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One session will be in English again RNDr Mate;
Pivoluska , PhD - 16.00-17.50, A319

Consultation hours for M. Pivolugka: Thursday,
9.00-11.00 or by an agreement in G301

Likely, the most efficient use of the lectures is to print
materials of each lecture before the lecture and to
make your comments into them during the lecture.
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algebra that you should, but may not, know and you
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To your disposal there are also lecture notes called the
" Exercises Book™" that you can upload from the IS for the

lecture IV054, through links " Ucebni materialy —; Exercise
Book”

lecture notes contain selected exercises from_the
homeworks for the past lectures on Coding, Cryptography

and Cryptographic Protocols” with solutions.
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The history of cryptography is the story of centuries-old battles between codemakers
(ciphermakers) and codebreakers (cipherbreakers). It is an intellectual arms race that has
had a dramatic impact on the course of history.

This ongoing battle between codemakers and codebreakers has inspired a whole series of
remarkable scientific breakthroughs.

History is full of ciphers (cryptosystems). They have decided the outcomes of battles and
led to the deaths of kings and queens.

Security of communication and data, as well as identity or privacy of users, are of the key
importance for information society.

Cryptography, when broadly understood, is an important tool to achieve such goals.
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= In 1993 in Europe Rosetta spacecraft project started.
= In 2004 Rosetta spacecraft was launched.

= In August 2015 Rosetta spacecraft got on the orbit of the comet 67P (one of 4000
known comets of the solar systems) and sent to earth a lot of photos of 67P.

m In spite of the fact that the comet 67P is 720 millions of kilometers from the earth
and there is a lot of noise for signals on the way encoding of photos arrived in such a
form that they could be decoded to get excellent photos of the comet.

m All that was, to the large extent, due to the enormously high level coding
theory already had in 1993.

m Since that time coding theory has made another enormous progress that has
allowed, among other things, almost perfect mobile communication and
transmission of music in time and space.
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ABSTRACT

Coding theory - theory of error correcting codes - is one of the most interesting and
applied part of informatics.

Goals of coding theory are to develop systems and methods that allow to detect/correct
errors caused when information is transmitted through noisy channels.

All real communication systems that work with digitally represented data, as CD players,
TV, fax machines, internet, satellites, mobiles, require to use error correcting codes
because all real channels are, to some extent, noisy — due to various
interference/destruction caused by the environment

m Coding theory problems are therefore among the very basic and most frequent
problems of storage and transmission of information.

m Coding theory results allow to create reliable systems out of unreliable systems to
store and/or to transmit information.

m Coding theory methods are often elegant applications of very basic concepts and
methods of (abstract) algebra.

This first chapter presents and illustrates the very basic problems, concepts, methods and
results of coding theory.
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is often an important and very valuable commodity.

This lecture is about how to protect or even hide
information

against noise or even unintended user,

using mainly classical, but also quantum tools.

prof. Jozef Gruska IV054 1. Basics of coding theory 18/67






CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)

transmitted through noisy channels.

message
source

W

Encoding

cha

code
word

nne

code
word

prof. Jozef Gruska

C(W) noi

ise C'(W)

IV054 1. Basics of coding theory

Decoding

user

19/67



CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

channel
code code
rg%isrige W Encoding [ word | word ,|Decoding W | user
C(W) noise C'(W)

Error correcting framework

prof. Jozef Gruska IV054 1. Basics of coding theory 19/67



CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

channel
code code
rT;%susracge W Encoding [ word | word ,|Decoding W | user
C(W) noise C'(W)
Error correcting framework
Example
Encoding [ 00000 = 01001 |Decoding
Yrggsg‘f%% YES |ves-00000 01001 |YES,| user
NO -11111 00000

prof. Jozef Gruska IV054 1. Basics of coding theory 19/67



CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

channe
code code
rT;%susracge W Encoding [ word | word ,|Decoding W | user
C(W) noise C'(W)
Error correcting framework
Example
Encoding [ 00000 = 01001 |Decoding
Yrggsg‘f%% YES |ves-00000 01001 |YES,| user
NO -11111 00000

A code C over an alphabet X is a nonempty subset of X*(C C X*).

prof. Jozef Gruska

IV054 1. Basics of coding theory

19/67



CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

Decoding

Decoding
01001

channe

code code

rr;%susracge W Encoding [ _word word
C(W) noise C'(W)
Error correcting framework
Example

message [YES \I(EEQSC-%((’)IO%% 00000 01001
YES or NO NO -11111

00000

YES

user

A code C over an alphabet X is a nonempty subset of X*(C C X*).

A g-nary code is a code over an alphabet of g-symbols.

prof. Jozef Gruska

IV054 1. Basics of coding theory

user

19/67



CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

Decoding

Decoding
01001

channe

code code

rr;%susracge W Encoding [ _word word
C(W) noise C'(W)
Error correcting framework
Example

message [YES \I(EEQSC-%((’)IO%% 00000 01001
YES or NO NO -11111

00000

YES

user

A code C over an alphabet X is a nonempty subset of X*(C C X*).

A g-nary code is a code over an alphabet of g-symbols.

A binary code is a code over the alphabet {0, 1}.

prof. Jozef Gruska

IV054 1. Basics of coding theory

user




CODING - BASIC CONCEPTS

Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

channel
code code
rr;%susracge W Encoding [ word | word ,|Decoding W | user
C(W) noise C'(W)
Error correcting framework
Example
Encoding [ 00000 = 01001 |Decoding
message |YES YES~00000 01001 YES user
pEREATE) NO -11111 00000
A code C over an alphabet X is a nonempty subset of X*(C C X*).
A g-nary code is a code over an alphabet of g-symbols.
A binary code is a code over the alphabet {0, 1}.
Examples of codes C1={00,01,10,11} C2 = {000,010,101,100}
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Error-correcting codes are used to correct messages when they are (erroneously)
transmitted through noisy channels.

channel
code code
rT;%susracge W Encoding [ word | word ,|Decoding W | user
C(W) noise C'(W)
Error correcting framework
Example
Encoding [ 00000 = 01001 |Decoding
Yrggsos‘f%% YES |ves-00000 01001 |YES,| user
NO -11111 00000

A code C over an alphabet X is a nonempty subset of X*(C C X*).

A g-nary code is a code over an alphabet of g-symbols.

A binary code is a code over the alphabet {0, 1}.

