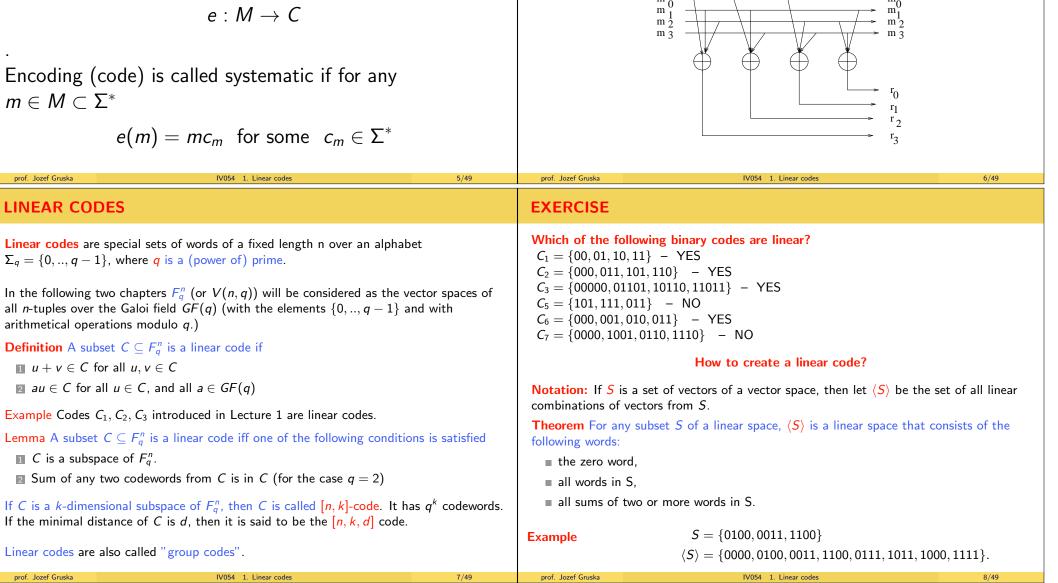
CODING, CRYPTOGRAPHY and CRYPTOGRAPHIC PROTOCOLS	Part I
prof. RNDr. Jozef Gruska, DrSc. Faculty of Informatics Masaryk University October 6, 2016	Linear codes
CHAPTER 2: LINEAR CODES	GALOI FIELDS $GF(q)$ – where q is a prime.
	It is the set $\{0,1,\ldots,q-1\}$ with two operations
WHY LINEAR CODES	addition modulo $q - + \mod q$ multiplication modulo $q - x \mod q$
Most of the important codes are special types of so-called linear codes.	Example — $GF(3)$
Linear codes are of very large importance because they have	$2+2=1 \qquad 2\times 2=1$
very concise description, very nice properties, very easy encoding	Example — $GF(7)$
and, in general,	$5+5=3$ $5 \times 5=4$
an easy to describe decoding.	Example — $GF(11)$
Many practically important linear codes have also an efficient decoding.	$7+8=4 7\times8=1$
	Comment. To design linear codes we will use Galoi fields $GF(q)$ with q being prime. One can also use Galoi fields $GF(q^k)$, $k > 1$, but their structure and operations are

prof. Jozef Gruska	IV054 1. Linear codes	3/49	prof. Jozef Gruska	IV054 1. Linear codes	4/49
--------------------	-----------------------	------	--------------------	-----------------------	------

REPETITION

Given an alphabet Σ , any set $C \subset \Sigma^*$ is called a **code** and its elements are called **codewords**.

By a **coding/encoding** of elements (messages) from a set M by codewords from a code C we understand any one-to-one mapping (encoder) e such that


Encoding (code) is called systematic if for any $m \in M \subset \Sigma^*$

SYSTEMATIC CODES I

A code is called systematic if its encoder transmit a message (an input dataword) w into a codeword of the form wc_w , or (w, c_w) . That is if the codeword for the message w consists of two parts: the message w itself (called also information part) and a redundancy part c_w

Nowadays most of the stream codes that are used in practice are systematic.

An example of a systematic encoder, that produces so called extended Hamming (8, 4, 1)code is in the following figure.

