
CODING, CRYPTOGRAPHY and CRYPTOGRAPHIC PROTOCOLS

prof. RNDr. Jozef Gruska, DrSc.

Faculty of Informatics
Masaryk University

October 31, 2016

Part I

Public-key cryptosystems II. Other cryptosystems and
cryptographic primitives

CHAPTER 6: OTHER CRYPTOSYSTEMS and BASIC
CRYPTOGRAPHY PRIMITIVES

A large number of interesting and important cryptosystems have already been designed.
In this chapter we present several other of them in order to illustrate other
principles and techniques that can be used to design cryptosystems.

At first, we present several cryptosystems security of which is based on the fact that
computation of square roots and discrete logarithms is in general infeasible in some
groups.

Secondly, we discuss one of the fundamental questions of modern cryptography:
when can a cryptosystem be considered as (computationally) perfectly secure?

In order to do that we will:

discuss the role randomness play in the cryptography;

introduce the very fundamental definitions of perfect security of cryptosystem;

present some examples of perfectly secure cryptosystems.

Finally, we will discuss, in some details, such very important cryptography primitives as
pseudo-random number generators and hash functions .

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 3/58

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

DISCRETE SQUARE ROOTS CRYPTOSYSTEMS

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 4/58

RABIN CRYPTOSYSTEM

Let Blum primes p, q are kept secret, and let the Blum integer n = pq be the public key.
Encryption: of a plaintext w < n

c = w 2 (mod n)

Decryption: -briefly

It is easy to verify (using Euler’s criterion which says that if c is a quadratic residue
modulo p, then c (p−1)/2 ≡ 1 (mod p),) that

±c (p+1)/4mod p and ±c (q+1)/4mod q

are two square roots of c modulo p and q. (Indeed, p+1
2

= p−1
2

+ 1) One can now obtain
four square roots of c modulo n using the method of Chinese remainder shown in the
Appendix.

In case the plaintext w is a meaningful English text, it should be easy to determine w
from the four square roots w1,w2,w3,w4 presented above.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.

That is, likely, why Rabin did not propose this system as a practical cryptosystem.
prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 5/58

COMPUTATION of SQUARE ROOTS MODULO PRIMES

In case of Blum primes p and q and Blum integer n = pq, in order to solve the equation
x2 ≡ a(mod n), one needs to compute squares of a modulo p and modulo q and then to
use the Chinese remainder theorem to solve the equation x2 = a (mod pq).

Example To solve modular equation x2 ≡ 71 (mod 77),one needs to solve modular
equation

x2 ≡ 71 ≡ 1 (mod 7) to get x ≡ ±1(mod 7)
and
to solve also modular equation

x2 ≡ 71 ≡ 5 (mod 11) to get x ≡ ±4 (mod 11).

Using the Chinese Remainder Theorem we then get

x ≡ ±15,±29 (mod 77).

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 6/58

CHINESE REMAINDER THEOREM

Theorem Let m1, . . . ,mt be integers, gcd(mi ,mj) = 1 if i 6= j , and a1, . . . , at be integers
such that 0 < ai < mi , 1 ≤ i ≤ t.
Then the system of congruences

x ≡ ai (mod mi), 1 ≤ i ≤ t

has the solution

x =
t∑

i=1

aiMiNi (?)

where

M =
t∏

i=1

mi ,Mi =
M

mi
,Ni = M−1

i mod mi

and the solution (?) is unique up to the congruence modulo M.

Application Each integer 0 < x < M is uniquely represented by t-tuple:

x (mod m1), . . . , x (mod mt).

Example If m1 = 2,m2 = 3,m3 = 5, then (1, 0, 2) represents integer 27.
Advantage: With such a modular representation addition, subtraction and multiplication
can be done component-wise and therefore in parallel time.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 7/58

DETAILS and CORRECTNESS of DECRYPTION I

Blum primes p, q form a secret key; n = pq is the public key.

Encryption of a plaintext w < n:

c = w 2 mod n.

Decryption: Compute

r = c (p+1)/4 mod p and s = c (q+1)/4 mod q;

Find integers a, b such that ap + bq = 1 and compute

x = (aps + bqr) mod n, y = (aps − bqr) mod n

Four square roots of c modn then are (all modulo n):

x , y ,−x ,−y

In case w is a meaningful English text, it should be easy to determine w from
x , y ,−x ,−y .