Examples of codes C1={00,01,10,11} C2 = {000,010,101,100}
€3 = {00000,01101, 10111, 11011}
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transmitted.
(Telephone lines, optical fibres and also the atmosphere are examples of channels.)

NOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbances, poor
typing, poor hearing, . ...

TRANSMISSION GOALS

=

Encoding of information should be very fast.

]

Very similar messages should be encoded very differently.

Transmission of encoded messages should be very easy.

[~ )

Decoding of received messages should be very easy.
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transmitted.
(Telephone lines, optical fibres and also the atmosphere are examples of channels.)

NOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbances, poor
typing, poor hearing, . ...

TRANSMISSION GOALS

Encoding of information should be very fast.

Very similar messages should be encoded very differently.

B Transmission of encoded messages should be very easy.

Decoding of received messages should be very easy.

A Correction of errors introduced in the channel should be reasonably easy.

[@ As large as possible amount of information should be transferred reliably per a time
unit.

BASIC METHOD OF FIGHTING ERRORS: REDUNDANCY!!!

Example: 0 is encoded as 00000 and 1 is encoded as 11111.
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Discrete channels and continuous channels are main
types of channels.

With an example of continuous channels we will deal in
chapter 3. Two main models of noise in discrete
channels are:

= Shannon stochastic (probabilistic) noise model:
Pr(y|x) (probability of the output y if the input is x) is
known and the probability of too many errors is low.

m Hamming adversarial (worst-case) noise model:
Channel acts as an adversary that can arbitrarily
corrupt the input codewords subject to a given bound
on the number of errors.
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DISCRETE CHANNELS - MATHEMATICAL VIEWS

Formally, a discrete Shannon stochastic channel is described by a triple C = (X, Q, p),
where

m X is an input alphabet
m Q is an output alphabet

m Pr is a probability distribution on X x Q and for each i € X,0 € Q, Pr(i, o) is the
probability that the output of the channel is o if the input is /.
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BASIC CHANNEL CODING PROBLEMS

Summary: The task of a communication channel coding
is to encode the information to be sent over the channel in
such a way that even in the presence of some channel
noise, several (a specific number of) errors can be
detected and/or corrected.
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BASIC IDEA of ERROR CORRECTION

Details of the techniques used to protect information against noise in practice are

sometimes rather complicated, but basic principles are mostly easily understood.
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Details of the techniques used to protect information against noise in practice are

sometimes rather complicated, but basic principles are mostly easily understood.

The key idea is that in order to protect a message
against a noise, we should encode the message by
adding some redundant information to the message.

This should be done in such a way that even if the message is corrupted by a noise,
there will be enough redundancy in the encoded message to recover — to decode
the message completely.
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MAJORITY VOTING DECODING - BASIC IDEA

The basic idea of so called majority voting
decoding/principle or of maximal likelihood
decoding/principle, when a code C is used, is

to decode a received message v’

by a codeword w that is the closest one to w’

in the whole set of the codewords of the given code
C.
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In case: (a) the encoding
0—000 11— 111,

is used,
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EXAMPLE

In case: (a) the encoding
05000 1-s111,

is used,
(b) the probability of the bit error is p < % and,

(c) the following majority voting decoding
000,001, 010,100 — 000 and 111,110,101,011 — 111

is used,
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EXAMPLE

In case: (a) the encoding
0000 1-s111,

is used,
(b) the probability of the bit error is p < % and,

(c) the following majority voting decoding
000,001, 010,100 — 000 and 111,110,101,011 — 111

is used,

then the probability of an erroneous decoding (for the case of 2 or 3 errors) is

3p°(1—p)+p’=3p"—2p* <p
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EXAMPLE: Coding of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig. 1) grided as shown in Fig.1. Only Alice
knows the route through which Bob can reach her avoiding the enemy territory. Alice
wants to send Bob the following information about the safe route he should take.
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Story Alice and Bob share an identical map (Fig. 1) grided as shown in Fig.1. Only Alice
knows the route through which Bob can reach her avoiding the enemy territory. Alice
wants to send Bob the following information about the safe route he should take.

NNWNNWWSSWWNNNNWWN

Three ways to encode the safe route from Bob to
Alice are:

Cl={N=00W=01,5=11,E = 10}
In such a case any error in the code word

000001000001011111010100000000010100

would be a disaster.
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EXAMPLE: Coding of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig. 1) grided as shown in Fig.1. Only Alice
knows the route through which Bob can reach her avoiding the enemy territory. Alice
wants to send Bob the following information about the safe route he should take

Alice
NNWNNWWSSWWNNNNWWN

Y
7 / ////
Al

[
Alice are:

f1})
Three ways to encode the safe route from Bob to

Cl={N=00W=01,5=11,E = 10}
In such a case any error in the code word

\
— =

000001000001011111010100000000010100
would be a disaster

C2 ={000,011,101,110}

NN\ i

X |Bob

Fig. 1
A single error in encoding each of symbols N, W, S, E can be detected
C3 = {00000,01101,10110,11011}

A single error in decoding each of symbols N, W, S, E can be corrected
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Datawords - words of a message
Codewords - words of some code.
Block code - a code with all codewords of the same length.

Basic assumptions about channels

Code length preservation. Each output word of a channel it should have the same
length as the corresponding input codeword.

Independence of errors. The probability of any one symbol being affected by an
error in transmissions is the same.

Basic strategy for decoding

For decoding we use the so-called maximal likelihood principle, or nearest neighbor
decoding strategy, or majority voting decoding strategy which says that

the receiver should decode a received word w’

as

the codeword w that is the closest one to w'.
prof. Jozef Gruska IV054 1. Basics of coding theory 28/67



The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y.



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
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h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance
h(x,y)=0&x=y
h(x,y) = h(y,x)

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance
h(x,y)=0&x=y

h(x, y) = h(y,x)
h(x,z) < h(x,y) + h(y, z) triangle inequality

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance
h(x,y)=0&x=y
h(x,y) = h(y;x)
h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance
h(x,y)=0&x=y
h(x,y) = h(y;x)
h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance

h(x,y) =0 x=y

h(x,y) = h(y,x)

B h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},

Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance

h(x,y)=0&x=y

h(x,y) = h(y,x)

B h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},

Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance

h(x,y)=0&x=y

h(x,y) = h(y,x)

B h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},

Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem
A code C can detect up to s errors if h(C) > s+ 1.

