	CHAPTER 2: LINEAR CODES
	WHY LINEAR CODES
Dart I	Most of the important codes are special types of so-called linear codes.
Fart I	Linear codes are of very large importance because they have
Linear codes	very concise description
	very nice properties,
	very easy encoding
	and, in general,
	an easy to describe decoding.
	Many practically important linear codes have also an efficient decoding.
	IV054 1 Linear codes 2/49
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime.	REPETITIONSa - I.
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1,, q - 1\}$ with two operations	REPETITIONS _a - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1,, q - 1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q - + \mod q$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords .
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1,, q - 1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q x \mod q$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords .
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1, \dots, q-1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q - x \mod q$ Example - $GF(3)$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1, \dots, q-1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q - x \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2 = 1$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1, \dots, q-1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q \times \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2 = 1$ Example - $GF(7)$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime.It is the set $\{0, 1, \dots, q-1\}$ with two operationsaddition modulo $q - + \mod q$ multiplication modulo $q \times \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2 = 1$ Example - $GF(7)$ $5+5=3$ $5 \times 5 = 4$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that $e: M \to C$
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime. It is the set $\{0, 1,, q - 1\}$ with two operations addition modulo $q - + \mod q$ multiplication modulo $q \times \mod q$ Example - $GF(3)$ $2 + 2 = 1$ $2 \times 2 = 1$ Example - $GF(7)$ $5 + 5 = 3$ $5 \times 5 = 4$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that $e: M \to C$.
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ - with q a prime.It is the set $\{0, 1, \dots, q-1\}$ with two operationsaddition modulo $q - + \mod q$ multiplication modulo $q - x \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2 = 1$ Example - $GF(7)$ $5+5=3$ $5 \times 5 = 4$ Example - $GF(11)$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that $e: M \to C$. Encoding (code) is called systematic if for any
MATHEMATICS BEHIND - GALOI FIELDS $GF(q)$ – with q a prime.It is the set $\{0, 1, \dots, q-1\}$ with two operationsaddition modulo $q - + \mod q$ multiplication modulo $q \times \mod q$ Example - $GF(3)$ $2 + 2 = 1$ Example - $GF(7)$ $5 + 5 = 3$ $5 \times 5 = 4$ Example - $GF(11)$ $7 + 8 = 4$ $7 \times 8 = 1$	REPETITIONSa - I. Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a code and its elements are called codewords . By a coding/encoding of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that $e: M \to C$ Encoding (code) is called systematic if for any $m \in M \subset \Sigma^*$