BASIC PROPERTIES of LINEAR CODES I

BASIC PROPERTIES of LINEAR CODES II

Notation: Let $w(x)$ (weight of x) denote the number of non-zero entries of x.	If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from Γ .
Lemma If $x, y \in F_q^n$, then $h(x, y) = w(x - y)$.	codeword of C is a linear combination of the codewords from T.
Proof $x - y$ has non-zero entries in exactly those positions where x and y differ.	Example
Theorem Let C be a linear code and let weight of C, notation $w(C)$, be the smallest of the weights of non-zero codewords of C. Then $h(C) = w(C)$.	Code $C_4 = \{0000000, 1111111, 1000101, 1100010, 0010110, 0010010, 0010110, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 00100100, 001001000, 001001000, 00000000$
Proof There are $x, y \in C$ such that $h(C) = h(x, y)$. Hence $h(C) = w(x - y) \ge w(C)$.	0110001, 1011000, 0101100, 0010110, 0001011, 0111010, 0011101, 1001110, 0100111, 1010011, 1101001, 1110100}
On the other hand, for some $x \in C$ $w(C) = w(x) = h(x, 0) \ge h(C).$	has, as one of its bases, the set {1111111, 1000101, 1100010, 0110001}.
Consequence	How many different bases has a linear code?
If C is a non-linear code with m codewords, then in order to determine $h(C)$ one has	Theorem A binary linear code of dimension k has
to make in general $\binom{m}{2} = \Theta(m^2)$ comparisons in the worst case. If C is a linear code with m codewords, then in order to determine $h(C), m-1$	$\frac{1}{k!}\prod_{i=0}^{k-1}(2^k-2^i)$
comparisons are enough.	
	bases.
prof. Jozef Gruska IV054 1. Linear codes 9/49	prof. Jozef Gruska IV054 1. Linear codes 10/49
EXAMPLE	ADVANTAGES and DISADVANTAGES of LINEAR CODES I.
If a code <i>C</i> has 2^{200} codewords, then there is no way to write down and/or to store all its codewords.	 Advantages - are big. ■ Minimal distance h(C) is easy to compute if C is a linear code. ■ Linear codes have simple specifications. ■ To specify a non-linear code usually all codewords have to be listed. ■ To specify a linear [n, k]-code it is enough to list k codewords (of a basis).
WHY	Definition A $k \times n$ matrix whose rows form a basis of a linear $[n, k]$ -code (subspace) <i>C</i> is said to be the generator matrix of <i>C</i> .
However, In case we have $[2^{200}, 200]$ linear code <i>C</i> , then to specify/store fully <i>C</i> we need only to store 200 codewords - from one of ts basis.	Example One of the generator matrices of the binary code $C_2 = \begin{cases} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{cases} \text{ is the matrix } \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ and one of the generator matrices of the code $C_4 \text{ is } \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$
	There are simple encoding/decoding procedures for linear codes.
prof. Jozef Gruska IV054 1. Linear codes 11/49	prof. Jozef Gruska IV054 1. Linear codes 12/49

EQUIVALENCE of LINEAR CODES I

EQUIVALENCE of LINEAR CODES II

Definition Two linear codes on GF(q) are called equivalent if one can be obtained from another by the following operations:

 $(\ensuremath{\mathsf{a}})$ permutation of the words or positions of the code;

 $(b)\;$ multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two $k \times n$ matrices generate equivalent linear [n, k]-codes over F_q^n if one matrix can be obtained from the other by a sequence of the following operations:

- $(\ensuremath{\mathsf{a}})$ permutation of the rows
- $(b) \mbox{ multiplication of a row by a non-zero scalar }$
- $(\ensuremath{\mathtt{c}})$ addition of one row to another
- $(\mathsf{d})\,$ permutation of columns
- $({\rm e})\,$ multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert a generator matrix to one of an equivalent code.

Theorem Let *G* be a generator matrix of an [n, k]-code. Rows of *G* are then linearly independent .By operations (a) - (e) the matrix *G* can be transformed into the form: $[I_k|A]$ where I_k is the $k \times k$ identity matrix, and *A* is a $k \times (n-k)$ matrix.

