2016 - Exercises II.

1. Consider the following parity check matrix of the linear code C

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

(a) Find the standard generator matrix for C.
(b) What is the minimal distance of C ?
(c) Use H to determine whether the codeword 1100111 belongs to C ?
(d) Decode the received word 1010101.
2. Consider matrices

$$
G_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right), \quad G_{2}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(a) Prove that G_{1} and G_{2} generate binary [4, 2]-code C_{1} and [5, 3]-code C_{2}, respectively.
(b) Consider $[9,5]$-code C where

$$
C=\left\{w_{1} w_{2} \mid w_{1} \in C_{1} \wedge w_{2} \in C_{2}\right\}
$$

Show that C is also binary linear code and find the generator matrix for C.
3. Consider the following 5 -ary codes C_{1}, C_{2}, C_{3} of length 3 such that
(a) $a_{1} a_{2} a_{3} \in C_{1} \Leftrightarrow 2 a_{1}+a_{2}-a_{3} \equiv 0(\bmod 5)$
(b) $a_{1} a_{2} a_{3} \in C_{2} \Leftrightarrow a_{1} \cdot 2 a_{2} \equiv 0(\bmod 5)$
(c) $a_{1} a_{2} a_{3} \in C_{3} \Leftrightarrow 2 a_{1}+a_{2}-a_{3} \equiv 4(\bmod 5)$

Decide whether C_{1}, C_{2}, C_{3} are linear codes.
4. Consider the following parity check matrix for the linear code C

$$
H=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(a) List all codewords of the code C.
(b) How many different cosets does C have? Write down all coset leaders.
(c) Write down all error vectors which form the same coset as the error vector 000011.
5. Prove the following theorem:

Let C be a q-ary (n, k) code. Every set of $s-1$ columns of its parity check matrix H are linearly independent if and only if $w(C) \geq s$.
6. Consider a ternary code with the following parity check matrix

$$
H=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 2 & 2 \\
1 & 0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Show that this code has a minimum distance 4.
(Hint: Use the result from the previous exercise.)
7. Consider a linear $[n, k]$-code C with corresponding parity check matrix H.
(a) Describe the kernel of linear map represented by H.
(b) Determine the rank of H. Explain your reasoning.

