IV054 Coding, Cryptography and Cryptographic Protocols **2017 - Exercises I.**

- 1. Consider a binary repetition code of length n = 2k + 1. Given that probability of a single bit error is p compute probability that a received codeword is incorrectly decoded.
- 2. Consider the binary code of length 12 defined as

 $\{x_1x_2\cdots x_{12} \mid 3x_1+x_2+3x_3+x_4+\ldots+3x_{11}+x_{12} \equiv 0 \mod 10\}.$

Is it possible to detect all adjacent transposition errors with this code?

- 3. Decide whether the following codes are equivalent. Prove your answer.
 - (a) Binary codes

(a) Dinary codes	$C_1 = \begin{cases} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{cases}$
and	$C_2 = \begin{cases} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{cases}.$
(b) Ternary codes	
	$C_3 = \begin{cases} 1 & 0 & 2 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{cases}$
and	$\begin{pmatrix} 1 & 0 & 0 & 2 \end{pmatrix}$
	$C_4 = \begin{cases} 1 & 0 & 0 & 2 \\ 1 & 2 & 0 & 2 \\ 2 & 2 & 2 & 2 \end{cases}.$
4. Consider a channel characterized by the following conditional probabilities, where X and Y are the probability distributions of the input and the output, respectively.	

$$P(Y = 0 | X = 0) = p$$

$$P(Y = 0 | X = 1) = p$$

$$P(Y = 1 | X = 0) = 1 - p$$

$$P(Y = 1 | X = 1) = 1 - p,$$

for some 0 .

Let the probability distribution of inputs be P(X = 0) = q and P(X = 1) = 1 - q for some 0 < q < 1.

- (a) What is the probability of receiving 0 and 1?
- (b) What is the probability that 0 was sent if we received 0?
- (c) What is the probability that 0 was sent if we received 1?
- (d) Is this channel useful?
- 5. Give an example of a 4-ary (10, 10, 7) code such that each of its words contains exactly one 0, two 1's, three 2's and four 3's.

More on next page >>>

6. Consider a family of codes C_{2n} and the following encoding function:

$$0 \mapsto \overbrace{00\ldots0}^{2n \text{ times}}$$
$$1 \mapsto \overbrace{11\ldots1}^{2n \text{ times}}$$

Consider a binary symmetric channel with error $p \leq \frac{1}{2}$ and the maximum likelihood decoding strategy, *i.e.* every k < n errors can be corrected.

- (a) What are the (n, M, d) parameters of C_{2n} ?
- (b) What is the probability of correct decoding $P_{corr}(C_{2n})$?
- (c) Calculate $\lim_{n\to\infty} P_{corr}(C_{2n})$.
- (d) What is the code rate $R(C_{2n})$?
- (e) Calculate $\lim_{n\to\infty} R(C_{2n})$.

Hint:
$$\binom{2n}{n} \leq \frac{4^n}{\sqrt{3n+1}}$$

7. Find a ternary Huffman code for messages $\{0, 1, 2, 3, 4, 5, 6\}$ with the corresponding probability distribution $[\frac{1}{3}, \frac{1}{3}, \frac{1}{9}, \frac{1}{9}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}]$. Decode the message 2112201221.