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance

h(x,y)=0&x=y

h(x,y) = h(y,x)

B h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},

Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem
A code C can detect up to s errors if h(C) > s+ 1.
B A code C can correct up to t errors if h(C) > 2t + 1.

prof. Jozef Gruska IV054 1. Basics of coding theory 29/67



HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance
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Basic error correcting theorem
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HAMMING DISTANCE

The intuitive concept of “closeness” of two words is well formalized through Hamming
distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.
Example: h(10101,01100) = 3, h(fourth, eighth) = 4
Properties of Hamming distance

h(x,y) =0 x=y
B h(x,y) = h(y, x)
B h(x,z) < h(x,y) + h(y, z) triangle inequality
An important parameter of codes C is their minimal distance.

h(C) = min{h(x,y)|x,y € C,x # y},
Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem

A code C can detect up to s errors if h(C) > s+ 1.

B A code C can correct up to t errors if h(C) > 2t + 1.
Proof (1) Trivial. (2) Suppose h(C) > 2t + 1. Let a codeword x is transmitted and a
word y is received with h(x,y) < t.
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Therefore, h(C) is the smallest number of errors that can change one codeword into
another.

Basic error correcting theorem

A code C can detect up to s errors if h(C) > s+ 1.

B A code C can correct up to t errors if h(C) > 2t + 1.
Proof (1) Trivial. (2) Suppose h(C) > 2t + 1. Let a codeword x is transmitted and a
word y is received with h(x,y) < t. If X' # x is any codeword, then h(y,x') >t +1
because otherwise h(y,x’) < t 4+ 1 and therefore h(x,x") < h(x,y) + h(y,x’) <2t +1

what contradicts the assumption h(C) > 2t + 1.
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Example Let all 2! of binary words of length 11 be codewords

and let the probability of a bit error be p = 1078,

Let bits be transmitted at the rate 107 bits per second.

The probability that a word is transmitted incorrectly is approximately

11p(1 - p)*° ~ .



POWER of PARITY BITS

Example Let all 2!! of binary words of length 11 be codewords

and let the probability of a bit error be p = 1072.

Let bits be transmitted at the rate 10 bits per second.

The probability that a word is transmitted incorrectly is approximately
11p(1 — p)° =~ %.

1 107

Therefore )
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POWER of PARITY BITS

Example Let all 2!! of binary words of length 11 be codewords

and let the probability of a bit error be p = 1072.

Let bits be transmitted at the rate 10 bits per second.

The probability that a word is transmitted incorrectly is approximately

11p(1 — p)¥ ~ L.

Therefore % . % = 0.1 of words per second are transmitted incorrectly.

Therefore, one wrong word is transmitted every 10 seconds, 360 erroneous words every
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and let the probability of a bit error be p = 1072.

Let bits be transmitted at the rate 10 bits per second.

The probability that a word is transmitted incorrectly is approximately
11p(1 — p)* = %.

7 . .
% . % = 0.1 of words per second are transmitted incorrectly.

Therefore, one wrong word is transmitted every 10 seconds, 360 erroneous words every
hour and 8640 words every day without being detected!

Let now one parity bit be added.

Any single error can be detected!!!

The probability of at least two errors is:
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POWER of PARITY BITS

Example Let all 2!! of binary words of length 11 be codewords

and let the probability of a bit error be p = 1072.

Let bits be transmitted at the rate 10 bits per second.

The probability that a word is transmitted incorrectly is approximately
11p(1 — p)* = %.

7 . .
Therefore % . % = 0.1 of words per second are transmitted incorrectly.

Therefore, one wrong word is transmitted every 10 seconds, 360 erroneous words every
hour and 8640 words every day without being detected!

Let now one parity bit be added.

Any single error can be detected!!!

The probability of at least two errors is:

1-(1-p)?-12(1-p)'p =~ (3)(1 - p)°P" = 1o

. 7 _ . .
Therefore, approximately lg—?e .10~ 5.5.107° words per second are transmitted with an

12
undetectable error.

Corollary One undetected error occurs only once every 2000 days! (2000 ~ 10° ).

5.5x 86400
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TWO-DIMENSIONAL PARITY CODE

This is a generalization of the previous (called also as one-dimensional) parity code The
two-dimensional parity code arranges first the to be transmitted message into a
two-dimensional array and then to each row (column) of the array parity bits are
attached.
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two-dimensional parity code arranges first the to be transmitted message into a
two-dimensional array and then to each row (column) of the array parity bits are
attached.

Example Binary string

10001011000100101111

is represented and encoded as follows

1 0 0 0 1 O

1 0 0 0 1
0 1.1 0 0O
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-0 1 0 0 1 O
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TWO-DIMENSIONAL PARITY CODE

This is a generalization of the previous (called also as one-dimensional) parity code The
two-dimensional parity code arranges first the to be transmitted message into a
two-dimensional array and then to each row (column) of the array parity bits are
attached.

Example Binary string

10001011000100101111

is represented and encoded as follows

1 0 0010

1 0 0 0 1
0 1.1 0 0O

01 100
-0 1 0 0 1 O

01 0 0 1
01111011110
11 01 1 0

Question How much better is two-dimensional encoding than one-dimensional encoding?
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m n - is the length of codewords.
m M - is the number of codewords.

m d - is the minimum distance in C.
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m n - is the length of codewords.
m M - is the number of codewords.

m d - is the minimum distance in C.

Example:
C1={00,01,10,11} is a (2,4,1)-code.
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Example:

C1={00,01,10,11} is a (2,4,1)-code.
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NOTATIONS and EXAMPLES

Notation: An (n, M, d)-code C is a code such that
m n - is the length of codewords.
m M - is the number of codewords.

m d - is the minimum distance in C.

Example:

C1={00,01,10,11} is a (2,4,1)-code.

C2 ={000,011,101,110} is a (3,4,2)-code.

C3 = {00000, 01101,10110, 11011} is a (5,4,3)-code.

Comment: A good (n, M, d)-code has small n, large M and also large d.
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Examples (Transmission of photographs from the deep space)

u In 1965-69 Mariner 4-5 probes took the first photographs of another planet - 22
photos. Each photo was divided into 200 x 200 elementary squares - pixels. Each
pixel was assigned 6 bits representing 64 levels of brightness. and so called
Hadamard code was used.
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u In 1965-69 Mariner 4-5 probes took the first photographs of another planet - 22
photos. Each photo was divided into 200 x 200 elementary squares - pixels. Each
pixel was assigned 6 bits representing 64 levels of brightness. and so called
Hadamard code was used.