Example

	1 1 1 1	1 0 1 1	1 0 0 1	1 0 0 0	1 1 0 0	1 0 1 0	$\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$	\rightarrow	$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	1 1 0 0	1 1 1 0	1 1 1 1	1 0 1 1	1 1 0 1	$\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$	\rightarrow
\rightarrow	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 1 1 0	0 1 1 1	1 0 1 1	0 1 0 1	1) 0 1 0/	ightarrow	$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 1 0	0 0 1 1	1 1 1 1	0 1 0 1	1) 1 1 0)	\rightarrow

prof. Jozef Gruska IV054 1. Linear codes 13/49 prof. Jozef Gruska IV054 1. Linear codes 14/49 **ENCODING with LINEAR CODES UNIQUENESS** of ENCODING is a vector \times matrix multiplication with linear codes Let C be a linear [n, k]-code over F_q^n with a generator $k \times n$ matrix G. **Theorem** If $G = \{w_i\}_{i=1}^k$ is a generator matrix of a binary linear code C of length n and **Theorem** C has q^k codewords. dimension k, then the set of codewords/vectors **Proof** Theorem follows from the fact that each codeword of C can be expressed uniquely v = uGas a linear combination of the basis codewords/vectors. ranges over all 2^k codewords of C as u ranges over all 2^k datawords of length k. **Corollary** The code C can be used to encode uniquely q^k messages - datawords. (Let us identify messages with elements of F_q^k .) Therefore. **Encoding** of a dataword $u = (u_1, \ldots, u_k)$ using the generator matrix G: $C = \{ uG \mid u \in \{0, 1\}^k \}$ $u \cdot G = \sum_{i=1}^{k} u_i r_i$ where r_1, \ldots, r_k are rows of G. Moreover, Example Let C be a [7, 4]-code with the generator matrix $u_1 G = u_2 G$ $\mathsf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ if and only if $u_1 = u_2$. A message (u_1, u_2, u_3, u_4) is encoded as:??? **Proof** If $u_1G - u_2G = 0$, then For example: $0 = \sum_{i=1}^{k} u_{1,i} w_i - \sum_{i=1}^{k} u_{2,i} w_i = \sum_{i=1}^{k} (u_{1,i} - u_{2,i}) w_i$ 0 0 0 0 is encoded as? 0000000 1 0 0 0 is encoded as? 1000101 And, therefore, since w_i are linearly independent, $u_1 = u_2$. 1 1 1 0 is encoded as? 1110100 IV054 1. Linear codes prof. Jozef Gruska 15/49 IV054 1. Linear codes 16/49

LINEAR CODES as SYSTEMATIC CODES	DECODING of LINEAR CODES - BASICS
Since to each linear $[n, k]$ -code C there is a generator	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent
matrix of the form $G = [I_k A]$ an encoding of a dataword	
w with G has the form	and the word $y = y_1 \dots y_n$ is received,
	then $e = y - x = e_1 \dots e_n$ is said to be the error vector.
$wG = w \cdot wA$	The decoder must therefore decide, given y ,
	which x was sent,
Each linear code is therefore equivalent to a systematic	or, equivalently, which error <i>e</i> occurred.
code.	
prof. Jozef Gruska IV054 1. Linear codes 17/49	prof. Jozef Gruska IV054 1. Linear codes 18/49
DECODING of LINEAR CODES - TECHNICALITIES	NEAREST NEIGHBOUR DECODING SCHEME
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must	Each vector having minimum weight in a coset is called a coset leader.
decide, from y , which x was sent, or, equivalently, which error e occurred.	1. Design a (Slepian) standard array for an $[n, k]$ -code C - that is a $q^{n-k} \times q^k$ array of the formula
To describe the main Decoding method some technicalities have to be introduced	the form:
To describe the main Decoding method some technicalities have to be introduced	the form: <u>codewords</u> <u>coset leader</u> <u>codeword 2</u> <u>codeword 2^k</u>
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set	the form:
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$	the form: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set	the form: $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$	the form: $\begin{array}{c c c c c c c c c c c c c c c c c c c $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets:	the form: $\begin{array}{c c c c c c c c c c c c c c c c c c c $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C,	the form: $\begin{array}{c c c c c c c c c c c c c c c c c c c $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\},$	the form: $\begin{array}{c c c c c c c c c c c c c c c c c c c $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C,	the form: $ \frac{codewords coset \ leader codeword \ 2 \dots codeword \ 2^{k}}{coset \ leader + \dots +} \\ $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (<i>u</i> -coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1001, 0111, 1100\}$. Are there some other cosets in this case?	the form: $ \frac{codewords coset \ leader codeword \ 2 \dots codeword \ 2^{k}}{coset \ leader + \dots +} \\ $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1001, 0111, 1100\}$. Are there some other cosets in this case? Theorem Suppose C is a linear $[n, k]$ -code over F_q^n . Then	the form: $\frac{\boxed{\text{codewords} \boxed{\text{coset} \mid eader} \boxed{\text{codeword} 2 \dots \boxed{\text{codeword} 2^k}}{\boxed{\text{coset} \mid eader} + \dots + \\ \hline{\text{coset} \mid eader} + \dots + \\ \hline{\text{coset} \mid eader} + \dots + \\ \hline{\text{coset} \mid eader} & \hline{\text{coset} \mid eader} & \hline{\text{coset} \mid eader} \\ \hline \text{where codewords of } C \text{ are in the first row and elements of each coset are in a special row, with some of the cosets leaders in the frst column.}$ Example $\frac{\boxed{0000 1011 0101 1110}}{1000 0011 1101 0110}}$
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1011, 0110\}$. Are there some other cosets in this case? Theorem Suppose C is a linear $[n, k]$ -code over F_q^n . Then (a) every vector of F_q^n is in some coset of C,	the form: $ \frac{codewords coset \ leader codeword \ 2 \dots codeword \ 2^{k}}{coset \ leader + \dots +} \\ $
To describe the main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x \mid x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1001, 0111, 1100\}$. Are there some other cosets in this case? Theorem Suppose C is a linear $[n, k]$ -code over F_q^n . Then	the form: $\frac{\boxed{\text{codewords} \boxed{\text{coset} \mid \text{eader} \boxed{\text{codeword 2} \dots \boxed{\text{codeword 2}^k}}{\boxed{\text{coset} \mid \text{eader} + \dots + \\ \hline{\text{coset} \mid \text{eader} - \dots + \\ \hline{\text{coset} \mid \text{eader} - \dots - \\ \hline{\text{coset} \mid \text{coset} - \\ \hline{\text{coset} \mid \text{coder} - \\ \hline{\text{coset} - \dots - \\ \hline \hline{\text{coset} - \dots - \\ \hline \hline{\text{coder} - \dots - \\ \hline \hline \hline \hline \ \ - \dots - \\ \hline \hline \hline \ \ - \dots - \\ \hline \hline \ \ - \dots - - - \\ \hline \hline \ \ \ - \dots - - - \\ \hline \hline \ \ \ \ - \dots - - - - \\ \hline \ \ \ - \dots - -$