3/49

IV054 1. Linear codes

4/49

IV054 1. Linear codes

SYSTEMATIC CODES I	REPETITIONS - II.
A code is called systematic if its encoder transmit a message (an input dataword) w into a codeword of the form wc_w , or (w, c_w) . That is if the codeword for the message w consists of two parts: the message w itself (called also information part) and a redundancy part c_w Nowadays most of the stream codes that are used in practice are systematic. An example of a systematic encoder, that produces so called extended Hamming (8, 4, 1) code is in the following figure. $m_{1}^{m} a_{m}^{m} a_{m}^{m$	 A code C is said to be an (n, M, d) code, if n is the length of codewords in C M is the number of codewords in C d is the minimal distance of C
IV054 1. Linear codes 5/49	IV054 1. Linear codes 6/49
LINEAR CODES	EXERCISE
Linear codes are special sets of words of a fixed length n over an alphabet $\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters E_q^n (or $V(n, q)$) will be considered as the vector spaces of	Which of the following binary codes are linear? $C_1 = \{00, 01, 10, 11\} - YES$ $C_2 = \{000, 011, 101, 110\} - YES$
all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if $\blacksquare u + v \in C$ for all $u, v \in C$ $\blacksquare au \in C$ for all $u \in C$, and all $a \in GF(q)$ Example Codes C_1, C_2, C_3 introduced in Lecture 1 are linear codes. Lemma A subset $C \subseteq F_q^n$ is a linear code iff one of the following conditions is satisfied $\blacksquare C$ is a subspace of F_q^n . \blacksquare Sum of any two codewords from C is in C (for the case $q = 2$)	<pre>C₃ = {00000,01101,10110,11011} - YES C₅ = {101,111,011} - NO C₆ = {000,001,010,011} - YES C₇ = {0000,1001,0110,1110} - NO How to create a linear code? Notation: If S is a set of vectors of a vector space, then let ⟨S⟩ be the set of all linear combinations of vectors from S. Theorem For any subset S of a linear space, ⟨S⟩ is a linear space that consists of the following words: ■ the zero word, ■ all words in S,</pre>
all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if $\blacksquare u + v \in C$ for all $u, v \in C$ $\blacksquare au \in C$ for all $u \in C$, and all $a \in GF(q)$ Example Codes C_1, C_2, C_3 introduced in Lecture 1 are linear codes. Lemma A subset $C \subseteq F_q^n$ is a linear code iff one of the following conditions is satisfied $\blacksquare C$ is a subspace of F_q^n . \blacksquare Sum of any two codewords from C is in C (for the case $q = 2$) If C is a k-dimensional subspace of F_q^n , then C is called $[n, k]$ -code. It has q^k codewords.	C ₃ = {00000,01101,10110,11011} - YES C ₅ = {101,111,011} - NO C ₆ = {000,001,010,011} - YES C ₇ = {0000,1001,0110,1110} - NO How to create a linear code? Notation: If S is a set of vectors of a vector space, then let ⟨S⟩ be the set of all linear combinations of vectors from S. Theorem For any subset S of a linear space, ⟨S⟩ is a linear space that consists of the following words: ■ the zero word, ■ all words in S, ■ all sums of two or more words in S.
all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements $\{0,, q - 1\}$ and with arithmetical operations modulo <i>q</i> .) Definition A subset $C \subseteq F_q^n$ is a linear code if $\blacksquare u + v \in C$ for all $u, v \in C$ $\blacksquare au \in C$ for all $u \in C$, and all $a \in GF(q)$ Example Codes C_1, C_2, C_3 introduced in Lecture 1 are linear codes. Lemma A subset $C \subseteq F_q^n$ is a linear code iff one of the following conditions is satisfied $\blacksquare C$ is a subspace of F_q^n . \blacksquare Sum of any two codewords from C is in C (for the case $q = 2$) If C is a <i>k</i> -dimensional subspace of F_q^n , then C is called $[n, k]$ -code. It has q^k codewords. If the minimal distance of C is d, then it is said to be the $[n, k, d]$ code. Linear codes are also called "group codes".	$C_{3} = \{00000, 01101, 10110, 11011\} - YES$ $C_{5} = \{101, 111, 011\} - NO$ $C_{6} = \{0000, 001, 010, 011\} - YES$ $C_{7} = \{0000, 1001, 0110, 1110\} - NO$ How to create a linear code? Notation: If S is a set of vectors of a vector space, then let $\langle S \rangle$ be the set of all linear combinations of vectors from S. Theorem For any subset S of a linear space, $\langle S \rangle$ is a linear space that consists of the following words: a the zero word, all words in S, all sums of two or more words in S. Example $S = \{0100, 0011, 1100\}$ $\langle S \rangle = \{0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111\}.$

BASIC PROPERTIES of LINEAR CODES I

BASIC PROPERTIES of LINEAR CODES II

12/49

IV054 1. Linear codes

Notation: Let $w(x)$ (weight of x) denote the number of non-zero entries of x.	If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from Γ .
Proof $x - y$ has non-zero entries in exactly those positions where x and y differ. Theorem Let C be a linear code and let weight of C , notation $w(C)$, be the smallest of the weights of non-zero codewords of C . Then $h(C) = w(C)$. Proof There are $x, y \in C$ such that $h(C) = h(x, y)$. Hence $h(C) = w(x - y) \ge w(C)$. On the other hand, for some $x \in C$ $w(C) = w(x) = h(x, 0) \ge h(C)$. Consequence If C is a non-linear code with m codewords, then in order to determine $h(C)$ one has to make in general $\binom{m}{2} = \Theta(m^2)$ comparisons in the worst case. If C is a linear code with m codewords, then in order to determine $h(C), m - 1$ comparisons are enough.	Example Code $C_4 = \{0000000, 1111111, 1000101, 1100010, 011100, 0111000, 0111000, 0101100, 0010110, 00010110, 00010110, 00010110, 00010110, 0001011, 1000101, 1100001, 11101000\}$ has, as one of its bases, the set $\{1111111, 1000101, 1100010, 0110001\}.$ How many different bases has a linear code? Theorem A binary linear code of dimension k has $\frac{1}{k!} \prod_{i=0}^{k-1} (2^k - 2^i)$ bases.
IV054 1. Linear codes 9/49	IV054 1. Linear codes 10/49
LAAWFLL	ADVANTAGES and DISADVANTAGES OF LINEAR CODES I.
If a code C has 2^{200} codewords, then there is no way to write down and/or to store all its codewords.	 Advantages - are big. Minimal distance h(C) is easy to compute if C is a linear code. Linear codes have simple specifications. To specify a non-linear code usually all codewords have to be listed. To specify a linear [n, k]-code it is enough to list k codewords (of a basis).
If a code C has 2^{200} codewords, then there is no way to write down and/or to store all its codewords. WHY	 Advantages - are big. ■ Minimal distance h(C) is easy to compute if C is a linear code. ■ Linear codes have simple specifications. ■ To specify a non-linear code usually all codewords have to be listed. ■ To specify a linear [n, k]-code it is enough to list k codewords (of a basis). Definition A k × n matrix whose rows form a basis of a linear [n, k]-code (subspace) C is said to be the generator matrix of C.