However, this is not the case if w is an arbitrary string.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 8/58

DETAILS and CORRECTNESS of DECRYPTION II

Since c = w 2 mod n we have c ≡ w 2 (mod p) and c ≡ w 2 (mod q);

Since r ≡ c (p+1)/4, we have r 2 ≡ c (p+1)/2 ≡ c (p−1)/2c (mod p), and Fermat theorem
then implies that r 2 ≡ c (mod p);

Similarly, since s ≡ c (q+1)/4 we receive s2 ≡ c (mod q);

Since x2 ≡ (a2p2s2 + b2q2r 2) (mod n) and ap + bq = 1 we have bq ≡ 1 (mod p)
and therefore x2 ≡ r 2 (mod p);

Similarly we get x2 ≡ s2 (mod q) and the Chinese remainder theorem then implies
x2 ≡ c (mod n);

Similarly we get y 2 ≡ c (mod n).

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 9/58

GENERALIZED RABIN CRYPTOSYSTEM

Public key: n,B (0 ≤ B < n)

Trapdoor: Blum primes p, q (n = pq)

Encryption: e(x) = x(x + B) mod n

Decryption: d(y) =

(√
B2

4
+ y − B

2

)
mod n

It is easy to verify that if ω is a nontrivial square root of 1 modulo n, then there are four
decryptions of e(x):

x , −x , ω
(
x + B

2

)
− B

2
, −ω

(
x + B

2

)
− B

2

Example

e
(
ω
(
x + B

2

)
− B

2

)
=
(
ω
(
x + B

2

)
− B

2

) (
ω
(
x + B

2

)
+ B

2

)
= ω2

(
x + B

2

)2 −
(
B
2

)2
=

x2 + Bx = e(x)

Decryption of the generalized Rabin cryptosystem can be reduced to the decryption
of the original Rabin cryptosystem.

Indeed, the equation x2 + Bx ≡ y (mod n) can be transformed,
by the substitution x = x1 − B/2, into x1

2 ≡ B2/4 + y (mod n)
and, by defining c = B2/4 + y , into x1

2 ≡ c (mod n)
Therefore decryption can be done by factoring n and solving congruences

x1
2 ≡ c (mod p) x1

2 ≡ c (mod q)
prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 10/58

SECURITY of RABIN CRYPTOSYSTEM

We show that any hypothetical decryption algorithm A for Rabin cryptosystem, can be
used, as an oracle, in the following randomized algorithm, to factor an integer n.

Algorithm:

1 Choose a random r , 1 ≤ r < n;

2 Compute y = (r 2 − B2/4) mod n; {y = ek(r − B/2)}.

3 Call A(y), to obtain a decryption x =

(√
B2

4
+ y − B

2

)
mod n;

4 Compute x1 = x + B/2; {x12 ≡ r 2 mod n}

5 if x1 = ±r then quit (failure)
else gcd(x1 + r , n) = p or q

Indeed, after Step 4, either x1 = ±r mod n or x1 = ±ωr mod n.
In the second case we have

n | (x1 − r)(x1 + r),

but n does not divide any of the factors x1 − r or x1 + r .
Therefore computation of gcd(x1 + r , n) or gcd(x1 − r , n) must yield factors of n.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 11/58

DISCRETE LOGARITHM CRYPTOSYSTEMS

DISCRETE LOGARITHM CRYPTOSYSTEMS

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 12/58

ElGamal CRYPTOSYSTEM

Design: choose a large prime p – (with at least 150 digits).
choose two random integers 1 ≤ q, x < p – where q is a primitive element of Z∗p
calculate y = qx mod p.

Public key: p, q, y ; trapdoor: x
Encryption of a plaintext w : choose a random r and compute

a = qr mod p, b = y rw mod p

Cryptotext: c = (a, b)
(Cryptotext contains indirectly r and the plaintext is ”masked” by multiplying with y r

(and taking modulo p))

Decryption: w = b
ax

mod p = ba−xmod p.

Proof of correctness: ax ≡ qrxmod p

b

ax
≡ y rw

ax
≡ qrxw

qrx
≡ w(mod p)

Note: Security of the ElGamal cryptosystem is based on infeasibility of the discrete
logarithm computation.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 13/58

SHANKS’ ALGORITHM for DISCRETE LGGAORITHM

Let m = d√p − 1e. The following algorithm computes lgqy in Z∗p.

1 Compute qmjmod p, 0 ≤ j ≤ m − 1.

2 Create list L1 of m pairs (j , qmj mod p), sorted by the second item.

3 Compute yq−i mod p, 0 ≤ i ≤ m − 1.

4 Create list L2 of pairs (i , yq−imod p) sorted by the second item.

5 Find two pairs, one (j , z) ∈ L1 and (i , z) ∈ L2 with identical second element

If such a search is successful, then

qmjmod p = z = yq−i mod p

and as the result
qmj+i ≡ y (mod p)

On the other hand, for any y we can write
lgqy = mj + i ,

for some 0 ≤ i , j < m. Hence the search in the Step 5 of the algorithm has to be
successful.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 14/58

BIT SECURITY of DISCRETE LOGARITHM

Let us consider problem to compute Li (y) = i-th least significant bit of lgqy in Z∗p.

