to determine exactly, through the
Lagrangian interpolation, the original polynomial (message).

Variations of Reed-Solomon codes are obtained by specifying ways distinct points are
generated and error-correction is performed.

Reed-Solomon codes found many important applications from deep-space travel to
consumer electronics.

They are very useful especially in those applications where one can expect that errors
occur in bursts - such as ones caused by solar energy.
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CHANNEL CODING - BASICS

Channel coding is concerned with sending streams of data, at the highest possible
rate, over a given communication channel and then obtaining the original data
reliably, at the receiver side, by using encoding and decoding algorithms that are
feasible to implement in available technology.

How well can channel coding be done? So called Shannon’s channel coding theorem
says that over many common channels there exist data coding schemes that are able to
transmit data reliably at all code rates smaller than a certain threshold, called nowadays
the Shannon channel capacity, of the given channel.

Moreover, the theorem says that probability of a decoding error can be made to decrease
exponentially as the block length N of the coding scheme goes to infinity.

However, the complexity of a ”naive”, or straightforward, optimum decoding schemes
increased exponentially with N - therefore such an optimum decoder rapidly becomed
unfeasible.

A breakthrough came when D. Forney, in his PhD thesis in 1972, showed that so called
concatenated codes could be used to achieve exponentially decreasing error probabilities
at all data rates less than the Shannon channel capacity, with decoding complexity
increasing only polynomially with the code length.
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CHANNEL (STREAMS) CODING I.

Therefore, the task of channel coding is to encode streams of data in such a way
that if they are sent over a noisy channel errors can be detected and/or corrected by the
receiver.

An important parameter of a channel code is code rate

r =
k

n

in case k bits are encoded by n bits.

The code rate express the amount of redundancy in the code - the lower is the
code rate, the more redundancy is in the codewords.
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CHANNEL (STREAM) CODING II

Codes with lower code rate can usually correct more errors. Consequently, the
communication system can operate

with a lower transmit power;

transmit over longer distances;

tolerate more interference from the environment;

use smaller antennas;

transmit at a higher data rate.
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CHANNEL CAPACITY

Channel capacity of a communication channel, is the
tightest upper bound on the (code) rate of information
that can be reliably transmitted over that channel.

By the noisy-channel Shannon coding theorem, the
channel capacity of a given channel is the limiting code
rate (in units of information per unit time) that can be
achieved with arbitrary small error probability.
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CHANNEL CAPACITY - FORMAL DEFINITION

Let X and Y be random variables representing the input and output of a channel.

Let PY |X (y |x) be the conditional probability distribution function of Y given X , which
can be seen as an inherent fixed probability of the communication channel.

The joint distribution PX ,Y (x , y) is then defined by

PX ,Y (x , y) = PY |X (y |x)PX (x),

where PX (x) is the marginal distribution.

The channel capacity is then defined by

C = sup
PX (x)

I (X ,Y )

where

I (X ,Y ) =
∑
y∈Y

∑
x∈X

PX ,Y (x , y) log

(
PX ,Y (x , y)

PX (x)PY (y)

)
is the mutual distribution - a measure of variables mutual distribution.
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SHANNON NOISY CHANEL THEOREM

For every discrete memoryless channel, the channel capacity

C = sup
PX

I (X ,Y )

has the following properties:
1. For every ε > 0 and R < C , for large enough N there exists a code of length N and
code rate R and a decoding algorithm, such that the maximal probability of the block
error is ≤ ε.
2. If a probability of the block error pb is acceptable, code rates up to R(pb) are
achievable, where

P(pb) =
C

1− H2(pb)

and H2(pb) is the binary entropy function.
3. For any pb code rates greater than R(pb) are not achievable.
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CONVOLUTION CODES

Our first example of good, though simple, channel codes are convolution codes.

Convolution codes have simple encoding and decoding, are quite a simple generalization
of linear codes and have encodings as cyclic codes.

An (n, k) convolution code (CC) is defined by an k × n generator matrix, entries of
which are polynomials over F2.