11/49

IV054 1. Linear codes

EQUIVALENCE of LINEAR CODES I

EQUIVALENCE of LINEAR CODES II

Definition Two linear codes on GF(q) are called equivalent if one can be obtained from another by the following operations:

 $(\ensuremath{\mathsf{a}})$ permutation of the words or positions of the code;

 $(b)\,$ multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two $k \times n$ matrices generate equivalent linear [n, k]-codes over F_q^n if one matrix can be obtained from the other by a sequence of the following operations:

- $(\ensuremath{\mathsf{a}})$ permutation of the rows
- $(b) \mbox{ multiplication of a row by a non-zero scalar }$
- $(\ensuremath{\mathtt{c}})$ addition of one row to another
- $(\mathsf{d})\,$ permutation of columns
- $({\rm e})\,$ multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert a generator matrix to one of an equivalent code.

IV054 1. Linear codes

Theorem Let G be a generator matrix of an [n, k]-code. Rows of G are then linearly independent .By operations (a) - (e) the matrix G can be transformed into the form: $[I_k|A]$ where I_k is the $k \times k$ identity matrix, and A is a $k \times (n - k)$ matrix.

Example

13/49

15/49

UNIQUENESS of ENCODING

with linear codes

IV054 1. Linear codes

Theorem If $G = \{w_i\}_{i=1}^k$ is a generator matrix of a binary linear code *C* of length *n* and dimension *k*, then the set of codewords/vectors

v = uG

ranges over all 2^k codewords of C as u ranges over all 2^k datawords of length k. Therefore,

$$C = \{ uG \mid u \in \{0,1\}^k \}$$

Moreover,

 $u_1G = u_2G$

if and only if

 $u_1 = u_2$.

Proof If $u_1G - u_2G = 0$, then

 $0 = \sum_{i=1}^{k} u_{1,i} w_i - \sum_{i=1}^{k} u_{2,i} w_i = \sum_{i=1}^{k} (u_{1,i} - u_{2,i}) w_i$

IV054 1. Linear codes

And, therefore, since w_i are linearly independent, $u_1 = u_2$.

ENCODING with LINEAR CODES

is a vector \times matrix multiplication

Let C be a linear [n, k]-code over F_q^n with a generator $k \times n$ matrix G.

Theorem C has q^k codewords.

Proof Theorem follows from the fact that each codeword of C can be expressed uniquely as a linear combination of the basis codewords/vectors.

Corollary The code C can be used to encode uniquely q^k messages - datawords. (Let us identify messages with elements of F_q^k .)

Encoding of a dataword $u = (u_1, \ldots, u_k)$ using the generator matrix G:

$$u \cdot G = \sum_{i=1}^{k} u_i r_i$$
 where r_1, \ldots, r_k are rows of G

Example Let C be a [7, 4]-code with the generator matrix

	1	0	0	0	1	0	1	
C	0	1	0	0	1	1	1	
G=	0	0	1	0	1	1	0	
	lo	0	0	1	0	1	1	

A message (u_1, u_2, u_3, u_4) is encoded as:??? For example:

0 0 0 0 is encoded as? \ldots 0000000

1 0 0 0 is encoded as? 1000101

1 1 1 0 is encoded as? 1110100 IV054 1. Linear codes

LINEAR CODES as SYSTEMATIC CODES	DECODING of LINEAR CODES - BASICS
Since to each linear $[n, k]$ -code C there is a generator matrix of the form $G = [I_k A]$ an encoding of a dataword w with G has the form $wG = w \cdot wA$	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector.
	The decoder must therefore decide, given <i>y</i> ,
	which x was sent,
Each linear code is therefore equivalent to a systematic code.	or, equivalently, which error <i>e</i> occurred.
IV054 1. Linear codes 17/49	IV054 1. Linear codes 18/49
IV054 1. Linear codes 17/49	IV054 1. Linear codes 18/49
IV054 1. Linear codes 17/49 DECODING of LINEAR CODES - TECHNICALITIES	IV054 1. Linear codes 18/49 NEAREST NEIGHBOUR DECODING SCHEME
DECODING of LINEAR CODES - TECHNICALITIES Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an [n, k] code over E^n and $u \in E^n$. Then the set	IV054 1. Linear codes 18/49 NEAREST NEIGHBOUR DECODING SCHEME Each vector having minimum weight in a coset is called a coset leader. 1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the form: codewords coset leader codeword 2 codeword 2^k
DECODING of LINEAR CODES - TECHNICALITIES Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set	IV054 1. Linear codes 18/49 NEAREST NEIGHBOUR DECODING SCHEME Each vector having minimum weight in a coset is called a coset leader. 1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the form: Codewords coset leader codeword 2 codeword 2^k Image: Codewords coset leader + + Image: Codeword 2 codeword 2^k Image: Codeword 2 codeword 2^k
DECODING of LINEAR CODES - TECHNICALITIES Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$	IV054 1. Linear codes 18/49 NEAREST NEIGHBOUR DECODING SCHEME Each vector having minimum weight in a coset is called a coset leader. 1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the form: Codewords + + + +
IV054 1. Linear codes17/49DECODING of LINEAR CODES - TECHNICALITIESDecoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred.To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n .Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: $0000 + C = C$,	18/49 NEAREST NEIGHBOUR DECODING SCHEME Each vector having minimum weight in a coset is called a coset leader. 1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the form:
DECODING of LINEAR CODES - TECHNICALITIES Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{1000, 0111, 1010\}$, $0100 + C = \{0010, 1011, 0101\} = 0001 + C$, $0010 + C = \{0010, 1011, 0101\}$. Are there some other cosets in this case? Theorem Suppose C is a linear $[n, k]$ -code over F_q^n . Then	18/49NEAREST NEIGHBOUR DECODING SCHEMEEach vector having minimum weight in a coset is called a coset leader.1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the form: $ \hline codewords coset leader codeword 2 codeword 2^k is coset leader + + + is coset leader + + is coset leader + $