Result 1: L1(y) can be computed efficiently.
To show that we use the fact that the set QR(p) has (p − 1)/2 elements.
Let q be a primitive element of Z∗p. Clearly, qa ∈ QR(p) if a is even. Since the elements

q0mod p, q2mod p, . . . , qp−3mod p

are all distinct, we have that

QR(p) = {q2imod p | 0 ≤ i ≤ (p − 3)/2}

Consequence: y is a quadratic residue iff lgqy is even, that is iff L1(y) = 0.

By Euler’s criterion y is a quadratic residue if y (p−1)/2 ≡ 1 mod p
L1(y) can therefore be computed as follows:

L1(y) = 0 if y (p−1)/2 ≡ 1 mod p;
L1(y) = 1 otherwise

Result 2: Efficient computability of Li (y), i > 1 in Z∗p would imply efficient
computability of the discrete logarithm in Z∗p.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 15/58

GROUP VERSION of ElGamal CRYPTOSYSTEM

A group version of discrete logarithm problem

Given a group (G , ◦), α ∈ G , β ∈ {αi | i ≥ 0}. Find

logα β = k such that αk = β that is k = logα β

GROUP VERSION of ElGamal CRYPTOSYSTEM

ElGamal cryptosystem can be implemented in any group in which discrete logarithm
problem is infeasible.

Cryptosystem for (G , ◦)
Public key: α, β
Trapdoor: k such that αk = β

Encryption: of a plaintext w and a random integer r

e(w , k) = (y1, y2) where y1 = αr , y2 = w ◦ βr

Decryption: of cryptotext (y1, y2):

d(y1, y2) = y2 ◦ y−k
1

An important special case is that of computation of discrete logarithm in a group of
points of an elliptic curve defined over a finite field.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 16/58

FEISTEL ENCRYPTION/DECRYPTION SCHEME

This is a general scheme for design of cryptosystems that
was used at the design of several important
cryptosystems, such as Lucifer and DES.
Its main advantage is that encryption and decryption are
very similar, and even identical in some cases, and then
the same hardware can be used for both encryption and
decryption.
Let F a be a so-called round function and K0,K1, . . . ,Kn

be sub-keys for rounds 0, 1, 2, . . . , n.
Encryption is as follows:

Split the plaintext into two equal size parts L0,R0.

For rounds i ∈ {0, 1, . . . , n} compute

Li+1 = Ri ; Ri+1 = Li ⊕ F (Ri , ki)

then the ciphertext is (Rn+1, Ln+1)
Decryption of (Rn+1, Ln+1) is done by computing, for
i = n, n − 1, . . . , 0

Ri = Li+1, Li = Ri+1 ⊕ F (Li+1,Ki)

and (L0,R0) is the plaintext

R

F

F

K

F

R0 0

K 0

1

K

L

L n+1n+1

n+1

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 17/58

WHEN ARE ENCRYPTIONS PERFECTLY SECURE?

WHEN ARE ENCRYPTIONS PERFECTLY SECURE?

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 18/58

RANDOMIZED ENCRYPTIONS

From security point of view, public-key cryptography with deterministic encryptions has
the following serious drawback:

A cryptanalyst who knows the public encryption function e k and a cryptotext c can try
to guess a plaintext w , compute e k(w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding plaintext
(except with a negligible probability).

Formal setting: Given: plaintext-space P
cryptotext C
key-space K
random-space R

encryption: e k : P x R → C
decryption: d k : C → P or C → 2Psuch that for any p, r :

p = dk(ek(p, r)) or p ∈ dk(ek(p, r))

dk and ek should be easy to compute.
Given e k , it should be unfeasible to determine d k .

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 19/58

WHEN is a CRYPTOSYSTEM (perfectly) SECURE?

First question: Is it enough for perfect security of a cryptosystem that one cannot get a
plaintext from a cryptotext?

NO, NO, NO
WHY

For many applications it is crucial that no information about the plaintext could be
obtained.

Intuitively, a cryptosystem is (perfectly) secure if one cannot get any (new)
information about the corresponding plaintext from any cryptotext.

It is very nontrivial to define fully precisely when a cryptosystem is (computationally)
perfectly secure.