For example,

G1 = [x2 + 1, x2 + x + 1]

is the generator matrix for a (2, 1) convolution code, denoted CC1, and

G2 =

(
1 + x 0 x + 1

0 1 x

)
is the generator matrix for a (3, 2) convolution code denoted CC2
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ENCODING of FINITE POLYNOMIALS

An (n,k) convolution code with a k x n generator matrix G can be used to encode a
k-tuple of message-polynomials (polynomial input information)

I = (I0(x), I1(x), . . . , Ik−1(x))

to get an n-tuple of encoded-polynomials

C = (C0(x),C1(x), . . . ,Cn−1(x))

where

Cj(x) = Ij(x) · G
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EXAMPLES

EXAMPLE 1 – when the code CC1 is used:

(x3 + x + 1) · G1 = (x3 + x + 1) · (x2 + 1, x2 + x + 1)

= (x5 + x2 + x + 1, x5 + x4 + 1)

EXAMPLE 2 – when the code CC2 is used:

(x2 + x , x3 + 1) · G2 = (x2 + x , x3 + 1) ·
(

1 + x 0 x + 1
0 1 x

)
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ENCODING of INFINITE INPUT STREAMS

One of the way infinite streams can be encoded using convolution codes will be
Illustrated on the code CC1.

An input stream I = (I0, I1, I2, . . .) is mapped into the output stream
C = (C00,C10,C01,C11 . . .) defined by

C0(x) = C00 + C01x + . . . = (x2 + 1)I (x)

and

C1(x) = C10 + C11x + . . . = (x2 + x + 1)I (x).

The first multiplication can be done by the first shift register from the next figure; second
multiplication can be performed by the second shift register on the next slide and it holds

C0i = Ii + Ii+2, C1i = Ii + Ii−1 + Ii−2.

That is the output streams C0 and C1 are obtained by convoluting the input stream with
polynomials of G1.
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ENCODING

The first shift register

input

output

will multiply the input stream by x2 + 1 and the second shift register

input

output

will multiply the input stream by x2 + x + 1.
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ENCODING and DECODING

The following shift-register will therefore be an encoder for the code CC1

input
output streams

For decoding of convolution codes so called

Viterbi algorithm

is used.
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VITERBI ALGORITHM

In 1967 Andrew Vieterbi constructed his nowadays
famous decoding algorithm for soft decoding.

Vieterbi was very modest in evaluation of importance of
his algorithm - considered it as impractical.

Although this algorithm was rendered as impractical
due to the excessive storage requirements it started to
be well known, because it contributes to a general
understanding of convolution codes and sequential
decoding through its simplicity of mechanization and
analysis.

Nowadays (since 2006), a Viterbi decoder in a cellphone
takes up the area of a tenth of a square millimeter.
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BIAGWN CHANNELS

Binary Input Additive Gaussian White Noise (BIAGWN) channel, is a continuous channel.

A BIAGWN channel, with a standard deviation σ ≥ 0, can
be seen as a mapping

Xσ = {−1, 1} → R ,

where R is the set of reals.

The noise of BIAGWN is modeled by continuous Gaussian
probability distribution function:

Given (x , y) ∈ {−1, 1} × R , the noise y − x is distributed
according to the Gaussian distribution of zero mean and
standard derivation σ of the channel

Pr(y |x) =
1

σ
√

2π
e−

(y−x)2

2σ2
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SHANNON CHANNEL CAPACITY

For every combination of bandwidth (W ), channel type , signal power (S) and received
noise power (N), there is a theoretical upper bound, called channel capacity or Shannon
capacity, on the data transmission rate R for which error-free data transmission is
possible.

For BIAGWN channels, that well capture deep space channels, this limit is (by so-called
Shannon-Hartley theorem):

R <W log

(
1 +

S

N

)
{bits per second}

Shannon capacity sets a limit to the energy efficiency of the code.

Till 1993 channel code designers were unable to develop codes with performance
close to Shannon capacity limit, that is so called Shannon capacity approaching
codes, and practical codes required about twice as much energy as theoretical
minimum predicted.

Therefore, there was a big need for better codes with performance (arbitrarily)
close to Shannon capacity limits.

Concatenated codes and Turbo codes, discussed later, have such a Shannon capacity
approaching property.
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CONCATENATED CODES - I

The basic idea of concatenated codes is extremely simple.
A given message is first encoded by the first (outer) code
C1 (Cout) and C1-output is then encoded by the second
code C2 (Cin). To decode, at first C2 decoding and then
C1 decoding are used.

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

IV054 1. Cyclic codes and channel codes 51/78



CONCATENATED CODES - I

The basic idea of concatenated codes is extremely simple.
A given message is first encoded by the first (outer) code
C1 (Cout) and C1-output is then encoded by the second
code C2 (Cin). To decode, at first C2 decoding and then
C1 decoding are used.