1V054 1. Linear codes 19/49 IV054 1. Linear codes 20/49

PROBABILITY of GOOD ERROR CORRECTION	PROBABILITY of GOOD ERROR DETECTION
What is the probability that a received word will be decoded correctly -that is as the codeword that was sent (for binary linear codes and binary symmetric channel)? Probability of an error in the case of a given error vector of weight <i>i</i> is $p^{i}(1-p)^{n-i}.$ Therefore, it holds. Theorem Let <i>C</i> be a binary [<i>n</i> , <i>k</i>]-code, and for <i>i</i> = 0, 1,, <i>n</i> let α_i be the number of coset leaders of weight <i>i</i> . The probability $P_{corr}(C)$ that a received vector, when decoded by means of a standard array, is the codeword which was sent is given by $P_{corr}(C) = \sum_{i=0}^{n} \alpha_i p^i (1-p)^{n-i}.$ Example For the [4, 2]-code of the last example $\alpha_0 = 1, \alpha_1 = 3, \alpha_2 = \alpha_3 = \alpha_4 = 0.$ Hence $P_{corr}(C) = (1-p)^4 + 3p(1-p)^3 = (1-p)^3(1+2p).$ If $p = 0.01$, then $P_{corr} = 0.9897$	Suppose a binary linear code is used only for error detection. The decoder will fail to detect errors which have occurred if the received word y is a codeword different from the codeword x which was sent, i. e. if the error vector e = y - x is itself a non-zero codeword. The probability $P_{undetect}(C)$ that an incorrect codeword is received is given by the following result. Theorem Let C be a binary $[n, k]$ -code and let A_i denote the number of codewords of C of weight i. Then, if C is used for error detection, the probability of an incorrect message being received is $P_{undetect}(C) = \sum_{i=0}^{n} A_i p^i (1-p)^{n-i}$. Example In the case of the [4, 2] code from the last example $A_2 = 1 A_3 = 2$ $P_{undetect}(C) = p^2(1-p)^2 + 2p^3(1-p) = p^2 - p^4$. For $p = 0.01$ $P_{undetect}(C) = 0.00009999$.
IV054 1. Linear codes 21/49	IV054 1. Linear codes 22/49
DUAL CODES	PARITE CHECKS versus ORTHOGONALITY
Inner product of two vectors (words) $u = u_1 \dots u_n, v = v_1 \dots v_n$ in F_q^n is an element of $GF(q)$ defined (using modulo q operations) by $u \cdot v = u_1v_1 + \dots + u_nv_n.$ Example $In F_2^4 : 1001 \cdot 1001 = 0$ In $ F_3^4 : 2001 \cdot 1210 = 2$ $1212 \cdot 2121 = 2$ If $u \cdot v = 0$ then words (vectors) u and v are called orthogonal words.	For understanding of the role the parity checks play for linear codes, it is important to understand relation between orthogonality and special parity checks. If binary words x and y are orthogonal, then the word y has even number of ones (1's) in the positions determined by ones (1's) in the word x . This implies that if words x and y are orthogonal, then x is a parity check word for y and y is a parity check word for x .
Properties If $u, v, w \in F_q^n, \lambda, \mu \in GF(q)$, then $u \cdot v = v \cdot u, (\lambda u + \mu v) \cdot w = \lambda(u \cdot w) + \mu(v \cdot w).$	Exercise: Let the word 100001
Given a linear $[n, k]$ -code C , then the dual code of C , denoted by C^{\perp} , is defined by $C^{\perp} = \{ v \in F_q^n \mid v \cdot u = 0 \text{ for all } u \in C \}.$	be orthogonal to all words of a set S of binary words of length 6. What can we say about
Lemma Suppose C is an $[n, k]$ -code having a generator matrix G. Then for $v \in F_q^n$	the words in <i>S</i> ?

23/49

IV054 1. Linear codes

24/49

IV054 1. Linear codes

EXAMPLE	PARITY CHECK MATRICES I
For the $[n, 1]$ -repetition (binary) code C , with the generator matrix G = (1, 1,, 1) the dual code C^{\perp} is $[n, n-1]$ -code with the generator matrix G^{\perp} , described by $G^{\perp} = \begin{pmatrix} 1 & 1 & 0 & 0 & & 0 \\ 1 & 0 & 1 & 0 & & 0 \\ & & & \\ 1 & 0 & 0 & 0 & & 1 \end{pmatrix}$	Example If $C_{5} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \text{ then } C_{5}^{\perp} = C_{5}.$ If $C_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \text{ then } C_{6}^{\perp} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$ Theorem Suppose C is a linear $[n, k]$ -code over F_{q}^{n} , then the dual code C^{\perp} is a linear $[n, n - k]$ -code. Definition A parity-check matrix H for an $[n, k]$ -code C is any generator matrix of C^{\perp} .
IV054 1. Linear codes 25/49	IV054 1. Linear codes 26/49
PARITY CHECK MATRICES	SYNDROME DECODING
Definition A parity-check matrix H for an $[n, k]$ -code C is any generator matrix of C^{\perp} . Theorem If H is a parity-check matrix of C , then $C = \{x \in F_q^n x H^{\top} = 0\},$ and therefore any linear code is completely specified by a parity-check matrix. Example Parity-check matrix for $C_5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ and for C_6 is $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ The rows of a parity check matrix are parity checks on codewords. They actually say that	Theorem If $G = [I_k A]$ is the standard form generator matrix of an $[n, k]$ -code C , then a parity check matrix for C is $H = [A^\top I_{n-k}]$. Example Generator matrix $G = \begin{vmatrix} I_4 & 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \Rightarrow$ parity check m. $H = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix} I_3 \end{vmatrix}$ Definition Suppose H is a parity-check matrix of an $[n, k]$ -code C . Then for any $y \in F_q^n$ the following word is called the syndrome of y : $S(y) = yH^\top$. Lemma Two words have the same syndrome iff they are in the same coset. Syndrom decoding Assume that a standard array of a code C is given and, in addition, let in the last two columns the syndrome for each coset be given. $0 & 0 & 0 & 1 & 0 & 1 & 1 0 & 1 & 0 & 1 1 & 1 & 1 & 0 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$
The rows of a party check mathy are party checks on conclust. They actually say that	

"syndrome column". Afterwords locate y in the same row and decode y as the codeword in the same column and in the first row.

