IV054 Coding, Cryptography and Cryptographic Protocols

2016 - Exercises IV.

1. Decrypt the following ciphertexts:
(a) RCVRZRTKRVJK
(b) DH AJ AH DG AJ DI DH
(c) XKKNA SHNLV SWOXW SATGO SHZWS E
(Hint: English alphabet extended with the exclamation mark was used.)
(d) 0001110000000001000110110011001000000001111100011111010101
(e) LPTEI JRFDB OESVO AMJBC TVUSG ZAGRG WDPWT GZQDQ XVZNT AS
(Hint: See exercise 5 of the first set of exercises.)
2. Consider the Affine system in which decryption of a cryptotext C is done as follows:

$$
d(C)=19(C-5)(\bmod 26)
$$

Encrypt the plaintext message.
3. Consider two Hill cryptosystems described with matrices G and H.
(a) Consider another Hill cryptosystem with matrix M, constructed from G and H, such that

$$
e_{M}(m)=e_{H}\left(e_{G}(m)\right) \text { and } d_{M}(c)=d_{G}\left(d_{H}(c)\right)
$$

Determine M and M^{-1} in terms of G and H.
(b) Prove that if both H and G set up valid Hill cryptosystem, the cryptosystem from (a) is also valid.
4. Suppose someone wants to send 7 messages using the one-time pad cryptosystem, but only three keys $\left\{k_{1}, k_{2}, k_{3}\right\}$ are available. To solve this, four new keys are created from these three keys as follows:

$$
\begin{aligned}
k_{4} & =k_{1} \oplus k_{2} \\
k_{5} & =k_{1} \oplus k_{3} \\
k_{6} & =k_{2} \oplus k_{3} \\
k_{7} & =k_{1} \oplus k_{2} \oplus k_{3} .
\end{aligned}
$$

You managed to intercept all the cryptotexts $c_{i}=w_{i} \oplus k_{i}, 1 \leq i \leq 7$, but you know only three plaintexts w_{4}, w_{5}, w_{7}. Find the remaining plaintexts.
5. Consider the Affine cryptosystem with modulus $n=3$. Prove that such cryptosystem is perfectly secure, if every valid pair of keys (a, b) has the same probability of being chosen.
6. Consider the binary one-time pad cryptosystem with plaintexts, ciphertexts and keys of length 5 . You have obtained the following information:
Plaintexts $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ have their first bit $0,1,0,1,0$, respectively. The corresponding cryptotexts are $c_{1}=11110, c_{2}=11100, c_{3}=10110, c_{4}=00111, c_{5}=00111$. You know that each of plaintexts was encrypted using a different cyclic shift of the same key k. You also know that the second bit of m_{5} is 0 . Determine m_{5} and k.
7.