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

IV054 1. Cyclic codes and channel codes 51/78



CONCATENATED CODES - I

The basic idea of concatenated codes is extremely simple.
A given message is first encoded by the first (outer) code
C1 (Cout) and C1-output is then encoded by the second
code C2 (Cin). To decode, at first C2 decoding and then
C1 decoding are used.

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

IV054 1. Cyclic codes and channel codes 51/78



CONCATENATED CODES II.

In 1962 Forney showed that concatenated codes could be
used to achieve exponentially decreasing error probabilities
at all data rates less than channel capacity in such a way
that decoding complexity increases only polynomially with
the code block length.

In 1965 concatenated codes were considered as unfeasible.
However, already in 1970s technology has advanced
sufficiently and they became standardize by NASA for
space applications.
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CONCATENATED CODES BRIEFLY

A code concatenated codes Cout and Cin maps a message

m = (m1,m2, . . . ,mK ),

as follows: At first Cout encoding is applied to get
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ANOTHER VIEW of CONCATENATED CODES

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

Outer code: - (n2, k2) code

Inner code: - (n1, k1) binary code

Inner decoder - (n1, k1) code

Outer decoder - (n2, k2) code

length of such a concatenated code is n1n2

dimension of such a concatenated code is k1k2

if minimal distances of both codes are d1 and d2, then resulting concatenated code
has minimal distance ≥ d1d2.
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EFFICIENT DECODING of CONCATENATED CODES

A natural approach to decoding of concatenated codes is to decode first the inner
code and then the outer code.

For a decoding algorithm to be practical it has to be polynomial time in the final
block length.

Assume there is a polynomial unique decoding algorithm for the outer code.

Next goal is to find polynomial time decoding algorithm for the inner code that is
polynomial in the final block length.

The main idea is that if the inner block length is logarithmic in the size of the outer
code, then the decoding algorithm for the inner code may run in the exponential
time of the inner block length.

In such a case we can use an exponential time but optimal maximum likelihood
decoder for the inner code.
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APPLICATIONS

Concatenated codes started to be used for deep space
communication starting with Voyager program in 1977
and stayed so until the invention of Turbo codes and
LDPC codes.

Concatenated codes are used also on Compact Disc.

The best concatenated codes for many applications
were based on outer Reed-Solomon codes and inner
Viterbi-decoded short constant length convolution
codes.
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EXAMPLE from SPACE EXPLORATION

At the very beginning of the Galileo mission to explore
Jupiter and its moons in 1989 it was discovered that
primary antenna (deployed in the figure on the top) failed
to deploy,
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GALILEO MISSION - SOLUTION

The primary antenna was designed to send 100, 000 b/s. Spacecraft had also another
antenna, but that was capable to send only 10 b/s. The whole mission looked as being a
disaster.
A heroic engineering effort was immediately undertaken in the mission center to design
the most powerful concatenated code conceived up to that time, and to program it into
the spacecraft computer.

The inner code was a 214 convolution code, decoded by the Viterbi algorithm.

The outer code consisted of multiple Reed-Solomon codes of varying length.

After all reparations and new encodings it was possible to send up to 1000 b/s. Mission
was rescued.

Nowadays when so called iterative decoding is used concatenation of even very simple
codes can yield superb performance.
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TURBO CODES

Channel coding was revolutionized by the invention of Turbo codes. Turbo codes were
introduced by Berrou, Glavieux and Thitimajshima in 1993. Turbo codes are specified by
special encodings.
A Turbo code can be seen as formed from the parallel composition of two (convolution)
codes separated by an interleaver (that permutes blocks of data in a fixed
(pseudo)-random way).
A Turbo encoder is formed from the parallel composition of two (convolution)
encoders separated by an interleaver.

input x

interleaver

convolution

i

convolution

encoder

encoder

parity bit b1

parity bit b2
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EXAMPLES of TURBO and CONVOLUTION ENCODERS

A Turbo encoder
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ADVANTAGES of INTERLEAVING

let us assume that a word
cenaje200kc

is transmitted

and during the transmission symbols 7-10 are lost to get:

cenaje....c

In such a case very important information was definitely lost.