Transmission rate was 8.3 bits per second.

= In 1970-72 Mariners 6-8 took such photographs that each picture was broken into
700 x 832 squares. So called Reed-Muller (32,64,16) code was used.
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EXAMPLES from DEEP SPACE TRAVELS

Examples (Transmission of photographs from the deep space)

In 1965-69 Mariner 4-5 probes took the first photographs of another planet - 22
photos. Each photo was divided into 200 x 200 elementary squares - pixels. Each
pixel was assigned 6 bits representing 64 levels of brightness. and so called
Hadamard code was used.

Transmission rate was 8.3 bits per second.

In 1970-72 Mariners 6-8 took such photographs that each picture was broken into
700 x 832 squares. So called Reed-Muller (32,64,16) code was used.

Transmission rate was 16200 bits per second. (Much better quality pictures could be
received)
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HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

prof. Jozef Gruska IV054 1. Basics of coding theory 35/67



HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 x 32 matrix
H = {hy}, where 0 </, j < 31 and

hij _ (_1)aobg+alb1+...+a4b4

prof. Jozef Gruska IV054 1. Basics of coding theory 35/67



HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 x 32 matrix
H = {hy}, where 0 </, j < 31 and

hij — (_1)aobo+a1b1+...+a4b4
where i and j have binary representations

i = asazarai ao, J = babsbo by by

prof. Jozef Gruska IV054 1. Basics of coding theory 35/67



HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 x 32 matrix
H = {hy}, where 0 </, j < 31 and

hij — (_1)aobo+a1b1+...+a4b4
where i and j have binary representations

i = asazarai ao, J = babsbo by by

The remaining 32 codewords are represented by the matrix —H.

prof. Jozef Gruska IV054 1. Basics of coding theory 35/67



HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 x 32 matrix
H = {hy}, where 0 </, j < 31 and

hij — (_1)aobg+alb1+...+a4b4

where i and j have binary representations

i = asazarai ao, J = babsbo by by

The remaining 32 codewords are represented by the matrix —H.
Decoding was quite simple.
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CODES RATES

For g-nary (n, M, d)-code C we define the code rate, or information rate, R¢, by

lggM
Rc = .

n

The code rate represents the ratio of the number of needed input data symbols to the
number of transmitted code symbols.

If a g-nary code has code rate R, then we say that it transmits R g-symbols per a channel
use - or R is a number of bits per a channel use (bpc) - in the case of binary alphabet.

prof. Jozef Gruska IV054 1. Basics of coding theory 36/67



CODES RATES

For g-nary (n, M, d)-code C we define the code rate, or information rate, R¢, by

_ lggM
Rc = ==,
The code rate represents the ratio of the number of needed input data symbols to the
number of transmitted code symbols.

If a g-nary code has code rate R, then we say that it transmits R g-symbols per a channel
use - or R is a number of bits per a channel use (bpc) - in the case of binary alphabet.

Code rate (6/32 for Hadamard code), is an important parameter for real
implementations, because it shows what fraction of the communication bandwidth is
being used to transmit actual data.
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Each book till 1.1.2007 had International Standard Book Number which was a 10-digit
codeword produced by the publisher with the following structure:
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codeword produced by the publisher with the following structure:

/ P m w = X1...X10
language publisher number weighted check sum
0 07 709503 0

such that "1 (11 — i)x; = 0 (mod11)

The publisher has to put xi0 = X if xi0 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

Single error detection

Let X = x1...x10 be a correct code and let

Y =X1...Xj—1yjXj+1...Xw0 With yj = x; +a,a #0
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The ISBN-code |

Each book till 1.1.2007 had International Standard Book Number which was a 10-digit
codeword produced by the publisher with the following structure:

/ P m w = X1...X10
language publisher number weighted check sum
0 07 709503 0

such that "1 (11 — i)x; = 0 (mod11)

The publisher has to put xi0 = X if xi0 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

Single error detection
Let X = x1...x10 be a correct code and let
Y =X1...Xj—1yjXj+1...Xw0 With yj = x; +a,a #0
In such a case:

S (11— i)y = 1% (11 = i)x + (11— j)a # 0 (mod11)
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Transposition detection

Let x; and xx be exchanged.

S (AL = i)y = 30 (1L = i)xi + (k= )x+ (= k)xe = (k = j) (o5 — xk) # 0 (mod11)



The ISBN-code I

Transposition detection

Let x; and xi be exchanged.

St = i)y = 322 (11 = i)xi + (k= J)x + (= k)xic = (k = j)(% — x) # 0 (mod11)
if k# j and x; # x«.
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New ISBN code

Starting 1.1.2007 instead of 10-digit ISBN code a 13-digit
ISBN code is being used.

New ISBN number can be obtained from the old one by preceding
the old code with three digits 978.
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New ISBN code

Starting 1.1.2007 instead of 10-digit ISBN code a 13-digit
ISBN code is being used.

New ISBN number can be obtained from the old one by preceding
the old code with three digits 978.

For details about 13-digit ISBN see

http://www.en.wikipedia.org/Wiki/International_Standard_Book_Number
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Definition Two g-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:
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Definition Two g-ary codes are called equivalent if one can be obtained from the other by
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Question: Let a code be displayed as an M x n matrix. To what correspond operations
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Definition Two g-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

a permutation of the positions of the code.

a permutation of symbols appearing in a fixed position.
Question: Let a code be displayed as an M x n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

prof. Jozef Gruska IV054 1. Basics of coding theory 40/67



EQUIVALENCE of CODES

Definition Two g-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

a permutation of the positions of the code.

a permutation of symbols appearing in a fixed position.
Question: Let a code be displayed as an M x n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

Examples of equivalent codes
0 0 0

= = O O
== O O

1 0
0 1
1 1
0 0

o=~ O
= = OO
= O = O

1 0
1 1
0 1

[ =
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EQUIVALENCE of CODES

Definition Two g-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

a permutation of the positions of the code.

a permutation of symbols appearing in a fixed position.
Question: Let a code be displayed as an M x n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

Examples of equivalent codes

0010 0)(0O0O0TO0O
000 1 1lJo 1101
1111 1(y1 0110
1 1000) 11011

0 0 0) (0 1 2
{1 1 1%1 2 0

2 2 2} |2 01
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EQUIVALENCE of CODES

Definition Two g-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

a permutation of the positions of the code.

a permutation of symbols appearing in a fixed position.
Question: Let a code be displayed as an M x n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

Examples of equivalent codes

0010 0)(0O0O0TO0O
000 1 1lJo 1101
1111 1(y1 0110
1 1000) 11011

0 0 0) (0 1 2
{1 1 1%1 2 0

2 2 2} |2 01

Lemma Any g-ary (n, M, d)-code over an alphabet {0,1,...,q — 1} is equivalent to an
(n, M, d)-code which contains the all-zero codeword 00...0.