It has been shown that perfectly secure cryptosystems have to use randomized
encryptions.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 20/58

SECURE ENCRYPTIONS – BASIC CONCEPTS I

We now start to discuss a very nontrivial question: when is an encryption scheme
computationally perfectly SECURE?

At first, we introduce two very basic technical concepts:

Definition A function f:N → R is a negligible function if for any polynomial p(n) and
for almost all n:

f (n) ≤ 1
p(n)

Definition – computational distinguishibility Let X = {Xn}n∈N and Y = {Yn}n∈N be
probability ensembles such that each Xn and Yn ranges over strings of length n. We say
that X and Y are computationally indistinguishable if for every feasible algorithm A the
difference

dA(n) =| Pr [A(Xn) = 1]− Pr [A(Yn) = 1] |

is a negligible function in n.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 21/58

SECURE ENCRYPTION – FIRST DEFINITION

Definition – semantic security of encryption A cryptographic system with an
encryption function e is semantically secure if for every feasible algorithm A, there exists
a feasible algorithm B so that for every two functions

f , h : {0, 1}∗ → {0, 1}n

and all probability ensembles {X n}n∈N , where X n ranges over {0, 1}n

Pr [A(e(Xn), h(Xn)) = f (Xn)] < Pr [B(h(Xn)) = f (Xn)] + µ(n),

where µ is a negligible function.

In other words, a cryptographic system is
semantically secure if whatever we can do with the
knowledge of cryptotext we can do also without
that knowledge.

It can be shown that any semantically secure public-key cryptosystem must use a
randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized versions of
RSA are semantically secure.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 22/58

SECURE ENCRYPTIONS – SECOND DEFINITION

Definition A randomized-encryption cryptosystem is
polynomial time secure if, for any c ∈ N and sufficiently
large s ∈ N (security parameter), any randomized
polynomial time algorithms that takes as input s (in unary)
and the public key, cannot distinguish between randomized
encryptions, by that key, of two given messages of length
c, with the probability larger than 1

2 + 1
sc .

Both definitions of secure encryptions are
equivalent.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 23/58

PSEUDORANDOM GENERATORS - PRG

PSEUDORANDOM GENERATORS - PRG

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 24/58

PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost random)
strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the design
of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum (almost
perfect) generators of randomness are already commercially available.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 25/58

CRYPTOGRAPHICALLY PERFECT PSEUDORANDOM
GENERATORS

One of the most basic questions of perfect security of
encryptions is whether there are cryptographically
perfect pseudorandom generators and what such a
concept really means.

The concept of pseudorandom generators is quite old. An
interesting example is due to John von Neumann:

Take an arbitrary integer x as the ”seed”
and repeat the following process:

compute x2 and take a sequence of the middle digits of
x2 as a new ”seed” x .

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 26/58

SIMPLE PSEUDORANDOM GENERATORS

Informally, a pseudorandom generator is a deterministic polynomial time algorithm
which expands short random sequences (called seeds) into longer bit sequences such that
the resulting probability distribution is in polynomial time indistinguishable from the
uniform probability distribution.

Example. Linear congruential generator

One chooses n-bit numbers m, a, b, X0 and generates an n2 element sequence

X1X2 . . .Xn2

of n-bit numbers by the iterative process

Xi+1 = (aXi + b) mod m.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 27/58

CRYPTOGRAPHY and RANDOMNESS

Randomness and cryptography are deeply related.

1 Prime goal of any good encryption method is to transform even a highly nonrandom
plaintext into a highly random cryptotext. (Avalanche effect.)

Example Let ek be an encryption algorithm, x0 be a plaintext. And

xi = ek(xi−1), i ≥ 1.

It is intuitively clear that if encryption ek is “cryptographically secure”, then it is
very, very likely that the sequence x0 x1 x2 x3 is (quite) random.

Perfect encryption should therefore produce (quite) perfect (pseudo)randomness.

2 The other side of the relation is more complex. It is clear that perfect randomness
together with ONE-TIME PAD cryptosystem produces perfect secrecy. The price to
pay: a key as long as plaintext is needed.

The way out seems to be to use an encryption algorithm with a pseudo-random
generator to generate a long pseudo-random sequence from a short seed and to use
the resulting sequence with ONE-TIME PAD.

Basic question: When is a pseudo-random generator good enough for
cryptographical purposes?

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 28/58

CRYPTOGRAPHICALY STRONG PSEUDORANDOM
GENERATORS

In cryptography random sequences can usually be replaced by pseudorandom
sequences generated by (cryptographically perfect/strong) pseudorandom generators.