IV054 1. Linear codes

27/49

KEY OBSERVATION for SYNDROM COMPUTATION	HAMMING CODES
When preparing a "syndrome decoding" it is sufficient to store only two columns: one for coset leaders and one for syndromes.	An important family of simple linear codes that are easy to encode and decode, are so-called Hamming codes.
Example $\begin{array}{c} coset \ leaders syndromes \\ l(z) & z \\ 0000 & 00 \\ 1000 & 11 \\ 0100 & 01 \\ 0010 & 10 \end{array}$ Decoding procedure = Step 1 Given y compute $S(y)$. = Step 2 Locate $z = S(y)$ in the syndrome column. = Step 3 Decode y as $y - l(z)$. Example If $y = 1111$, then $S(y) = 01$ and the above decoding procedure produces 1111-0100 = 1011	Definition Let <i>r</i> be an integer and <i>H</i> be an $r \times (2^r - 1)$ matrix columns of which are all non-zero distinct words from F_2^r . The code having <i>H</i> as its parity-check matrix is called binary Hamming code and denoted by $Ham(r, 2)$. Example $Ham(2, 2) : H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $Ham(3, 2) = H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ Theorem Hamming code $Ham(r, 2)$ $= is [2^r - 1, 2^r - 1 - r]$ -code,
Syndrom decoding is much faster than searching for a nearest codeword to a received word. However, for large codes it is still too inefficient to be practical. In general, the problem of finding the nearest neighbour in a linear code is NP-complete. Fortunately, there are important linear codes with really efficient decoding.	 ■ has minimum distance 3, ■ and is a perfect code. Properties of binary Hamming codes Coset leaders are precisely words of weight ≤ 1. The syndrome of the word 00100 with 1 in <i>j</i>-th position and 0 otherwise is the transpose of the <i>j</i>-th column of <i>H</i>.
	IV04 I. Lilical codes 30/45
HAMMING CODES - DECODING	EXAMPLE
 HAMMING CODES - DECODING Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. Step 3 If S(y) ≠ 0, then assuming a single error, S(y) gives the binary position of the error. 	EXAMPLEFor the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word $y = 1101011$,we get syndrome $S(y) = 110$ and therefore the error is in the sixth position.Hamming code was discovered by Hamming (1950), Golay (1950).It was conjectured for some time that Hamming codes and two so called Golay codes are the only non-trivial perfect codes.CommentHamming codes were originally used to deal with errors in long-distance telephon calls.

IMPORTANT CODES	GOLAY CODES - DESCRIPTION
 Hamming (7, 4, 3)-code. It has 16 codewords of length 7. It can be used to send 2⁷ = 128 messages and can be used to correct 1 error. Golay (23, 12, 7)-code. It has 4 096 codewords. It can be used to transmit 8 388 608 messages and can correct 3 errors. Quadratic residue (47, 24, 11)-code. It has 16 777 216 codewords and can be used to transmit 140 737 488 355 238 messages and correct 5 errors. Hamming and Golay codes are the only non-trivial perfect codes. They are also special cases of quadratic residue codes. 	$Golay codes G_{24} and G_{23} were used by Voyager I and Voyager II to transmit color pictures of Jupiter and Saturn. Generation matrix for G_{24} has the following simple formG = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
IV054 1. Linear codes 33/49	IV054 1. Linear codes 34/49
GOLAY CODES - CONSTRUCTION	REED-MULLER CODES
Matrix G for Golay code G_{24} has actually a simple and regular construction. The first 12 columns are formed by a unitary matrix I_{12} , next column has all 1's.	This is an infinite, recursively defined, family of so called $RM_{r,m}$ binary linear $[2^m, k, 2^{m-r}]$ -codes with $k = 1 + \binom{m}{1} + \ldots + \binom{m}{r}.$ The generator matrix $G_{r,m}$ for $RM_{r,m}$ code has the form $G_{r,m} = \begin{bmatrix} G_{r-1,m} \end{bmatrix}$
Rows of the last 11 columns are cyclic permutations of the first row which has 1 at those positions that are squares modulo 11, that is	 Where Q_r is a matrix with dimension (^m_r) × 2^m where G_{0,m} is a row vector of the length 2^m with all elements 1. G_{1,m} is obtained from G_{0,m} by adding columns that are binary representations of the column numbers.
0 1 3 4 5 9	