Proof Trivial.
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A good (n, M, d)-code should have a small n, large M and large d.



THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.
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The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem

Proof
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem

Proof

(2) First claim is obvious;
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem

Proof

(2) First claim is obvious;
(b) Let C be an g-nary (n, M, n)-code.
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem

Proof
(2) First claim is obvious;

(b) Let C be an g-nary (n, M, n)-code. Any two distinct codewords of C have to differ in
all n positions.
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values of the other two.
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Theorem

Proof
(2) First claim is obvious;

(b) Let C be an g-nary (n, M, n)-code. Any two distinct codewords of C have to differ in
all n positions. Hence symbols in any fixed position of M codewords have to be
different.
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem n
Aq(n,1) =q";

AQ(na n) =4q.
Proof
First claim is obvious;

Let C be an g-nary (n, M, n)-code. Any two distinct codewords of C have to differ in
all n positions. Hence symbols in any fixed position of M codewords have to be
different. Therefore = A4(n, n) < q.
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THE MAIN CODING THEORY PROBLEM

A good (n, M, d)-code should have a small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Agq(n, d) is the largest M such that there is an g-nary (n, M, d)-code.

Theorem n
Aq(n,1) =q";

AQ(na n) =4q.
Proof
First claim is obvious;

Let C be an g-nary (n, M, n)-code. Any two distinct codewords of C have to differ in
all n positions. Hence symbols in any fixed position of M codewords have to be
different. Therefore = Aq(n, n) < q. Since the g-nary repetition code is

(n, g, n)-code, we get Aq(n, n) > q.
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EXAMPLE

Example Proof that Ax(5,3) = 4.
Code G, page (??), is a (5,4, 3)-code, hence A>(5,3) > 4.
Let C be a (5, M, 3)-code with M = 5.

By previous lemma we can assume that 00000 € C.

C has to contain at most one codeword with at least four 1's. (otherwise
d(x,y) < 2 for two such codewords x, y)

Since 00000 € C, there can be no codeword in C with at most one or two 1.
Since d = 3, C cannot contain three codewords with three 1's.

Since M > 4, there have to be in C two codewords with three 1's. (say 11100,
00111), the only possible codeword with four or five 1's is then 11011.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.
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Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case:
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let

Cc' = {x1 e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}

prof. Jozef Gruska IV054 1. Basics of coding theory 43/67



DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
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Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {x1 e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all

x'y' e C.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {x1 e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all
x'y' e C.
Hence d(C’) is even. Since d < d(C') < d+ 1 and d is odd,
d(C’)=d+1.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {xl e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all
x'y' e C.
Hence d(C’) is even. Since d < d(C') < d+ 1 and d is odd,
d(C’)=d+1.
Hence C'is an (n+ 1, M, d + 1)-code.
If case: Let D be an (n+ 1, M, d + 1)-code.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {xl e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all
x'y' e C.
Hence d(C’) is even. Since d < d(C') < d+ 1 and d is odd,
d(C')=d +1.
Hence C'is an (n+ 1, M, d + 1)-code.

If case: Let D be an (n+ 1, M, d + 1)-code. Choose code words x,y of D such that
d(x,y)=d+1.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {xl e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all
x'y' e C.
Hence d(C’) is even. Since d < d(C') < d+ 1 and d is odd,
d(C')=d +1.
Hence C'is an (n+ 1, M, d + 1)-code.

If case: Let D be an (n+ 1, M, d + 1)-code. Choose code words x,y of D such that
d(x,y)=d+1.
Find a position in which x, y differ and delete this position from all codewords of D.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n, M, d)-code exists iff a binary
(n4+1, M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n, M, d) code. Let
Cc' = {xl e XnXpg1|X1 oo Xn € CyXpg1 = (27:1 x,-) mod 2}
Since parity of all codewords in C’ is even, d(x’, y’) is even for all
x'y' e C.
Hence d(C’) is even. Since d < d(C') < d+ 1 and d is odd,
d(C')=d +1.
Hence C'is an (n+ 1, M, d + 1)-code.

If case: Let D be an (n+ 1, M, d + 1)-code. Choose code words x,y of D such that
d(x,y)=d+1.

Find a position in which x, y differ and delete this position from all codewords of D.
Resulting code is an (n, M, d)-code.
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A COROLLARY

Corollary:
If d is odd, then Ax(n,d) = Ax(n+1,d +1).
If d is even, then Ax(n,d) = A2(n—1,d — 1).

Example A2(5,3) =4 = Ax(6,4) =4
(5,4, 3)-code = (6, 4,4)-code
0 0

by adding check.

= O+~ O
O, MM, O —~
= O = O

0
1
1

= = O
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Notation Fj - is a set of all words of length n over the alphabet {0,1,2,...,q — 1}



A SPHERE and its VOLUME

Notation Fj - is a set of all words of length n over the alphabet {0,1,2,...,9 — 1}

Definition For any codeword u € Fj and any integer r > 0 the sphere of radius r and
centre u is denoted by

S(u,r)y ={veFj|h(uv)<r}
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A SPHERE and its VOLUME

Notation Fj - is a set of all words of length n over the alphabet {0,1,2,...,9 — 1}

Definition For any codeword u € Fj and any integer r > 0 the sphere of radius r and
centre u is denoted by

S(u,r)y ={veFj|h(uv)<r}
Theorem A sphere of radius r in FJ, 0 < r < n contains

©+ D=+ @=1"+. .+ (a-1)

words.
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A SPHERE and its VOLUME

Notation Fj - is a set of all words of length n over the alphabet {0,1,2,...,9 — 1}

Definition For any codeword u € Fj and any integer r > 0 the sphere of radius r and
centre u is denoted by

S(u,r)y ={veFj|h(uv)<r}
Theorem A sphere of radius r in FJ, 0 < r < n contains
@+ D=+ @@=+ + (g -1
words.

