## 2016 - Exercises III.

1. Which of the following binary codes are cyclic? Explain your reasoning.
(a) $C_{1}=\{0000,1001,1111,0110\}$
(b) $C_{2}=\{000,100,010,001\}$
(c) $C_{3}=\{000,110,011,101\}$
2. Find the generator polynomial of a binary cyclic code $C$ of length 12 and dimension 8 such that $110110011011 \in C$.
3. Find cyclic codes equivalent to the following binary codes:
(a) $C_{1}=\{0000,1001,0110,1111\}$
(b) $C_{2}=\{100,010,001\}$
(c) $C_{3}=\{11111\}$
4. Consider a binary cyclic code $C$ of odd length $n$ with generator polynomial $g(x)$. Prove that if $1+x \mid g(x)$ then $11 \ldots 1 \notin C$.
5. Determine the number of
(a) all ternary cyclic codes of length 11 . For each code write down the generator polynomial and determine its dimension;
(b) all binary cyclic codes of length 24 ;
(c) all ternary cyclic codes of length 24.
6. Find the generator polynomial of the binary single-parity-check code (a code consisting of all codewords with parity 0 ) of length $n \geq 2$.
7. Consider binary codes of length 7 containing 16 codewords. Count the number of
(a) all such codes;
(b) such linear codes;
(c) such cyclic codes.