prof. Jozef Gruska	IV054 1. Linear codes	19/49	prof. Jozef Gruska	IV054 1. Linear codes	20/49

PROBABILITY of GOOD ERROR CORRECTION	PROBABILITY of GOOD ERROR DETECTION
PROBABILITY of GOOD ERROR CORRECTION What is the probability that a received word will be decoded correctly -that is as the codeword that was sent (for binary linear codes and binary symmetric channel)? Probability of an error in the case of a given error vector of weight <i>i</i> is $p^i(1-p)^{n-i}$. Therefore, it holds. Theorem Let <i>C</i> be a binary $[n, k]$ -code, and for $i = 0, 1,, n$ let α_i be the number of coset leaders of weight <i>i</i> . The probability $P_{corr}(C)$ that a received vector, when decoded by means of a standard array, is the codeword which was sent is given by $P_{corr}(C) = \sum_{i=0}^{n} \alpha_i p^i (1-p)^{n-i}$.	PROBABILITY of GOOD ERROR DETECTION Suppose a binary linear code is used only for error detection. The decoder will fail to detect errors which have occurred if the received word y is a codeword different from the codeword x which was sent, i. e. if the error vector e = y - x is itself a non-zero codeword. The probability $P_{undetect}(C)$ that an incorrect codeword is received is given by the following result. Theorem Let C be a binary $[n, k]$ -code and let A_i denote the number of codewords of C of weight <i>i</i> . Then, if C is used for error detection, the probability of an incorrect message being received is $P_{undetect}(C) = \sum_{i=0}^{n} A_i p^i (1-p)^{n-i}.$
Example For the [4,2]-code of the last example	Example In the case of the [4, 2] code from the last example
$\alpha_0 = 1, \alpha_1 = 3, \alpha_2 = \alpha_3 = \alpha_4 = 0.$ Hence	$A_2 = 1 \ A_3 = 2$ $P_{undetect}(C) = p^2(1-p)^2 + 2p^3(1-p) = p^2 - p^4.$ For $p = 0.01$
$P_{corr}(C) = (1-p)^4 + 3p(1-p)^3 = (1-p)^3(1+2p).$ If $p = 0.01$, then $P_{corr} = 0.9897$	$P_{undetect}(C) = 0.00009999.$
prof. Jozef Gruska IV054 1. Linear codes 21/49	prof. Jozef Gruska IV054 1. Linear codes 22/49
DUAL CODES	PARITE CHECKS versus ORTHOGONALITY
Inner product of two vectors (words) $u = u_1 \dots u_n, v = v_1 \dots v_n$ in F_q^n is an element of $GF(q)$ defined (using modulo q operations) by $u \cdot v = u_1v_1 + \dots + u_nv_n$. Example $\ln F_2^4 : 1001 \cdot 1001 = 0$ $\ln F_3^4 : 2001 \cdot 1210 = 2$ $1212 \cdot 2121 = 2$ If $u \cdot v = 0$ then words (vectors) u and v are called orthogonal words.	For understanding of the role the parity checks play for linear codes, it is important to understand relation between orthogonality and special parity checks. If binary words x and y are orthogonal, then the word y has even number of ones (1's) in the positions determined by ones (1's) in the word x . This implies that if words x and y are orthogonal, then x is a parity check word for y and y is a parity check word for x .
Properties If $u, v, w \in F_q^n, \lambda, \mu \in GF(q)$, then $u \cdot v = v \cdot u, (\lambda u + \mu v) \cdot w = \lambda(u \cdot w) + \mu(v \cdot w).$	Exercise: Let the word 100001
Given a linear $[n, k]$ -code C , then the dual code of C , denoted by C^{\perp} , is defined by $C^{\perp} = \{ v \in F_q^n \mid v \cdot u = 0 \text{ for all } u \in C \}.$	be orthogonal to all words of a set S of binary words of length 6.What can we say abou
Lemma Suppose C is an $[n, k]$ -code having a generator matrix G. Then for $v \in F_q^n$ $v \in C^{\perp} \Leftrightarrow vG^{\top} = 0.$	the words in <i>S</i> ? Answer: All words of <i>S</i> have at the end the same symbol as at the beginning.