Proof Let u be a fixed word in F;. The number of words that differ from u in m
positions is

(ma—1)™
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GENERAL UPPER BOUNDS on CODE PARAMETERS

Theorem (The sphere-packing (or Hamming) bound)
If Cis a g-nary (n, M, 2t + 1)-code, then

MO+ D@D+ (-} <
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GENERAL UPPER BOUNDS on CODE PARAMETERS

Theorem (The sphere-packing (or Hamming) bound)
If Cis a g-nary (n, M, 2t + 1)-code, then

Proof Since minimal distance of the code C is 2t + 1, any two spheres of radius t centred
on distinct codewords have no codeword in common. Hence the total number of words in
M spheres of radius t centred on M codewords is given by the left side in (1).
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GENERAL UPPER BOUNDS on CODE PARAMETERS

Theorem (The sphere-packing (or Hamming) bound)
If Cis a g-nary (n, M, 2t + 1)-code, then

Proof Since minimal distance of the code C is 2t + 1, any two spheres of radius t centred
on distinct codewords have no codeword in common. Hence the total number of words in
M spheres of radius t centred on M codewords is given by the left side in (1). This
number has to be less or equal to g".

A code which achieves the sphere-packing bound from (1), i.e. such a code that equality
holds in (1), is called a perfect code.
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GENERAL UPPER BOUNDS on CODE PARAMETERS

Theorem (The sphere-packing (or Hamming) bound)
If Cis a g-nary (n, M, 2t + 1)-code, then

Proof Since minimal distance of the code C is 2t + 1, any two spheres of radius t centred
on distinct codewords have no codeword in common. Hence the total number of words in
M spheres of radius t centred on M codewords is given by the left side in (1). This
number has to be less or equal to g".

A code which achieves the sphere-packing bound from (1), i.e. such a code that equality
holds in (1), is called a perfect code.

Singleton bound: If C is an g-ary (n, M, d) code, then
M < qnch»l
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Example An (7, M, 3)-code is perfect if

M ((5) + () =2’
i,e. M =16


http://www.codetables.de

A GENERAL UPPER BOUND on A,(n,d)

Example An (7, M, 3)-code is perfect if
7 7
M (@) + () =2"
i,e. M =16
An example of such a code:

C4 = {0000000,1111111,1000101, 1100010, 0110001, 1011000, 0101100,
0010110, 0001011,0111010,0011101,1001110,0100111,1010011, 1101001, 1110100}

Table of Az(n, d) from 1981

n d=3 d=5 d=7
5 4 2 -

6 8 2 -

7 16 2 2

8 20 4 2

9 40 6 2
10 72-79 12 2
11 144-158 24 4
12 256 32 4
13 512 64 8
14 1024 128 16
15 2048 256 32
16 | 2560-3276  256-340  36-37

For current best results see http://www.codetables.de
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The following lower bound for Aq(n, d) is known as Gilbert-Varshamov bound:



LOWER BOUND for A,(n, d)

The following lower bound for Aq(n, d) is known as Gilbert-Varshamov bound:

Theorem Given d < n, there exists a g-ary (n, M, d)-code with
M> 9
= S (e
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LOWER BOUND for A,(n, d)

The following lower bound for Aq(n, d) is known as Gilbert-Varshamov bound:

Theorem Given d < n, there exists a g-ary (n, M, d)-code with

M> 9
= 25 (e

and therefore

Adnd)> —— 9
aln, d) = S (a1
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Error detection is suitable in the cases that channel is so good that probability of an error
is small and if an error is detected, the receiver can ask the sender to renew the

transmission.



ERROR DETECTION

Error detection is much more modest aim than error correction.
Error detection is suitable in the cases that channel is so good that probability of an error
is small and if an error is detected, the receiver can ask the sender to renew the

transmission.

For example, two main requirements for many telegraphy codes used to be:
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ERROR DETECTION

Error detection is much more modest aim than error correction.

Error detection is suitable in the cases that channel is so good that probability of an error
is small and if an error is detected, the receiver can ask the sender to renew the
transmission.

For example, two main requirements for many telegraphy codes used to be:
m Any two codewords had to have distance at least 2;

= No codeword could be obtained from another codeword by transposition of two
adjacent letters.
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PICTURES of SATURN TAKEN by VOYAGER

Pictures of Saturn taken by Voyager, in 1980, had 800 x
800 pixels with 8 levels of brightness.
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PICTURES of SATURN TAKEN by VOYAGER

Pictures of Saturn taken by Voyager, in 1980, had 800 x
800 pixels with 8 levels of brightness.

Since pictures were in color, each picture was transmitted
three times; each time through different color filter. The
full color picture was represented by

3 x 800 x 800 x 8 = 13360000 bits.
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PICTURES of SATURN TAKEN by VOYAGER

Pictures of Saturn taken by Voyager, in 1980, had 800 x
800 pixels with 8 levels of brightness.

Since pictures were in color, each picture was transmitted
three times; each time through different color filter. The
full color picture was represented by

3 x 800 x 800 x 8 = 13360000 bits.

To transmit pictures Voyager used the so called Golay
code Gog.
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GENERAL CODING PROBLEM

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x).

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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GENERAL CODING PROBLEM

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

5(X) = =2 p(x)lg p(x)

and it is considered to be the information content of X.

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X) = =32, p(x)lg p(x)
and it is considered to be the information content of X.

In a special case, of a binary variable X which takes on the value 1 with probability p and
the value 0 with probability 1 — p, then the information content of X is:

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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GENERAL CODING PROBLEM

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X) = =32, p(x)lg p(x)
and it is considered to be the information content of X.

In a special case, of a binary variable X which takes on the value 1 with probability p and
the value 0 with probability 1 — p, then the information content of X is:

S(X)=H(p)=—p lg p—(1—p)lg(1—p)*

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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GENERAL CODING PROBLEM

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X) = =32, p(x)lg p(x)
and it is considered to be the information content of X.

In a special case, of a binary variable X which takes on the value 1 with probability p and
the value 0 with probability 1 — p, then the information content of X is:

S(X)=H(p)=—p lg p—(1—p)lg(1—p)*

Problem: What is the minimal number of bits needed to transmit n values of X?

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X) = =32, p(x)lg p(x)
and it is considered to be the information content of X.