However, if the input word is first permuted according to the permutation

3, 8, 7, 9, 10, 1, 2, 6, 4, 11, 5

then the input will be actually the word

n020kceeacj

and if the same four positions are lost the output will be

n020kc....j

However, after the inverse permutation the output actually wll be

c.n.j .200k.

which is quite easy to decode correctly!!!!
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DECODING and PERFORMANCE of TURBO CODES

A soft-in-soft-out decoding is used - the decoder gets from the analog/digital
demodulator a soft value of each bit - probability that it is 1 and produces only a
soft-value for each bit.

The overall decoder uses decoders for outputs of two encoders that also provide only
soft values for bits and by exchanging information produced by two decoders and
from the original input bit, the main decoder tries to increase, by an iterative
process, likelihood for values of decoded bits and to produce finally hard outcome - a
bit 1 or 0.

Turbo codes performance can be very close to theoretical Shannon limit.

This was, for example the case for UMTS (the third Generation Universal Mobile
Telecommunication System) Turbo code having a less than 1.2-fold overhead. in
this case the interleaver worked with block of 40 bits.

Turbo codes were incorporated into standards used by NASA for deep space
communications, digital video broadcasting and both third generation cellular
standards.

Literature: M.C. Valenti and J.Sun: Turbo codes - tutorial, Handbook of RF and
Wireless Technologies, 2004 - reachable by Google.
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REACHING SHANNON LIMIT

Though Shannon developed his capacity bound already in 1940, till recently code
designers were unable to come with codes with performance close to theoretical limit.

In 1990 the gap between theoretical bound and practical implementations was still
at best about 3dB

The decibel dB is a number that represents a logarithm of the ration of two values
of a quantity (such as value dB = 20 log(V1/V 2)
A decibel is a relative measure. If E is the actual energy and Eref is the theoretical
lower bound, then the relative energy increase in decibels is

10 log10

E

Eref

Since log10 2 = 0.3 a two-fold relative energy increase equals 3dB.

For code rate 1
2

the relative increase in energy consumption is about 4.8 dB for
convolution codes and 0.98 for Turbo codes.
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TURBO CODES - SUMMARY

Turbo codes encoding devices are usually built from two (usually identical) recursive
systematic convolution encoders, linked together by nonuniform interleaver
(permutation) devices.

For decoding of Turbo codes so alled soft deoding is used. Soft decoding is an
iterative process in which each component decoder takes advantage of the work of
other at the previous step, with the aid of the original concept of intrinsic
information.

For sufficiently large size of interleavers, the correcting performance of turbo codes,
as shown by simulations, appears to be close to the theoretical Shannon limit.

Permutations performed by interleaver can often by specified by simple polynomials
that make one-to-one mapping of some sets {0, 1, . . . , q − 1}.
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WHY ARE TURBO CODES SO GOOD?

Turbo codes are linear codes.

A ”good” linear code is one that has mostly high-weight codewords.

High-weight codewords are desirable because they are more distinct and the decoder
can more easily distinguish among them.

A big advantage of Turbo encoders is that they reduce the number of low-weight
codewords because their output is the sum of the weights of the input and two
parity output bits.

A turbo code can be seen as a refinement of concatenated codes plus an iterative
algorithm for decoding.
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UNIQUE versus LIST DECODING

In the unique decoding model of error-correction, considered so far, the task is to find,
for a received (corrupted) message wc , the closest codeword w to the message wc that
was received.

This error-correction task/model is not sufficiently good in case when the number
of errors can be large.

In the list decoding model the task to solve when a code C is used, is for a received
message (a corrupted codeword) wc and a given ε to output (list of) all codewords from
C with the distance at most ε from wc .

List decoding is considered to be successful in case the outputted list contains the
codeword that was sent.

It has turned out that for a variety of important codes, including the Reed-Solomon
codes, there are efficient algorithms for list decoding that allow to correct a large variety
of errors.

List decoding seems to be a stronger error-correcting mode than unique decoding.
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UNIQUE versus LIST DECODING

UNIQUE DECODING:

m −−− > e(m)−−− > NOISE −−− > n(e(m))−−− > e(m)

LIST DECODING:

m−−− > e(m)−−−− > NOISE−−− > n(e(m))−−− > Sm−−−such that e(m) ∈ Sm
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LIST DECODING - INTUITION BEHIND

For a polynomial-time list decoding algorithm to exist we need that any Hamming ball of
a radius pn around a received word (where p is the fraction of errors in terms of the block
length n) has a small number of codewords.

This is because the list size itself is a lower bound for the running time of the algorithm.
Hence it is required that the list size has to be polynomial in the block length of the
code.