EXAMPLE	PARITY CHECK MATRICES I
For the $[n, 1]$ -repetition (binary) code C , with the generator matrix G = (1, 1,, 1) the dual code C^{\perp} is $[n, n-1]$ -code with the generator matrix G^{\perp} , described by $G^{\perp} = \begin{pmatrix} 1 & 1 & 0 & 0 & & 0 \\ 1 & 0 & 1 & 0 & & 0 \\ & & & \\ 1 & 0 & 0 & 0 & & 1 \end{pmatrix}$	Example If $C_5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \text{ then } C_5^{\perp} = C_5.$ If $C_6 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \text{ then } C_6^{\perp} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$ Theorem Suppose C is a linear $[n, k]$ -code over F_q^n , then the dual code C^{\perp} is a linear $[n, n-k]$ -code. Definition A parity-check matrix H for an $[n, k]$ -code C is any generator matrix of C^{\perp} .
prof. Jozef Gruska IV054 1. Linear codes 25/49	prof. Jozef Gruska IV054 1. Linear codes 26/49
PARITY CHECK MATRICES	SYNDROME DECODING
Definition A parity-check matrix H for an $[n, k]$ -code C is any generator matrix of C^{\perp} . Theorem If H is a parity-check matrix of C , then $C = \{x \in F_q^n \mid xH^{\top} = 0\},$ and therefore any linear code is completely specified by a parity-check matrix. Example Parity-check matrix for $C_5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ and for C_6 is $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	Theorem If $G = [I_k A]$ is the standard form generator matrix of an $[n, k]$ -code C , then a parity check matrix for C is $H = [A^\top I_{n-k}]$. Example Generator matrix $G = \begin{vmatrix} I_4 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \Rightarrow$ parity check m. $H = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix} I_3 \end{vmatrix}$ Definition Suppose H is a parity-check matrix of an $[n, k]$ -code C . Then for any $y \in F_q^n$ the following word is called the syndrome of y : $S(y) = yH^\top$. Lemma Two words have the same syndrome iff they are in the same coset. Syndrom decoding Assume that a standard array of a code C is given and, in addition, let in the last two columns the syndrome for each coset be given. 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 &

27/49

prof. Jozef Gruska

IV054 1. Linear codes

in the same column and in the first row. prof. Jozef Gruska IV054 1. Linear codes