Definition. Let l(n) : N → N be such that l(n) > n for all n. A (cryptographically
strong) pseudorandom generator with a stretch function l , is an efficient deterministic
algorithm which on the input of a random n-bit seed outputs a l(n)-bit sequence which is
computationally indistinguishable from any random l(n)-bit sequence.

Candidate for a cryptographically strong pseudorandom generator:

A very fundamental concept: A predicate b is a hard core predicate of the function f if
b is easy to evaluate, but b(x) is hard to predict from f(x). (That is, it is unfeasible,
given f(x) where x is uniformly chosen, to predict b(x) substantially better than with the
probability 1/2.)

Conjecture: The least significant bit of x2 mod n is a hard-core predicate.

Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G(s) = b(s) · b(f (s)) · · · b
(
f l(|s|)−1(s)

)

is a (cryptographically strong) pseudorandom generator with stretch function l(n).

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 29/58

THEOREM

Theorem A cryptographiclaly strong (pefect)
pseudorandom generator exists if one-way functions exist.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 30/58

PSEUDORANDOM GENERATORS and ENCRYPTIONS

If two parties share a pseudorandom generator g ,

and exchange (secretly) a short random string -

(seed) - s

then they can generate and use long

pseudorandom string g(s) as a key k

for one-time pad for encoding and decoding.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 31/58

CANDIDATES for CRYPTOGRAPHICALLY STRONG
PSEUDO-RANDOM GENERATORS

So far there are only candidates for cryptographically strong pseudo-random generators.

For example, cryptographically strong are all pseudo-random generators that are
unpredictable to the left in the sense that a cryptanalyst that knows the generator and
sees the whole generated sequence except its first bit has no better way to find out this
first bit than to toss the coin.

It has been shown that if integer factoring is intractable, then the so-called BBS
pseudo-random generator, discussed below, is unpredictable to the left.

(We make use of the fact that if factoring is unfeasible, then for almost all quadratic
residues x mod n, coin-tossing is the best possible way to estimate the least significant
bit of x after seeing x2 mod n.)

Let n be a Blum integer. Choose a random quadratic residue x0 (modulo n).

For i ≥ 0 let
xi+1 = xi

2mod n, bi = the least significant bit of xI

For each integer i , let
BBS n,i (x0) = b0 . . . bi−1

be the first i bits of the pseudo-random sequence generated from the seed x0 by the BBS
pseudo-random generator.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 32/58

RANDOMIZED ENCRYPTIONS

From security point of view, public-key cryptography with deterministic encryptions has
the following serious drawback:

A cryptanalyst who knows the public encryption function e k and a cryptotext c can try
to guess a plaintext w , compute e k(w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding plaintext
(except with a negligible probability).

Formal setting: Given: plaintext-space P
cryptotext C
key-space K
random-space R

encryption: e k : P x R → C
decryption: d k : C → P or C → 2Psuch that for any p, r :

d k(e k(p, r)) = p.

or
p ∈ dk(ek(p, r)) or p ∈ dk(ek(p, r))

d k , e k should be easy to compute.
Given e k , it should be unfeasible to determine d k .

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 33/58

SECURE ENCRYPTION – FIRST DEFINITION

Definition – semantic security of encryption A cryptographic system with an encryption
function e is semantically secure if for every feasible algorithm A, there exists a feasible
algorithm B so that for every two functions

f , h : {0, 1}∗ → {0, 1}n

and all probability ensembles {X n}n∈N , where X n ranges over {0, 1}n

Pr [A(E(Xn), h(Xn)) = f (Xn)] < Pr [B(h(Xn)) = f (Xn)] + µ(n),

where µ is a negligible function.

It can be shown that any semantically secure public-key cryptosystem must use a
randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized versions of
RSA are semantically secure.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 34/58

SECURE ENCRYPTIONS – SECOND DEFINITION

Definition A randomized-encryption cryptosystem is polynomial time secure if, for any c
∈ N and sufficiently large s ∈ N (security parameter), any randomized polynomial time
algorithms that takes as input s (in unary) and the public key, cannot distinguish between
randomized encryptions, by that key, of two given messages of length c, with the
probability larger than 1

2
+ 1

sc
.

Both definitions are equivalent.