In a special case, of a binary variable X which takes on the value 1 with probability p and
the value 0 with probability 1 — p, then the information content of X is:

S(X)=H(p)=—p lg p—(1—p)lg(1—p)*

Problem: What is the minimal number of bits needed to transmit n values of X?

Basic idea: Encode more (less) probable outputs of X by shorter (longer) binary words.
Example (Moorse code - 1838)

a- b-.. c--. d-. e. f.-. g-
h... i.. j— k-- |- m- n-
o— p.— (q-.- ro.-. S ... t- u..-
V- W.— X-.- y-— zZ-.

!Notation Ig (/n) [log] will be used for binary, natural and decimal logarithms.
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More exactly, we cannot do better than the bound nS(X) says, and we can reach the
bound nS(X) as close as desirable.
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Shannon’s noiseless coding theorem says that in order to transmit n values of X, we need,
and it is sufficient, to use nS(X) bits.

More exactly, we cannot do better than the bound nS(X) says, and we can reach the
bound nS(X) as close as desirable.

Example: Let a source X produce the value 1 with probability p = }—1
and the value 0 with probability 1 — p = %

Assume we want to encode blocks of the outputs of X of length 4.
By Shannon's theorem we need 4H(}) = 3.245 bits per blocks (in average)

A simple and practical method known as Huffman code requires in this case 3.273 bits
per a 4-bit message.

mess. code mess. code mess. code mess. code

0000 10 0100 o010 1000 011 1100 11101

0001 000 0101 11001 1001 11011 1101 111110
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0011 11000 0111 1111000 1011 111111 1111 1111001
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Shannon’s noiseless coding theorem says that in order to transmit n values of X, we need,
and it is sufficient, to use nS(X) bits.

More exactly, we cannot do better than the bound nS(X) says, and we can reach the
bound nS(X) as close as desirable.

Example: Let a source X produce the value 1 with probability p = }—1
and the value 0 with probability 1 — p = %

Assume we want to encode blocks of the outputs of X of length 4.
By Shannon's theorem we need 4H(}) = 3.245 bits per blocks (in average)

A simple and practical method known as Huffman code requires in this case 3.273 bits
per a 4-bit message.

mess. code mess. code mess. code mess. code

0000 10 0100 o010 1000 011 1100 11101

0001 000 0101 11001 1001 11011 1101 111110

0010 001 0110 11010 1010 11100 1110 111101

0011 11000 0111 1111000 1011 111111 1111 1111001

Observe that this is a prefix code - no codeword is a prefix of another codeword.
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DESIGN of HUFFMAN CODE II

Given a sequence of n objects, xi,...,x, with probabilities p1 > ... > pp.

Stage 1 - shrinking of the sequence.
m Replace x,_1, x, with a new object y,_1 with probability p,—1 + p» and rearrange
sequence so one has again non-increasing probabilities.
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Replace x,—1, x, with a new object y,_1 with probability p,—1 + p» and rearrange

sequence so one has again non-increasing probabilities.
Keep doing the above step till the sequence shrinks to two objects.
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If C={ci,...,c} is a prefix optimal code for a source S,, then C' = {cf, ...
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Given a sequence of n objects, xi,...,x, with probabilities p1 > ... > pp.

Stage 1 - shrinking of the sequence.

Replace x,—1, x, with a new object y,_1 with probability p,—1 + p» and rearrange

sequence so one has again non-increasing probabilities.
Keep doing the above step till the sequence shrinks to two objects.
50 50 .50 .50 .50 .50 .50

15 .15 .15 .15 .22 .28 .50
12

Stage 2 - extending the code - Apply again and again the following method.

If C={ci,...,c} is a prefix optimal code for a source S,, then C' = {cf, ...

an optimal code for 5,11, where

c=¢ 1<i<r-1

/
¢ =cl
/
¢1 = 0.
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DESIGN of HUFFMAN CODE II

Stage 2 Apply again and again the following method:
If C={ci,...,c} is a prefix optimal code for a source S,, then C' = {c1,..., ¢/ 11} is
an optimal code for S,11, where
c=¢ 1<i<r-1
c=cl
¢/ 11 = c0.

0.15-011

0.13-010 0.08 - 0101

0.28 - 01

0.05 - 0100

011 .
001 .
000 .
01011 .
01010 .
01001 .
01000 .
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A BIT OF HISTORY I

The subject of error-correcting codes arose originally as a response to practical problems
in the reliable communication of digitally encoded information.
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A BIT OF HISTORY I

The subject of error-correcting codes arose originally as a response to practical problems
in the reliable communication of digitally encoded information.

The discipline was initiated in the paper

Claude Shannon: A mathematical theory of communication, Bell Syst.Tech. Journal
V27, 1948, 379-423, 623-656

Shannon's paper started the scientific discipline information theory and error-correcting
codes are its part.

Originally, information theory was a part of electrical engineering. Nowadays, it is an
important part of mathematics and also of informatics.
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A BIT OF HISTORY II

SHANNON'’s VIEW

In the introduction to his seminal paper “A mathematical
theory of communication” Shannon wrote:
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A BIT OF HISTORY Il

SHANNON'’s VIEW

In the introduction to his seminal paper “A mathematical
theory of communication” Shannon wrote:

The fundamental problem of communication is that
of reproducing at one point either exactly or
approximately a message selected at another point.
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HARD VERSUS SOFT DECODING |

At the beginning of this chapter the process encoding-channel transmission-decoding
was illustrated as follows:

channel
code code
rg%isrige w Encoding [ _word word ,[Decoding W | user
C(W) noise C'(W)
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HARD VERSUS SOFT DECODING |

At the beginning of this chapter the process encoding-channel transmission-decoding
was illustrated as follows:

channel
code code
rg%isrige w Encoding [ _word word ,[Decoding W | user
C(W) noise C'(W)

In that process a binary message is at first encoded into a binary codeword, then
transmitted through a noisy channel, and, finally, the decoder receives, for decoding, a
potentially erroneous binary message and makes an error correction.

This is a simplified view of the whole process. In practice the whole process looks
quite differently.
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Here is a more realistic view of the whole encoding-transmission-decoding process:

message d?g@tal digital [ noisy ! analogue digital
w digital | analogue " channel | digital [ digital [
encoder encoder R . decoder decoder

that is
a binary message is at first transferred to a binary codeword;
the binary codeword is then transferred to an analogue signal;
the analogue signal is then transmitted through a noisy channel
the received analogous signal is then transferred to a binary form that can be used
for decoding and, finally
decoding takes place.