KEY OBSERVATION for SYNDROM COMPUTATION	HAMMING CODES
When preparing a "syndrome decoding" it is sufficient to store only two columns: one for	An important family of simple linear codes that are easy to encode and decode, are
coset leaders and one for syndromes.	so-called Hamming codes.
Example	Definition Let r be an integer and H be an $r \times (2^r - 1)$ matrix columns of which are all non-zero distinct words from F_2^r . The code having H as its parity-check matrix is called
coset leaders syndromes I(z) z	binary Hamming code and denoted by $Ham(r, 2)$.
0000 00	Example
1000 11 0100 01	$Ham(2,2): H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
0010 10	$Ham(2,2):H = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} I & I & I \end{bmatrix}$
Decoding procedure	
Step 1 Given y compute $S(y)$.	$Ham(3,2) = H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$
 Step 2 Locate z = S(y) in the syndrome column. Step 3 Decode y as y - l(z). 	
Example If $y = 1111$, then $S(y) = 01$ and the above decoding procedure produces	Theorem Hamming code <i>Ham</i> (<i>r</i> ,2)
1111-0100 = 1011.	is $[2^r - 1, 2^r - 1 - r]$ -code,
Syndrom decoding is much faster than searching for a nearest codeword to a received	 has minimum distance 3, and is a perfect code.
word. However, for large codes it is still too inefficient to be practical.	Properties of binary Hamming codes Coset leaders are precisely words of weight ≤ 1 .
In general, the problem of finding the nearest neighbour in a linear code is NP-complete.	The syndrome of the word 00100 with 1 in <i>j</i> -th position and 0 otherwise is the
Fortunately, there are important linear codes with really efficient decoding.	transpose of the <i>j</i> -th column of <i>H</i> .
HAMMING CODES - DECODING	EXAMPLE
HAMMING CODES - DECODING	EXAMPLE
HAMMING CODES - DECODING	EXAMPLE For the Hamming code given by the parity-check matrix
	For the Hamming code given by the parity-check matrix
Decoding algorithm for the case the columns of <i>H</i> are	For the Hamming code given by the parity-check matrix
Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
Decoding algorithm for the case the columns of <i>H</i> are	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word
Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent.	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011,
Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. • Step 1 Given y compute syndrome $S(y) = yH^{\top}$.	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome
 Decoding algorithm for the case the columns of H are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110
Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. • Step 1 Given y compute syndrome $S(y) = yH^{\top}$.	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position.
 Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110
 Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. Step 3 If S(y) ≠ 0, then assuming a single error, S(y) 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position.
 Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position. Hamming code was discovered by Hamming (1950), Golay (1950). It was conjectured for some time that Hamming codes and two so called Golay codes are
 Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. Step 3 If S(y) ≠ 0, then assuming a single error, S(y) 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position. Hamming code was discovered by Hamming (1950), Golay (1950). It was conjectured for some time that Hamming codes and two so called Golay codes are the only non-trivial perfect codes.
 Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. Step 3 If S(y) ≠ 0, then assuming a single error, S(y) 	For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position. Hamming code was discovered by Hamming (1950), Golay (1950). It was conjectured for some time that Hamming codes and two so called Golay codes are the only non-trivial perfect codes. Comment

IMPORTANT COD	ES
----------------------	----

prof. Jozef Gruska

GOLAY CODES - DESCRIPTION

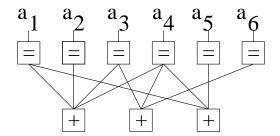
 Hamming (7, 4, 3)-code. It has 16 codewords of length 7. It can be used to send 2⁷ = 128 messages and can be used to correct 1 error. Golay (23, 12, 7)-code. It has 4 096 codewords. It can be used to transmit 8 388 608 messages and can correct 3 errors. Quadratic residue (47, 24, 11)-code. It has 16 777 216 codewords and can be used to transmit 140 737 488 355 238 messages and correct 5 errors. Hamming and Golay codes are the only non-trivial perfect codes. They are also special cases of quadratic residue codes. 	$Golay \ codes \ G_{24} \ and \ G_{23} \ were \ used \ by \ Voyager \ I \ and \ Voyager \ II \ to \ transmit \ color \ pictures \ of \ Jupiter \ and \ Saturn. \ Generation \ matrix \ for \ G_{24} \ has the following \ simple \ form$ $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
prof. Jozef Gruska IV054 1. Linear codes 33/49	prof. Jozef Gruska IV054 1. Linear codes 34/49
GOLAY CODES - CONSTRUCTION	REED-MULLER CODES
Matrix G for Golay code G_{24} has actually a simple and regular construction. The first 12 columns are formed by a unitary matrix I_{12} , next column has all 1's. Rows of the last 11 columns are cyclic permutations of the first row which has 1 at those positions that are squares modulo 11, that is 0, 1, 3, 4, 5, 9.	This is an infinite, recursively defined, family of so called $RM_{r,m}$ binary linear $[2^m, k, 2^{m-r}]$ -codes with $k = 1 + {m \choose 1} + \ldots + {m \choose r}$. The generator matrix $G_{r,m}$ for $RM_{r,m}$ code has the form $G_{r,m} = \begin{bmatrix} G_{r-1,m} \\ Q_r \end{bmatrix}$ where Q_r is a matrix with dimension ${m \choose r} \times 2^m$ where $\blacksquare G_{0,m}$ is a row vector of the length 2^m with all elements 1. $\blacksquare G_{1,m}$ is obtained from $G_{0,m}$ by adding columns that are binary representations of the column numbers. $\blacksquare matrix Q_r$ is obtained by considering all combinations of r rows of $G_{1,m}$ and by obtaining products of these rows/vectors, component by component. The result of each of such a multiplication constitues a row of Q_r .

