IV054 Coding, Cryptography and Cryptographic Protocols 2015 - Exercises X.

- 1. Consider the Okamoto Identification Scheme with p = 7823, q = 3911, $\alpha_1 = 556$ and $\alpha_2 = 1568$. Show in detail the steps of the protocol if $a_1 = 1234$, $a_2 = 524$, $k_1 = 118$ and $k_2 = 2004$ and Bob's challenge is r = 3015. For simplification, consider omitting the digital signatures, *ie.* the protocol does not use the trusted authority TA and Alice sends v directly to Bob without the certificate.
- 2. Give an example of an orthogonal array OA(2,3,2).
- 3. Sender S broadcasts messages to n receivers R_1, \ldots, R_n . Privacy is not important, but message authenticity is. Each of the receivers wants to be sure that the messages were indeed sent by S. Users decide to use MAC.
 - (a) Suppose all users and S share a secret key k. Sender S adds a MAC to the broadcast message using k and every user verifies it. Explain why this scheme is insecure.
 - (b) Suppose sender S has a set $A = \{k_1, \ldots, k_m\}$ of m secret keys. Each receiver has some subset $A_i \subseteq A$ of the keys. Before sending a message, S computes MAC c_i of the message for each key k_i . Then S appends c_1, \ldots, c_m to the message. Receiver R_i accepts the message as authentic if and only if all MACs corresponding to the keys in A_i are valid. Which property should sets A_1, \ldots, A_n satisfy to be resistant to the attack from (a)? Assume that receivers cannot collude.
 - (c) Suppose that n = 6. What is the minimal number of keys so as the condition from (b) is satisfied? Describe sets A_1, \ldots, A_6 .
- 4. There are four people in a room and exactly one of them is an adversary. The other three people share a secret using the Shamir's (3, 2)-secret sharing scheme over \mathbb{Z}_{11} . The adversary has randomly chosen a pair of numbers for himself. The four pairs are $(x_1, y_1) = (1, 4)$, $(x_2, y_2) = (3, 7)$, $(x_3, y_3) = (5, 1)$ and $(x_4, y_4) = (7, 2)$. Determine which pair was created by the adversary. Determine also the shared secret. Explain your reasoning.
- 5. Consider the following secret sharing scheme. A secret polynomial $f(x) \in \mathbb{R}[x]$ is given, its absolute term f(0) is the secret. There are six people who know different pieces of information:
 - Alice knows that $\deg f = 3$.
 - Bob knows that f(1) = 1701.
 - Charlie knows that f(-1) = 2299.
 - Dave knows that f is monic.
 - Emily knows that the linear term of f' is zero.
 - Frank knows that the linear term of f is -300.

Find the secret and determine all possible groups of people that are together able to determine the secret with certainty.

- 6. Consider the Okamoto Identification Scheme with public keys p, q, α_1 and α_2 . For simplification, consider omitting the digital signatures.
 - (a) Given v, show that there are exactly q pairs $(a_1, a_2), 0 \le a_1, a_2 \le q-1$, such that $v \equiv \alpha_1^{-a_1} \alpha_2^{-a_2}$ (mod p) and that for any two such pairs $(a_1, a_2) \ne (a'_1, a'_2)$ it holds $a_1 \ne a'_1$ and $a_2 \ne a'_2$.
 - (b) Suppose that Alice choose the random numbers a_1 , a_2 , k_1 and k_2 and sends v and γ to Bob according to the protocol. Suppose that as a response to the challenge r Bob receives y_1 and y_2 calculated by Alice according to the protocol. Show that if Alice choose a'_1 and a'_2 instead of a_1 and a_2 such that $(a_1, a_2) \neq (a'_1, a'_2)$ and $v \equiv \alpha_1^{-a'_1} \alpha_2^{-a'_2} \pmod{p}$ then there exist k'_1 and k'_2 such that

$$\gamma \equiv \alpha_1^{k_1'} \alpha_2^{k_2'} \pmod{p},$$

$$y_1 \equiv k_1' + a_1'r \pmod{q} \text{ and } y_2 \equiv k_2' + a_2'r \pmod{q}.$$