IV054 1. Linear codes 35/49 IV054 1. Linear codes

EXAMPLE	SINGLETON and PLOTKIN BOUNDS
	To determine distance of a linear code can be computationally hard task. For that reason various bounds on distance can be much useful.
$G_{1,4} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	Singleton bound: If C is a q-ary (n, M, d) -code, then $M \le q^{n-d+1}$ Proof Take some $d-1$ coordinates and project all codewords to the remaining coordinates.
[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1] and	The resulting codewords have to be all different and therefore M cannot be larger than the number of q -ary words of the length $n - d - 1$.
	Codes for which $M = q^{n-d+1}$ are called MDS-codes (Maximum Distance Separable).
$Q_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1$	Corollary: If C is a binary linear $[n, k, d]$ -code, then $d \le n - k + 1$. So called Plotkin bound says
Codes $R(m - r - 1, m)$ and $R(r, m)$ are dual codes.	$d \leq \frac{n2^{k-1}}{2k-1}.$
	Plotkin bound implies that q-nary error-correcting codes with $d \ge n(1-1/q)$ have only polynomially many codewords and hence are not very interesting.
IV054 1. Linear codes 37/49	IV054 1. Linear codes 38/49
SHORTENING and PUNCTURING of LINEAR CODES	REED-SOLOMON CODES
SHORTENING and PUNCTURING of LINEAR CODES If C is a q-ary linear $[n, k, d]$ -code, then	REED-SOLOMON CODES An important example of MDS-codes are q -ary Reed-Solomon codes RSC(k, q), for
SHORTENING and PUNCTURING of LINEAR CODES If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1,, x_{n-1}) (x_1,, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.	REED-SOLOMON CODES An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes $RSC(k, q)$, for $k \le q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element u is $p(u)$.
SHORTENING and PUNCTURING of LINEAR CODES If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1,, x_{n-1}) (x_1,, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.	REED-SOLOMON CODES An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes $RSC(k, q)$, for $k \le q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element <i>u</i> is $p(u)$. RSC (k, q) code is $[q, k, q - k + 1]$ code.
SHORTENING and PUNCTURING of LINEAR CODES If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1,, x_{n-1}) (x_1,, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C. If C is a q-ary linear $[n, k, d]$ -code and	REED-SOLOMON CODES An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes $RSC(k, q)$, for $k \le q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element <i>u</i> is $p(u)$. RSC (k, q) code is $[q, k, q - k + 1]$ code. Example Generator matrix for RSC $(3, 5)$ code is
SHORTENING and PUNCTURING of LINEAR CODESIf C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C.If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.If C is a q-ary linear $[n, k, d]$ -code and $E = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, x) \in C, \text{ for some } x \le q\}$,	REED-SOLOMON CODES An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes $RSC(k, q)$, for $k \le q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element <i>u</i> is $p(u)$. RSC (k, q) code is $[q, k, q - k + 1]$ code. Example Generator matrix for RSC $(3, 5)$ code is $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$
SHORTENING and PUNCTURING of LINEAR CODESIf C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C.If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.If C is a q-ary linear $[n, k, d]$ -code and $E = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, x) \in C, \text{ for some } x \le q\}$,then E is a linear code - a puncturing of the code C.	REED-SOLOMON CODES An important example of MDS-codes are q-ary Reed-Solomon codes $RSC(k, q)$, for $k \le q$.They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element u is $p(u)$.RSC(k, q) code is $[q, k, q - k + 1]$ code.Example Generator matrix for RSC(3, 5) code is $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 4 & 1 \end{bmatrix}$
SHORTENING and PUNCTURING of LINEAR CODESIf C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C.If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.If C is a q-ary linear $[n, k, d]$ -code and $E = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, x) \in C, \text{ for some } x \le q\}$,then E is a linear code - a puncturing of the code C.If $d > 1$, then E is an $[n - 1, k, d^*]$ code where $d^* = d - 1$ if C has a minimum weight codeword with wit non-zero last coordinate and $d^* = d$ otherwise.	REED-SOLOMON CODES An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes RSC(<i>k</i> , <i>q</i>), for $k \le q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns labeled by elements $0, 1,, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element <i>u</i> is $p(u)$. RSC(<i>k</i> , <i>q</i>) code is $[q, k, q - k + 1]$ code. Example Generator matrix for RSC(3, 5) code is $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 4 & 1 \end{bmatrix}$ Interesting property of Reed-Solomon codes: $PSC(k, q)^{\perp} = PSC(x - k, r)$