35/49

prof. Jozef Gruska

IV054 1. Linear codes

36/49

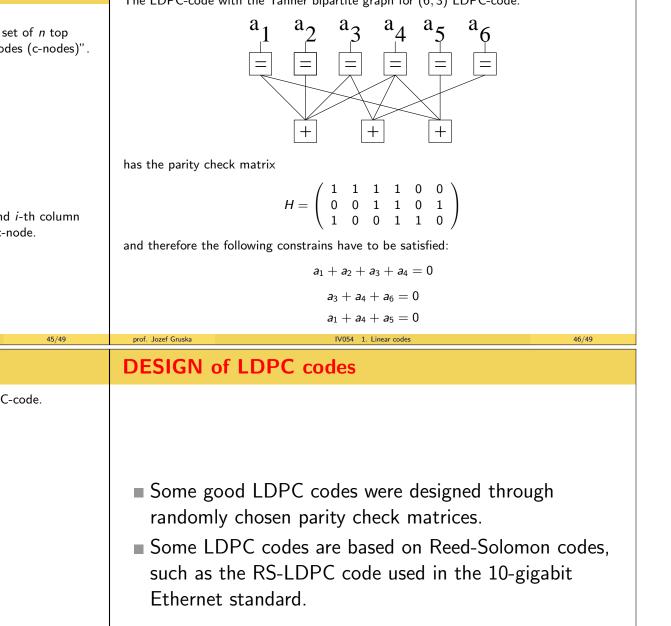

IV054 1. Linear codes

EXAMPLE	SINGLETON and PLOTKIN BOUNDS
	To determine distance of a linear code can be computationally hard task. For that reason various bounds on distance can be much useful.
$G_{1,4} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	Singleton bound: If C is a q-ary (n, M, d) -code, then $M \le q^{n-d+1}$ Proof Take some $d - 1$ coordinates and project all codewords to the remaining coordinates. The resulting codewords have to be all different and therefore M cannot be larger than the number of q -ary words of the length $n - d - 1$. Codes for which $M = q^{n-d+1}$ are called MDS-codes (Maximum Distance Separable). Corollary: If C is a binary linear $[n, k, d]$ -code, then $d \le n - k + 1$. So called Plotkin bound says $d \le \frac{n2^{k-1}}{2^k - 1}$. Plotkin bound implies that q -nary error-correcting codes with $d \ge n(1 - 1/q)$ have only polynomially many codewords and hence are not very interesting.
prof. Jozef Gruska IV054 1. Linear codes 37/49	prof. Jozef Gruska IV054 1. Linear codes 38/49
SHORTENING and PUNCTURING of LINEAR CODES	REED-SOLOMON CODES
SHORTENING and PUNCTURING of LINEAR CODES If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1,, x_{n-1}) (x_1,, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.	An important example of MDS-codes are q -ary Reed-Solomon codes RSC (k, q) , for $k \leq q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \leq i \leq k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element u is $p(u)$.
If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1, \ldots, x_{n-1}) (x_1, \ldots, x_{n-1}, 0) \in C\}$. is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so calle shortening of the code C.	An important example of MDS-codes are q -ary Reed-Solomon codes RSC (k, q) , for $k \leq q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \leq i \leq k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row
If C is a q-ary linear $[n, k, d]$ -code, then $D = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, 0) \in C\}.$ is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k', d^*]$ -code, where $k' \in \{k - 1, k\}$ and $d^* \ge d$, a so	An important example of MDS-codes are q -ary Reed-Solomon codes RSC (k, q) , for $k \leq q$. They are codes a generator matrix of which has rows labelled by polynomials X^i , $0 \leq i \leq k - 1$, columns labeled by elements $0, 1, \ldots, q - 1$ and the element in the row labelled by a polynomial p and in the column labelled by an element u is $p(u)$. RSC (k, q) code is $[q, k, q - k + 1]$ code.