A combinatorial consequence of the above requirement is that it implies an upper bound
on the rate of the code. List decoding promises to meet this bound.
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EFFICIENCY of LIST DECODING - SUMMARY

With list decoding the error-correction performance can
double.

It has been shown, non-constructively, for any code rate R ,
that such codes of the rate R exist that can be list
decoded up to a fraction of errors approaching 1− R .

The quantity 1− R is referred to as the list decoding
capacity.

For Reed-Solomon codes there is a list decoding up to
1−
√

2R errors.
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LIST DECODING - MATHEMATICAL FORMULATION

Let C be a q-nary linear [n, k, d ] error correcting code.

For a given q-nary input word w of length n and a given error bound ε let the task be
to output a list of codewords of C whose Hamming distance from w is at most ε

We are, naturally, interested only in polynomial, in n, algorithms able to do that.

(p, L)-list decodability: Let C be a q-nary code of codewords of length n; 0 ≤ p ≤ 1 and
let L > 1 be an integer.

If for every q-nary word w of length n the number of codewords of C withing Hamming
distance pn from w is at most L, then the code C is said to be (p, L)-list-decodable.

Theorem let q ≥ 2, 0 ≤ p ≤ 1− 1/q and ε ≥ 0 then for large enough block length n if
the code rate R ≤ 1− Hq(p)− ε, then there exists a (p,O(1/ε)))-list decodable code.
[Hq(p) = p logq(q − 1)− p logq p − (1− p) logq(1− p) is q-ary entropy function.]

Moreover, if R > 1− Hq(p) + ε, then every (p, L)-list-decodable code has L = qΩ(n)
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LIST DECODING POTENTIAL

The concept of list decoding was proposed by Peter
Elias in 1950s.

In 2006 Guruswami and Atri Rudra gave explicit codes
that achieve list decoding capacity.

Their codes are called folded Reed-Solomon codes and
they are actually nothing but plain Reed-Solomon codes
but viewed as codes over a larger alphabet by a careful
bundling codeword symbols.
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APPLICATIONS in COMPLEXITY THEORY

Surprisingly, list-decoding found interesting applications in
cryptography and in computational complexity theory. For
example, in

designing of hard core predicates from one-way
permutations;

predicting witnesses for NP-problems;

designing randomness extractors and pseudorandom
generators.
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ANOTHER APPLICATIONS of REED-SOLOMON CODES

Reed-Solomon codes have been widely used in mass storage systems to correct the
burst errors caused by media defects.

Special types of Reed-Solomon codes have been used to overcome unreliable nature
of data transmission over erasure channels.

Several bar-code systems use Reed-Solomon codes to allow correct reading even if a
portion of a bar code is damaged.

Reed-Solomon codes were used to encode pictures sent by the Voyager spacecraft.

Modern versions of concatenated Reed-Solomon/Viterbi decoder convolution coding
were and are used on the Mars Pathfinder, Galileo, Mars exploration Rover and
Cassini missions, where they performed within about 1-1.5dB of the ultimate limit
imposed by the Shannon theorem.
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FUTURE of CODING DEVELOPMENTS

The following reasons are behind increasing needs to
develop new and new codes, new and new encoding and
decoding methods:

Needs for miniaturization, higher quality and better
efficiency as well as energy savings of many important
information storing and processing devices.

New channels are used, new types of errors start to be
possible.

New computation tools are developed - for example
special types of parallelization,....
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LOCALLY DECODABLE CODES -I

Classical error-correcting codes allow one to encode an n-bit message w into an N-bit
codeword C(w), in such a way that w can still be recovered even if C(w) gets corrupted
in a number of bits.

The disadvantage of the classical error-correcting codes is that one needs to consider all,
or at least most of, the (corrupted) codeword to recover anything about w .

On the other hand so-called locally decodable codes allow reconstruction of any
arbitrary bit wi , from looking only at k randomly chosen bits of C(w), where k is as
small as 3.

Locally decodable codes have a variety of applications in cryptography and theory of
fault-tolerant computation.
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LOCALLY DECODABLE CODES -II

Locally decodable codes have another remarkable property:

A message can be encoded in such a way that should a
small enough fraction of its symbols die in the transit, we
could, with high probability, to recover the original bit
anywhere in the message we choose.

Moreover, this can be done by picking at random only
three bits of the received message and combining them in
a right way.
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