In case the analogous noisy signal is transferred before decoding to the binary signal we
talk about a hard decoding;

In case the output of analogous-digital decoding is a pair (ps, b) where p; is the
probability that the output is the bit b (or a weight of such a binary output (often given
by a number from an interval (—Vimax, Vimax)), we talk about a soft decoding.
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HARD versus SOFT DECODING II1

In order to deal with such a more general model of transmission and soft decoding, it is
common to use, instead of the binary symbols 0 and 1 so-called antipodal binary
symbols +1 and —1 that are represented electronically by voltage +1 and —1.
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HARD versus SOFT DECODING II1

In order to deal with such a more general model of transmission and soft decoding, it is
common to use, instead of the binary symbols 0 and 1 so-called antipodal binary
symbols +1 and —1 that are represented electronically by voltage +1 and —1.

A transmission channel with analogue antipodal signals can then be depicted as follows.

histogram
. of received values
noise
+
-1 0 +1 -1 0 +1

A very important case in practise, especially for space communication, is so-called
additive white Gaussian noise (AWGN) and the channel with such a noise is called
Gaussian channel.
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HARD versus SOFT DECODING - COMMENTS

When the signal received by the decoder comes from a devise capable of producing
estimations of an analogue nature on the binary transmitted data the error correction
capability of the decoder can greatly be improved.
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When the signal received by the decoder comes from a devise capable of producing
estimations of an analogue nature on the binary transmitted data the error correction
capability of the decoder can greatly be improved.

Since the decoder has in such a case an information about the reliability of data received,
decoding on the basis of finding the codeword with minimal Hamming distance does not
have to be optimal and the optimal decoding may depend on the type of noise involved.
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When the signal received by the decoder comes from a devise capable of producing
estimations of an analogue nature on the binary transmitted data the error correction
capability of the decoder can greatly be improved.

Since the decoder has in such a case an information about the reliability of data received,
decoding on the basis of finding the codeword with minimal Hamming distance does not

have to be optimal and the optimal decoding may depend on the type of noise involved.

For example, in an important practical case of the Gaussian white noise one search at the
minimal likelihood decoding for a codeword with minimal Euclidean distance.
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Block codes called also as algebraic codes that are appropriate to encode blocks of
date of the same length and independent one from the other.
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Two basic families of codes are

Block codes called also as algebraic codes that are appropriate to encode blocks of
date of the same length and independent one from the other. Their
encoders have often a huge number of internal states and decoding
algorithms are based on techniques specific for each code.

Stream codes called also as convolution codes that are used to protect continuous
flows of data.Their encoders often have only small number of internal
states and then decoders can use a complete representation of states
using so called trellises, iterative approaches via several simple decoders
and an exchange of information of probabilistic nature.

Hard decoding is used mainly for block codes and soft one for stream codes. However,
distinctions between these two families of codes are tending to blur.
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NOTATIONAL COMMENT

The term code is often used also to denote a
specific encoding algorithm that transfers any
dataword, say of the size k, into a codeword, say of
the size n. The set of all such codewords then forms
the code in the original sense.
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NOTATIONAL COMMENT

The term code is often used also to denote a
specific encoding algorithm that transfers any
dataword, say of the size k, into a codeword, say of
the size n. The set of all such codewords then forms
the code in the original sense.

For the same code there can be many encoding
algorithms that map the same set of datawords into
different codewords.
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STORY of MORSE TELEGRAPH - I.

= In 1825 William Sturgeon discovered electromagnet and showed that using
electricity one can make to ring a ring that was far away.
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In 1825 William Sturgeon discovered electromagnet and showed that using
electricity one can make to ring a ring that was far away.

The first telegraph designed Charles Wheate Stone and demonstrated it at the
distance 2.4 km.

Samuel Morse made a significant improvement by designing a telegraph that could
not only send information, but using a magnet at other end it could also write the
transmitted symbol on a paper.
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In 1825 William Sturgeon discovered electromagnet and showed that using
electricity one can make to ring a ring that was far away.

The first telegraph designed Charles Wheate Stone and demonstrated it at the
distance 2.4 km.

Samuel Morse made a significant improvement by designing a telegraph that could
not only send information, but using a magnet at other end it could also write the
transmitted symbol on a paper.

Morse was a portrait painter whose hobby were electrical machines.

Morse and his assistant Alfred Vailem invented " Morse alphabet” around 1842.
After US Congress approved 30,000 $ on 3.3.1943 for building a telegraph
connection between Washington and Baltimore, the line was built fast, and already

on 24.3.1943 the first telegraph message was sent: ”"What hat God wrought” - " Co
Boh vykonal”.
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In 1825 William Sturgeon discovered electromagnet and showed that using
electricity one can make to ring a ring that was far away.

The first telegraph designed Charles Wheate Stone and demonstrated it at the
distance 2.4 km.

Samuel Morse made a significant improvement by designing a telegraph that could
not only send information, but using a magnet at other end it could also write the
transmitted symbol on a paper.

Morse was a portrait painter whose hobby were electrical machines.
Morse and his assistant Alfred Vailem invented " Morse alphabet” around 1842.

After US Congress approved 30,000 $ on 3.3.1943 for building a telegraph
connection between Washington and Baltimore, the line was built fast, and already
on 24.3.1943 the first telegraph message was sent: ”What hat God wrought” - " Co
Boh vykonal”.

The era of Morse telegraph ended on 26.1.2006 when the main telegraph company
in US, Western Union, announced cancelation of all telegraph services.
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STORY of MORSE TELEGRAPH - II.

In his telegraphs Moorse used the following two-character
audio alphabet

TIT or dot — a short tone lasting four hundredths of
second;

TAT or dash — a long tone lasting twelve hundredths
of second.
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TAT or dash — a long tone lasting twelve hundredths
of second.

Morse could called these tones as 0 and 1
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STORY of MORSE TELEGRAPH - II.

In his telegraphs Moorse used the following two-character
audio alphabet

TIT or dot — a short tone lasting four hundredths of
second;

TAT or dash — a long tone lasting twelve hundredths
of second.

Morse could called these tones as 0 and 1

The binary elements 0 and 1 were first called bits by J. W.
Tuckley in 1943,
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