Example of a polynomial-time secure randomized (Bloom-Goldwasser) encryption:

p, q - large Blum primes n = p × q - key
Plaintext-space - all binary strings

Random-space – QRn

Crypto-space - QRn × {0, 1}∗

Encryption: Let w be a t-bit plaintext and x0 a random quadratic residue modulo n.
Compute xt and BBSn,t(x0) using the recurrence

xi+1 = x2
i mod n

Cryptotext: (xt ,w ⊕ BBSn,t(x0))

Decryption: Legal user, knowing p, q, can compute x0 from xt , then BBSn,t(x0), and
finally w.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 35/58

PERFECTLY SECURE CIPHERS - EXAMPLES

PERFECTLY SECURE CIPHERS - EXAMPLES

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 36/58

RANDOMIZED VERSION of RSA-LIKE CRYPTOSYSTEM

The scheme works for any trapdoor function (as in case of RSA),

f : D → D,D ⊂ {0, 1}n,

for any pseudorandom generator

G : {0, 1}k → {0, 1}l , k << l

and any hash function

h : {0, 1}l → {0, 1}k ,

where n = l + k. Given a random seed s ∈ {0, 1}k as input, G generates a
pseudorandom bit-sequence of length l.

Encryption of a message m ∈ {0, 1}l is done as follows:

1 A random string r ∈ {0, 1}k is chosen.

2 Set x = (m ⊕ G(r))‖(r ⊕ h(m ⊕ G(r))). (If x /∈ D go to step 1.)

3 Compute encryption c = f(x) – length of x and of c is n.

Decryption of a cryptotext c.

Compute f −1(c) = a‖b, |a| = l and |b| = k.

Set r = h(a)⊕ b and get m = a⊕ G(r).

Comment: Operation ”‖” stands for a concatenation of strings.
prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 37/58

HASH FUNCTIONS

HASH FUNCTIONS

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 38/58

HASH FUNCTIONS - PICTURE

Hash functions f map huge sets A (randomly and
uniformly) into very small sets B in such a way that for
many important information processing tasks one can, well
enough, replace working with (huge) elements x from A by
working with (small) elements f (x) from B .

A

Bf

Cryptographic hash functions are hash functions that
satisfy well enough basic cryptographic properties.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 39/58

APPLICATIONS of HASH FUNCTIONS

to design variety of efficient algorithms;

to build hash tables to quickly locate a data record;

to build casches for large data sets stored in slow
memories;

to build Bloom filters - data structured to test whether
an element is a member of a set;

to find duplicate or similar records or substrings;

to deal with a variety of computer graphics and
telecommunications problems;

to help to solve a variety of cryptographic problems.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 40/58

HASH FUNCTIONS - BASICS

A hash function is any function that maps (unifirmly and randomly) digital data of huge
(arbitrary) size to digital data of small fixed size, in such a way that slight differences in
input data produce big differences in output data.

The values returned by a hash function are called hash values, hash codes, fingerprints,
message digests, digests or simply hashes.

A good hash function should map possible inputs as evenly as possible over its output
range.

In other words, if a hash function maps a set A of n elements into a set B of m << n
elements, then the probability that an element of B is the value of much more than n

m

elements of A should be very small.

Hash function have a variety applications, especially in the design of efficient algorithms
and in cryptography.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 41/58

CRYPTOGRAPHIC HASH FUNCTIONS

A good cryptographic hash function f is such a hash function that withstands all known
cryptographic attacks. As a minimum, it must have the following properties:

Pre-image resistance: Given a hash h it should be infeasible (difficult) to find any
message m such that h = f (m). In such a case it is also said that f
should have one-wayness property.

Second pre-image resistance: Given a message m1 it should be infeasible (difficult) to
find another message m2 such that f (m1) = f (m2). In such a case it is
also said that f should be weakly collision resistant.

Collision resistance: It should be infeasible (difficult) to find two messages m1 and m2

such that f (m1) = f (m2). In such a case it is also said that f should be
strongly collision resistant.

In cryptographic practice ”difficult” generally means ”almost certainly beyond the
reach of any adversary who must be prevented from breaking the system for as long
as the security of the system is considered to be very important”.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 42/58

SOME APPLICATIONS

To verify integrity of messages: To determine
whether a change was made to a message during a
transmission, can be done by comparing message
digests calculating before, and after, the transmission.

Passport verification The idea is to story only hashes
of each password. To authenticate a user, the password
presented by the user is hashed and compared with the
stored hashes.

In 2013 a long-term Password Hashing Competition
was announced to choose a new, standard algorithm for
password hashing.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 43/58

EXAMPLES

Example 1 For a vector a = (a1, . . . , ak) of integers let

H(a) =
k∑

i=0

ai mod n

where n is a product of two large primes.

This hash functions does not meet any of the three properties mentioned above.

Example 2 For a vector a = (a1, . . . , ak) of integers let

H(a) =
k∑

i=0

a2i mod n

where n is product of two large primes.