SOCCER GAMES BETTING SYSTEM	APPENDIX
Ternary Golay code with parameters (11, 729, 5) can be used to bet for results of 11 soccer games with potential outcomes 1 (if home team wins), 2 (if guest team wins) and 3 (in case of a draw). If 729 bets are made, then at least one bet has at least 9 results correctly guessed. In case one has to bet for 13 games, then one can usually have two games with pretty sure outcomes and for the rest one can use the above ternary Golay code.	pr. Jozef Gruska 11. Linear codes 11. Li
LDPC (Low-Density Parity Check) - CODES	DISCOVERY and APPLICATION of LDPC CODES
 A LDPC code is a binary linear code whose parity check matrix is very sparse - it contains only very few 1's. A linear [n, k] code is a regular [n, k, r, c] LDPC code if r << n, c << n - k and its parity-check matrix has exactly r 1's in each row and exactly c 1's in each column. In the last years LDPC codes are replacing in many important applications other types of codes for the following reasons: LDPC codes are in principle also very good channel codes, so called Shannon capacity approaching codes, they allow the noise threshold to be set arbitrarily close to the theoretical maximum - to Shannon limit - for symmetric channel. Good LDPC codes can be decoded in time linear to their block length using special (for example "iterative belief propagation") approximation techniques. Some LDPC codes are well suited for implementations that make heavy use of parallelism. 	LDPC codes were discovered in 1960 by R.C. Gallager in his PhD thesis,but wre ignored till 1996 when linear time decoding methods were discovered for some of them. LDPC codes are used for: deep space communication; digital video broadcasting; 10GBase-T Ethernet, which sends data at 10 gigabits per second over Twisted-pair cables; Wi-Fi standard,
prof. Jozef Gruska IV054 1. Linear codes 43/49	prof. Jozef Gruska IV054 1. Linear codes 44/49

BI-PARTITE (TANNER) GRAPHS REPRESENTATION of LDPC CODES

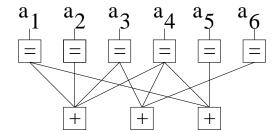
An [n, k] LDPC code can be represented by a bipartite graph between a set of n top "variable-nodes (v-nodes)" and a set of bottom (n - k) "parity check nodes (c-nodes)".


The corresponding parity check matrix has n - k rows and n columns and i-th column has 1 in the *j*-th row exactly in case if *i*-th v-node is connected to *j*-th c-node.

	(1	1	1	1	0	0 \
H =		0	0	1	1	0	1)
H =	ĺ	1	0	0	1	1	0/

IV054 1. Linear codes

TANNER GRAPHS - CONTINUATION


The LDPC-code with the Tanner bipartite graph for (6,3) LDPC-code.

DECODING

prof. Jozef Gruska

Since for the LDPC-code with the Tanner bipartite graph for (6,3) LDPC-code.

the following constrains have to be satisfied:

$$a_1 + a_2 + a_3 + a_4 = 0$$

 $a_3 + a_4 + a_6 = 0$
 $a_1 + a_4 + a_5 = 0$

Let the word ?01?11 be received. From the second equation it follows that the second unknown symbol is 0. From the last equation it then follows that the first unknown symbol is 1.

Using so called iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length.

prof. Jozef Gruska

IV054 1. Linear codes

47/49

IV054 1. Linear codes

LDPC CODES APPLICATIONS

- In the recent years have been several interesting competition between LDPC codes and Turbo codes introduced in Chapter 3 for various applications.
- In 2003, an LDPC code was able to beat six turbo codes to become the error correcting code in the new DVB-S2 standard for satellite transmission for digital television.
- LDPC is also used for 10Gbase-T Ethernet, which sends data at 10 gigabits per second over twisted-pair cables.
- Since 2009 LDPC codes are also part of the Wi-Fi 802.11 standard as an optional part of 802.11n, in the High Throughput PHY specification.

IV054 1. Linear codes