2016 - Exercises VI.

1. Let $p=37, q=2, y=17$ be a public key of the ElGamal cryptosystem.
(a) Encrypt the message $w=15$, if a random generator gave you $r=7$.
(b) Decrypt the message $(29,1)$, if the private key is $x=7$.
2. Using a primitive root of \mathbb{Z}_{43}^{*}, solve the following congruence

$$
x^{19} \equiv 38 \quad(\bmod 43)
$$

Avoid the exhaustive search for a primitive root.
3. Consider any two strongly collision resistant hash functions $h_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and $h_{2}:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$ such that $h_{1}(x) \neq h_{2}(x)$ for any $x \in\{0,1\}^{n}$. Now consider the following hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and $h^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 m}$:

$$
\begin{aligned}
& h(x)=h_{1}(x) \oplus h_{2}(x) \\
& h^{\prime}(x)=h_{1}(x) \| h(x)
\end{aligned}
$$

Determine whether h, h^{\prime} has to be
(a) pre-image resistant,
(b) weakly collision resistant,
(c) strongly collision resistant.

Explain your reasoning.
4. Using Shanks' algorithm find x such that

$$
11^{x} \equiv 95 \quad(\bmod 97)
$$

Show the steps of your computation.
5. Consider $n=103178177$. Factorize n using the knowledge that $7300529^{2} \equiv 34404157^{2} \equiv 4568721$ $(\bmod n)$.
6. Consider the Knapsack cryptosystem with a super-increasing private sequence $X=\left(x_{1}, \ldots, x_{n}\right)$ such that
(a) $x_{1}=1$,
(b) $x_{i}=c 2^{i-1}, 1 \leq i \leq n, c>1$.

How would such choice affect security?
7. What is the smallest number of people in a group so that the probability that two people in the group have a birthday within the interval of k days is at least $\frac{1}{2}$? Calculate this number for $k=1, \ldots, 15$.