This function is one-way, but it is not weakly collision resistant.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 44/58

AN ALMOST GOOD HASH FUNCTION

We show an example of a hash function (so called Discrete Log Hash Function) that
seems to have as the only drawback that its computation is quite demanding to be used
in practice:

Let p be a large prime such that q = (p−1)
2

is also prime and let α, β be two primitive
roots modulo p. Denote a = logα β (that is β = αa).

h will map two integers smaller than q to an integer smaller than p, for
m = x0 + x1q, 0 ≤ x0, x1 ≤ q − 1 as follows,

h(x0, x1) = h(m) = αx0βx1 (mod p).

To show that h is one-way and collision-free the following fact can be used:

FACT: If we know different messages m1 and m2 such that h(m1) = h(m2), then we can
compute logα β.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 45/58

HASH FUNCTIONS h from CRYPTOSYSTEMS

Let us have computationally secure cryptosystem with plaintexts, keys and cryptotexts
being binary strings of a fixed length n and with encryption functions ek .

If

x = x1‖x2‖ . . . ‖xm
is the decomposition of x into substrings of length n, g0 is a random string, and

gi = f (xi , gi−1)

for i = 1, . . . ,m, where f is a function that “incorporates” encryption functions ek of the
cryptosystem, for suitable keys k, then

h(x) = gm .

For example such good properties have these two functions:

f (xi , gi−1) = egi−1(xi)⊕ xi
f (xi , gi−1) = egi−1(xi)⊕ xi ⊕ gi−1

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 46/58

PRACTICALLY USED HASH FUNCTIONS

A variety of hash functions has been constructed. Very often used hash
functions were MD4, MD5 (created by Rivest in 1990 and 1991 and
producing 128 bit message digest).

NSA published, as standards, starting in 1993, SHA-0, SHA-1 (Secure Hash
Algorithm) – producing 160 bit message digest – based on similar ideas as
MD4 and MD5.

Some of the most important cryptographic results of the last years were
due to the Chinese Wang who has shown that MD4 is not cryptographically
perfectly secure and Dr. Kimy who has done that also for MD5.

Observe that every cryptographic hash function is vulnerable to a collision
attack using so called birthday attack. Due to the birthday problem a
hash of n bits can be broken in

√
2n evaluations of the hash function -

much faster than the brute force attack.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 47/58

RECENT DEVELOPMENTS CONCERNING HASH FUNCTIONS

In February 2005, an attack on SHA-1 was reported that would find collision in
about 269 hashing operations - rather than the 280 as expected by dictionary attack
for a 160-bit hash function.

In August 2005 another attack on SHA-1 was reported that would find collisions in
263 operations.

Though no collision for SHA-1 was found, it started to be expected that this will
soon happen and so SHA2 was developed.

Very recently a successful attack on SH1 has been reported.

In order to ensure long-term robustness of applications that use hash functions a
public competition was announced by NIST to replace SHA-2.

On October 2012 Keccak was selected as the winner and a version of this algorithm
is expected to be a new standard (since 2014) under the name SHA-3.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 48/58

MD5

Often used in practise has been hash function MD5 designed in 1991 by Rivest. It maps
any binary message into 128-bit hash.

The input message is broken into 512-bit blocks, divided into 16 words-states (of 32 bits)
and padded if needed to have final length divisible by 512. Padding consists of a bit 1
followed by so many 0’s as required to have the length up to 64 bits fewer than a
multiple of 512. Final 64 bits represent the length of the original message modulo 264.

The main MD5 algorithm operates on 128-bits words
that are divided into four 32-bits words A,B,C ,D
initialized to some fixed constants. The main
algorithm then operates on 512 bit message blocks in
turn - each block modifying the state.

The precessing of a message consists of four rounds.
j-th round is composed of 16 similar operations using
non-linear functions Fj and left rotations by sj places
where sj varies for each round - see next figure. Ki

and Mi are 32-bits keys and messages.

A B C D

A B C D

M

K

F

s−shift

j

i

i

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 49/58

HOW to FIND COLLISIONS of HASH FUNCTIONS

HOW to FIND COLLISIONS of HASH FUNCTIONS

The most basic method is based on so-called birthday
paradox related to so-called the birthday problem.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 50/58

BIRTHDAY PROBLEM and its VARIATIONS

It is well known that if there are 23 (29) [40] {57} < 100 > people in one
room, then the probability that two of them have the same birthday is
more than 50% (70%)[89%] {99%} < 99.99997% > — this is called a
Birthday paradox.

