
CODING, CRYPTOGRAPHY and CRYPTOGRAPHIC PROTOCOLS

prof. RNDr. Jozef Gruska, DrSc.

Faculty of Informatics
Masaryk University

November 7, 2016

Part I

Digital signatures

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign (electronically) an (electronic) message in such
a way that everybody (or the intended addressee only) can verify the signature and
signature should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should give the receiver a reason to
believe that the received message was really send by the claimed sender (authentication
of the message) and was not altered during the transit (integrity of the message).

In many countries, i.e. EU, USA, Brasil, India, Saudi Arabia... digital signatures
have legal significance.

prof. Jozef Gruska IV054 1. Digital signatures 3/57

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (eA,dA).

One way to sign a message w by a user A, and to send w and its signature, so that
any user can verify the signature, is to apply on w (as the signing procedure) the
mapping dA :

signing a message w : dA(w) signature verification: eA(dA(w)) = w

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping dA and then,
on the outcome, eB :

signing the message w : eB(dA(w)) signature verification: eA(dB(eB(dA(w)))) = w

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any responder can verifier the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

prof. Jozef Gruska IV054 1. Digital signatures 4/57

ADDITIONAL PROPERTIES of DIGITAL SIGNATURES

In many instances digital signatures provide a new layer
of validation and security.

Digital signatures are both very different and also
much equivalent to handwritten ones in many
respects, but when properly implemented they
are more difficult to forge than handwritten
signatures.

Digital signatures employ asymmetric cryptography.

prof. Jozef Gruska IV054 1. Digital signatures 5/57

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitalizing our usual
signature and attaching them to the messages (or
documents) that need to be signed?

No! Why? Because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the message that is being
signed.

prof. Jozef Gruska IV054 1. Digital signatures 6/57

DIGITAL SIGNATURES - BASIC REQUIREMENTS

Basic requirements - I. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.
Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always
looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from)
the origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

prof. Jozef Gruska IV054 1. Digital signatures 7/57

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message is of importance, then it suffices that
Alice sends to Bob

(w , dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.

Indeed, an active enemy, the tamperer, can intercept the message, then can compute

dT (eA(c)) = dT (eB(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

prof. Jozef Gruska IV054 1. Digital signatures 8/57

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

Signing hasches of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a
hash function h, so that any one can verifier the signature:

signing the hash: (w , dA(h(w))) signature verification: h(w) = eA(da(h(w)))

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility: Messages are typically bit strings. Digital signature schemes,
such as RSA, operate often on other domains. A hash function can be used to
convert an arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and in the proper order.

prof. Jozef Gruska IV054 1. Digital signatures 9/57

A SCHEME of DIGITAL SIGNATURE SYSTEMS – SIMPLIFIED
VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

{
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be realizable in polynomial time.

Verification algorithms can be publicly known; signing algorithms (actually only
their keys) should be kept secret

prof. Jozef Gruska IV054 1. Digital signatures 10/57

DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication messages. A digital signature
scheme allows anyone to verify signature of any sender S without providing any
information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

Kv - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}
such that the following two conditions are satisfied:

prof. Jozef Gruska IV054 1. Digital signatures 11/57

DIGITAL SIGNATURES SCHEMES II - conditions

Correctness:

For each message m from M and public key k from Kv , it should hold

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k from Kv , it should be computationally infeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.

prof. Jozef Gruska IV054 1. Digital signatures 12/57

A COMMENT ON DIGITAL SIGNATURE SCHEMES

Sometimes it is required that a digital signature scheme
contains also a keys generation phase,

It is a phase that creates uniformly and randomly a secret
(signing) key (from a set of potential secret keys) and
outputs this secret key and the corresponding public
(verification) key.

prof. Jozef Gruska IV054 1. Digital signatures 13/57

ADDITIONAL PROPERTIES Of DIGITAL SIGNATURES

Digital signatures can also provide non-repudiation,
meaning that the signer cannot successfully claim he
did not signed the message, while also claiming that his
private key remains secret.

Some non-repudiation signature schemes offer also a
time stamp for the digital signature, so that even if the
private key is exposed the signature is valid.

prof. Jozef Gruska IV054 1. Digital signatures 14/57

BREAKING DIGITAL SIGNATURE SYSTEMS

An encryption system is considered as broken if
one can determine (at least a part of) plaintexts
from at least some cryptotexts (and at least
sometimes).

A digital signature system is considered as broken
if one can (at least sometimes) forge (at least
some) signatures.

In both cases, a more ambitious goal is to find
the private key.

prof. Jozef Gruska IV054 1. Digital signatures 15/57

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages known but not chosen by the attacker.

CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid
signatures for several messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

prof. Jozef Gruska IV054 1. Digital signatures 16/57

LEVELS of BREAKING of DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

prof. Jozef Gruska IV054 1. Digital signatures 17/57

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is publicly chosen.

Two integers k0 and k1 are chosen and kept secret by the signer, and three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)??

SECURITY?

prof. Jozef Gruska IV054 1. Digital signatures 18/57

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pq and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w : c = w e

Decryption of the cryptotext c: w = cd .

Does it has a sense to change the order of these two operations: To do first

c = wd

and then compute
ce?

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.

Indeed,

s = wd

should be interpreted as the signature of the message w

and
w = se?

as a verification of such signature.
prof. Jozef Gruska IV054 1. Digital signatures 19/57

RSA SIGNATURES and some ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

σ = wd mod n

Verification of the signature s = σ:

w = σe mod n?

Possible simple attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute s = w e for some w and say that w is Alice’s
signature of s.

Everybody trying to verify such a signature as Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .

prof. Jozef Gruska IV054 1. Digital signatures 20/57

ENCRYPTIONS versus SIGNATURES - SUMMARY

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))

prof. Jozef Gruska IV054 1. Digital signatures 21/57

RABIN SIGNATURES

A collision-resistant hash function h : {0, 1}∗ → {0, 1}k is used for some fixed k.

Keys generation: The signer S chooses primes p, q of size approximately k/2 and
computes n = pq.
n will be the public key
the pair (p, q) will be the secret key.

Signing: To sign a message w , the signer chooses random string U and
calculates h(wU);
If h(wU) 6∈ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x2 = h(wU) mod n;
The pair (U, x) is the signature of w .

Verification: Given a message w and a signature (U, x) the verifier V computes x2

and h(wU) and verifies that they are equal.

prof. Jozef Gruska IV054 1. Digital signatures 22/57

IMPORTANT FACTS

Fact 1

If, for a prime p,
a ≡ b (mod(p − 1))

then for any integer x
xa ≡ xb(modp)

Fact 2

If a, n, x , y are integers and gcd(a, n) = 1, then

x ≡ y (modφ(n)) implies ax ≡ ay (modn)

prof. Jozef Gruska IV054 1. Digital signatures 23/57

PROOF

Let

a ≡ b mod (p − 1)

then

xa = xk(p−1)+b

for some k , any x and therefore

xa = xb(xp−1)k ≡ xb mod p

by Fermat’s little theorem.

prof. Jozef Gruska IV054 1. Digital signatures 24/57

ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - secret key: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab = qw (mod p)

(Indeed, for some integer k: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))

prof. Jozef Gruska IV054 1. Digital signatures 25/57

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature
(with x - secret; p, q and y = qx mod p - public):

sig(w, r) = (a, b);

where r is random and a = qr mod p; b = (w − xa)r−1 (mod p − 1).

1 First suppose Eve tries to forge signature for a new message w, without knowing x.
If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

lgaqwy−a,

(because ab ≡ qr(w−xa)r−1 ≡ qw−xa ≡ qwy−a) what is infeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation

yaab ≡ qxaqrb ≡ qw (mod p).

It is not known whether this equation can be solved for any given b efficiently.

2 If Eve chooses a and b and tries to determine w such that (a,b) is signature of w,
then she has to compute discrete logarithm

lgqy
aab.

Hence, Eve can not sign a “random” message this way.

prof. Jozef Gruska IV054 1. Digital signatures 26/57

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

prof. Jozef Gruska IV054 1. Digital signatures 27/57

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)

prof. Jozef Gruska IV054 1. Digital signatures 28/57

DIGITAL SIGNATURE STANDARD II

Signing and Verification

Signing of a 160-bit plaintext w

choose random 0 < k < q

compute a = (r k mod p) mod q

compute b = k−1(w + xa) mod q where kk−1 ≡ 1 (mod q)

signature: sig(w, k) = (a, b)

Verification of signature (a, b)

compute z = b−1 mod q

compute u1 = wz mod q, u2 = az mod q

verification:

verK (w , a, b) = true ⇔ (ru1yu2 mod p) mod q = a

prof. Jozef Gruska IV054 1. Digital signatures 29/57

From ElGamal to DSA - II

DSA is a modification of ElGamal digital signature scheme. It was proposed in August
1991 and adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify a signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

In DSA a 160 bit message is signed using 320-bit signature, but computation is done
modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can be
reduced modulo q without affecting the verification condition.

