2016 - Exercises VIII.

1. Consider the elliptic curve $E: y^{2}=x^{3}+3 x+5(\bmod 7)$.
(a) Let $P=(1,3)$. Calculate $3 P$.
(b) List all the points on the elliptic curve E.
(c) Find Q_{1} such that $4 Q_{1}=P=(1,3)$.
(d) Find Q_{2} such that $4 Q_{2}=\infty$.
2. Is there a (non-singular) elliptic curve E defined over \mathbb{Z}_{7} such that
(a) E contains exactly 12 points (including ∞)?
(b) E contains exactly 14 points (including ∞)?

In case of a positive answer, find such a curve and list all of its points. Otherwise, prove that such a curve does not exist.
3. Find all points of order 2 , $i e$. points P such that $2 P=\infty$, of the elliptic curve $E: y^{2}=x^{3}-x$ over \mathbb{R}.
4. Propose a simple method to compute $m P$ on an elliptic curve with approximately $\log _{2} m$ point doublings and $\frac{1}{2} \log _{2} m$ or less additions on average.
5. (a) Using Pollard ρ-method find a factor of 2899 using the function $f(x)=3 x+13$ and the starting integer $x_{0}=7$.
(b) Using Pollard ($p-1$)-method find a factor of 37787 using the fixed integer $B=10$.
6. Consider the elliptic curve version of the ElGamal digital signature from the lecture.
(a) Show that the private key a can be recovered if an adversary learns r.
(b) Show that the private key a can be recovered if the same r is used to generate signatures on two messages.
(c) Let $E: y^{2}=x^{3}+x+4(\bmod 23)$ and let $P=(0,2)$. Show that an adversary can forge valid signature on any message of its choice. Propose a method to prevent such an attack.
7. Consider the elliptic curve

$$
E: y^{2}=x^{3}+1 \quad(\bmod p)
$$

where p is a prime, $p \equiv 2(\bmod 3)$ and $p \geq 5$. Find the number of points on such an elliptic curve and prove your answer.