More generally, if we have n objects and r people, each choosing one object
(so that several people can choose the same object), then if
r ≈ 1.177

√
n(r ≈

√
2nλ), then probability that two people choose the same

object is 50% ((1− e−λ)%).

Another version of the birthday paradox: Let us have n objects and two
groups of r people. If r ≈

√
λn, then probability that someone from one

group chooses the same object as someone from the other group is
(1− e−λ).

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 51/58

BASIC DERIVATIONS related to BIRTHDAY PARADOX

For the probability p̄(n) that all n < 366 people in a room have birthday in different days,
it holds

p̄(n) =
n−1∏

i=1

(
365− i

365

)
=

∏n−1
i=1 (365− i)

365n
=

365!

365n(365− n)!

This equation expresses the following fact for any linear ordering of people: that the
second person cannot have the same birthday as the first one, the third person cannot
have the same birthday as first two,.....

Probability p(n) that at least two person have the same birthday is therefore

p(n) = 1− p̄(n)

This probability is larger than 0.5 first time for n = 23.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 52/58

FINDING COLLISIONS USING BIRTHDAY PARADOX

If the hash of a hash function h has the size n, then to a given x to find x ′ such that
h(x) = h(x ′) by brute force requires 2n hash computations in average.

The idea, based on the birthday paradox, is simple. Given x we iteratively pick a random
x ′ until h(x) = h(x ′). The probability that i-th trial is the first one to succeed is
(1− 2−n)i−12−n;

The average complexity, in terms of hash function computations is therefore

∞∑

i=1

i(1− 2−n)i−12−n = 2n.

To find collisions, that is two x1 and x2 such that h(x1) = h(x2) is easier, thanks to the
birthday paradox and can be done by the following algorithm:

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 53/58

ALGORITHM

Input: A hash function h onto a domain of size n, a real θ and an empty hash table.
Output: A pair (x1, x2) such that x1 6= x2 and h(x1) = h(x2)

1. for θ
√

(n) different x do
2. compute y = h(x)
3. if there is a (y , x ′) pair in the hash table then
4. yield (x , x ′) and stop
5. add (y , x) to the hash table
6.Otherwise search failed

Theorem If we pick the numbers x with uniform distribution in {1, 2, . . . , n} θ√n times,
then we get at least one number twice with probability converging (for n→∞) to

1− e−
θ2

2

For n = 365 we get triples: (θ, θ
√
n, probability) as follows: (0.79, 15, 25%); (1.31, 25,

57%); (2.09, 40, 89%)

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 54/58

WHY CURRENTLY BROADLY USED HASHES HAVE 160 BITS?

The birthday paradox imposes also a lower bound on the sizes of hashes of
the cryptographically good hash functions.

For example, a 40-bit hashes would be insecure because a collision could be
found with probability 0.5 with just over 4020 random guesses.

Minimum acceptable size of hashes seems to be 128 and therefore 160 are
used in such important systems as DSS – Digital Signature Schemes (a
standard).

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 55/58

APPENDIX

APPENDIX

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 56/58

UNIVERSAL HASHING SCHEMES

A universal hashing scheme is a randomized algorithm that selects a hashing function
among a family of hashing functions, in such a way that probability of collision of any
two distinct keys is 1/n, where n is the number of distinct hashes desired – independently
of the keys.

Universal hashing ensures - in a probabilistic sense - that the hash function application
will behave as if it were using a random function, for any distribution of the input data.

Theorem The family of functions emH = {ha | a ∈ {0, . . . ,m − 1}r+1, defined by the
formula

ha(u) =
r∑

i=0

aiui mod m

is a universal family of hash functions mapping {0, . . . ,m − 1}r+1 into {0, . . . ,m − 1}.

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 57/58

GLOBAL GOALS of CRYPTOGRAPHY

Cryptosystems and encryption/decryption techniques are only one part of modern
cryptography.

General goal of modern cryptography is construction of schemes which are robust against
malicious attempts to make these schemes to deviate from their prescribed functionality.

The fact that an adversary can design its attacks after the cryptographic scheme has
been specified, makes design of such cryptographic schemes very difficult – schemes
should be secure under all possible attacks.

In the next chapters several of such most important basic functionalities and design of
secure systems for them will be considered. For example: digital signatures, user and
message authentication,. . .

Moreover, also such basic primitives as zero-knowledge proofs, needed to deal with
general cryptography problems will be presented and discussed.

We will also discuss cryptographic protocols for a variety of important applications. For
example for voting, digital cash,. . .

prof. Jozef Gruska IV054 1. Public-key cryptosystems II. Other cryptosystems and cryptographic primitives 58/58