This allowed to change ElGamal verification condition: y aab = qw .

prof. Jozef Gruska IV054 1. Digital signatures 30/57

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
√

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice first chooses (as a security parameter) an integer t, then t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, for 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

k∏

j=1

s
bij
j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob finally computes z1, . . . , zk , where

zi = y 2
i

k∏

j=1

v
bij
j mod n = r 2

i

k∏

j=1

(v−1
j)bij

k∏

j=1

v
bij
j = r 2

i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.

prof. Jozef Gruska IV054 1. Digital signatures 31/57

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full
view of Walter, even though the messages themselves that
they exchange contain no secret information?

prof. Jozef Gruska IV054 1. Digital signatures 32/57

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· (w′

w
+ w) mod n

S2 = k
2
· (w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 (mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n

prof. Jozef Gruska IV054 1. Digital signatures 33/57

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let P = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s form the secret key, z’s form the public key.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sign(x1 . . . xk) = (y1,x1 , . . . , yk,xk) = (a1, . . . , ak) - notation

and

verif (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used safely to sign only one message.
Why?

prof. Jozef Gruska IV054 1. Digital signatures 34/57

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2n allows
to sign any of the given 2n messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as
Lamport one-time signatures and its security depends
on their security.

The main reason why Merkle Signature Scheme is
of interest, is that it is believed to be resistant to
attacks using quantum computers.

prof. Jozef Gruska IV054 1. Digital signatures 35/57

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings. At first one needs to generate
public keys PKi and secret keys SKi for all 2n messages mi , using Lamport signature
scheme, and to compute also h(PKi) for all i < 2n.

As the next step a complete binary tree with 2n leaves is designed and the value h(PKi)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored. The hash assigned
this way to the root is the public key of the Merkle signature scheme and the tree is
called Merkle tree. See next figure for a Merkle tree.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

prof. Jozef Gruska IV054 1. Digital signatures 36/57

MERKLE SIGNATURE - III.

Signature generation. To sign a message mi , this message is at first signed using the
one-use signature scheme with keys (PKi , SKi). This signature plus a sequence of n
hashes chosen from all those nodes that are needed to compute the hash of the root, is
the Merkle signature. See the next Figure where hashes assigned tom the gray node and
a sequence of black nodes form the signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

h(PKK) in the i−th node

hash of concatenation of hashes
of children

i

prof. Jozef Gruska IV054 1. Digital signatures 37/57

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.
They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks: an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

prof. Jozef Gruska IV054 1. Digital signatures 38/57

TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.

Bob computes z = h(w);

Bob computes z’ = h(z ‖ pub); – { ‖} denotes concatenation

Bob computes y = sig(z’);

Bob publishes (z, pub, y) in the next day newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.

prof. Jozef Gruska IV054 1. Digital signatures 39/57

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob
knowing m, therefore blindly.

– this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and
Bob, that has the following properties.

In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m∗ from which m can not be obtained without
knowing a secret, and sends m∗ to Bob for signing.

Bob signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob’s signature sm∗ of m∗ – Bob’s signature sm of m.

prof. Jozef Gruska IV054 1. Digital signatures 40/57

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Let Bob’s RSA public key be (n, e) and his private key be d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (This way
Alice performs unblinding of m∗).

Verification is similar to that of the RSA signature scheme.

prof. Jozef Gruska IV054 1. Digital signatures 41/57

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

Let us consider the following communication between Alice and Bob:

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)) and sends it to Bob.

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Consider now the case of resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.

prof. Jozef Gruska IV054 1. Digital signatures 42/57

A SURPRISING ATTACK to the PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(sB(eB(sA(w)))) = eM(sA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(sB(eM(sA(w))))

5 Mallot can then get w.

Indeed, Mallot can compute
eA(sM(eB(sM(eM(sB(eM(sA(w)))))))) = w.

prof. Jozef Gruska IV054 1. Digital signatures 43/57

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends the pair (eB(eB(w)||A),B) to Bob.

2 Bob uses dB to get A and w, and acknowledges the receipt by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.)

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′) for w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice makes acknowledgment by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.

prof. Jozef Gruska IV054 1. Digital signatures 44/57

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a trapdoor permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k), G(w) = (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .
The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.

prof. Jozef Gruska IV054 1. Digital signatures 45/57

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 1. Digital signatures 46/57

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U has a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice verifies, using an authority, that vB is Bob’s verification algorithm.

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy)) to Bob.

12 Bob decrypts, verifies vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.

prof. Jozef Gruska IV054 1. Digital signatures 47/57

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

prof. Jozef Gruska IV054 1. Digital signatures 48/57

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal digital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

prof. Jozef Gruska IV054 1. Digital signatures 49/57

APPENDIX

APPENDIX

prof. Jozef Gruska IV054 1. Digital signatures 50/57

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

Whitfield Diffie and Martin Hellman were the first, in 1976, to describe the idea of
digital signatures, although they only conjectured that such schemes exist.