IV054 1. Linear codes	39/49	IV054 1. Linear codes	40/49

SOCCER GAMES BETTING SYSTEM	APPENDIX
Ternary Golay code with parameters (11, 729, 5) can be used to bet for results of 11 soccer games with potential outcomes 1 (if home team wins), 2 (if guest team wins) and 3 (in case of a draw). If 729 bets are made, then at least one bet has at least 9 results correctly guessed. In case one has to bet for 13 games, then one can usually have two games with pretty sure outcomes and for the rest one can use the above ternary Golay code.	
LDPC (Low-Density Parity Check) - CODES	DISCOVERY and APPLICATION of LDPC CODES
 A LDPC code is a binary linear code whose parity check matrix is very sparse - it contains only very few 1's. A linear [n, k] code is a regular [n, k, r, c] LDPC code if r << n, c << n - k and its parity-check matrix has exactly r 1's in each row and exactly c 1's in each column. In the last years LDPC codes are replacing in many important applications other types of codes for the following reasons: LDPC codes are in principle also very good channel codes, so called Shannon capacity approaching codes, they allow the noise threshold to be set arbitrarily close to the theoretical maximum - to Shannon limit - for symmetric channel. Good LDPC codes can be decoded in time linear to their block length using special (for example "iterative belief propagation") approximation techniques. Some LDPC codes are well suited for implementations that make heavy use of parallelism. 	LDPC codes were discovered in 1960 by R.C. Gallager in his PhD thesis,but wre ignored till 1996 when linear time decoding methods were discovered for some of them. LDPC codes are used for: deep space communication; digital video broadcasting; 10GBase-T Ethernet, which sends data at 10 gigabits per second over Twisted-pair cables; Wi-Fi standard,
Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to sparsity constrains. Such LDPC codes are proven to be good with a high probability.	IV054 1. Linear codes 44/40

BI-PARTITE (TANNER) GRAPHS REPRESENTATION of LDPC CODES

An [n, k] LDPC code can be represented by a bipartite graph between a set of n top "variable-nodes (v-nodes)" and a set of bottom (n - k) "parity check nodes (c-nodes)".

The corresponding parity check matrix has n - k rows and n columns and i-th column has 1 in the *j*-th row exactly in case if *i*-th v-node is connected to *j*-th c-node.

	(1	1	1	1	0	0 \
H =		0	0	1	1	0	1)
	ĺ	1	0	0	1	1	0/

IV054 1. Linear codes

TANNER GRAPHS - CONTINUATION

The LDPC-code with the Tanner bipartite graph for (6,3) LDPC-code.

such as the RS-LDPC code used in the 10-gigabit

IV054 1. Linear codes

Ethernet standard.

the following constrains have to be satisfied:

DECODING

$$a_1 + a_2 + a_3 + a_4 = 0$$

 $a_3 + a_4 + a_6 = 0$
 $a_1 + a_4 + a_5 = 0$

+

+

Let the word ?01?11 be received. From the second equation it follows that the second unknown symbol is 0. From the last equation it then follows that the first unknown symbol is 1.

Using so called iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length. IV054 1. Linear codes

47/49

LDPC CODES APPLICATIONS

- In the recent years have been several interesting competition between LDPC codes and Turbo codes introduced in Chapter 3 for various applications.
- In 2003, an LDPC code was able to beat six turbo codes to become the error correcting code in the new DVB-S2 standard for satellite transmission for digital television.
- LDPC is also used for 10Gbase-T Ethernet, which sends data at 10 gigabits per second over twisted-pair cables.
- Since 2009 LDPC codes are also part of the Wi-Fi 802.11 standard as an optional part of 802.11n, in the High Throughput PHY specification.