The first broadly marketed software package to offer digital signature was Lotus
Notes 1.0, released in 1989, which used RSA algorithm

prof. Jozef Gruska IV054 1. Digital signatures 51/57

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DSA is covered by US-patent attributed to David W.
Krantz (former NSA employee). Claus P. Schnor claims
that his US patent covered DSA.

prof. Jozef Gruska IV054 1. Digital signatures 52/57

UNDENIABLE SIGNATURES I

Undeniable signatures are signatures that have two properties:

A signature can be verified only in the cooperation with the signer – by means of a
challenge-and-response protocol.

The signer cannot deny a correct signature. To achieve that, steps are a part of the
protocol that force the signer to cooperate – by means of a disavowal protocol – this
protocol makes possible to prove the invalidity of a signature and to show that it is a
forgery. (If the signer refuses to take part in the disavowal protocol, then the
signature is considered to be genuine.)

Undeniable signature protocol of Chaum and van Antwerpen (1989), discussed next, is
again based on infeasibility of the computation of the discrete logarithm.

prof. Jozef Gruska IV054 1. Digital signatures 53/57

UNDENIABLE SIGNATURES II

Undeniable signatures consist of:

Signing algorithm

Verification protocol, that is a challenge-and-response protocol.

In this case it is required that a signature cannot be verified without a cooperation
of the signer (Bob).

This protects Bob against the possibility that documents signed by him are
duplicated and distributed without his approval.

Disavowal protocol, by which Bob can prove that a signature is a forgery.

This is to prevent Bob from disavowing a signature he made at an earlier time.

Chaum-van Antwerpen undeniable signature schemes (CAUSS)

p, r are primes p = 2r + 1

q ∈ Z∗p is of order r;

1 ≤ x ≤ r − 1, y = qx mod p;

G is a multiplicative subgroup of Z∗p of order q (G consists of quadratic residues
modulo p).

Key space: K = {p, q, x , y}; p, q, y are public, x ∈ G is secret.

Signature: s = sigK (w) = w x mod p.
prof. Jozef Gruska IV054 1. Digital signatures 54/57

FOOLING and DISALLOWED PROTOCOL I

Since it holds:

Theorem If s 6= w x mod p, then Alice will accept s as a valid signature for w with
probability 1/r.

Bob cannot fool Alice except with very small probability and security is unconditional
(that is, it does not depend on any computational assumption).

Disallowed protocol

Basic idea: After receiving a signature s Alice initiates two independent and unsuccessful
runs of the verification protocol. Finally, she performs a “consistency check” to
determine whether Bob has formed his responses according to the protocol.

Alice chooses e1, e2 ∈ Z∗r .

Alice computes c = se1y e2 mod p and sends it to Bob.

Bob computes d = cx
(−1) mod r mod p and sends it to Alice.

Alice verifies that d 6= w e1qe2 (mod p).

Alice chooses f1, f2 ∈ Z∗r .

Alice computes C = s f 1y f 2 mod p and sends it to Bob.

Bob computes D = C x(−1) mod r mod p and sends it to Alice.

prof. Jozef Gruska IV054 1. Digital signatures 55/57

FOOLING and DISALLOWED PROTOCOL II

Alice verifies that D 6= w f 1qf 2 (mod p).

Alice concludes that s is a forgery iff

(dq−e2)f 1 ≡ (Dq−f 2)e1 (mod p).

CONCLUSIONS

It can be shown:

Bob can convince Alice that an invalid signature is a forgery. In order to do that it is
sufficient to show that if s 6= w x , then

(dq−e2)f 1 ≡ (Dq−f 2)e1 (mod p)

what can be done using congruency relation from the design of the signature system and
from the disallowed protocol.

Bob cannot make Alice believe that a valid signature is a forgery, except with a
very small probability.

prof. Jozef Gruska IV054 1. Digital signatures 56/57

WYSIWYS PROBLEM

Typically speaking, digital signatures apply to strings of bits, whereas humans and
applications ”believe” that they sign the semantic interpretation of those bits!

In order to be semantically interpreted, bit strings must be transformed into a form
meaningful for humans and applications, and this is done through a combination of
software and hardware processes.

The problem is that the semantic interpretation can change as a function of such
processes (that can be changed) used to transform the bits into a semantic content.

From a semantic perspective this creates uncertainty about what exactly has been
signed.

WYSIWYS (What You See Is What You Write) means that the semantic
interpretation of the signed message cannot be changed.

In particular, this also means that that a message should not contain hidden
information that the signer is unaware of, and that can be revealed after the
signature has been applied. em

WYSIWYS is therefore a necessary requirement (though very hard to guarantee) for
the validity of digital signatures.

prof. Jozef Gruska IV054 1. Digital signatures 57/57

