2015 - Exercises X.

1. Consider the Okamoto Identification Scheme with $p=7823, q=3911, \alpha_{1}=556$ and $\alpha_{2}=1568$. Show in detail the steps of the protocol if $a_{1}=1234, a_{2}=524, k_{1}=118$ and $k_{2}=2004$ and Bob's challenge is $r=3015$. For simplification, consider omitting the digital signatures, $i e$. the protocol does not use the trusted authority TA and Alice sends v directly to Bob without the certificate.
2. Give an example of an orthogonal array $O A(2,3,2)$.
3. Sender S broadcasts messages to n receivers R_{1}, \ldots, R_{n}. Privacy is not important, but message authenticity is. Each of the receivers wants to be sure that the messages were indeed sent by S. Users decide to use MAC.
(a) Suppose all users and S share a secret key k. Sender S adds a MAC to the broadcast message using k and every user verifies it. Explain why this scheme is insecure.
(b) Suppose sender S has a set $A=\left\{k_{1}, \ldots, k_{m}\right\}$ of m secret keys. Each receiver has some subset $A_{i} \subseteq A$ of the keys. Before sending a message, S computes MAC c_{i} of the message for each key k_{i}. Then S appends c_{1}, \ldots, c_{m} to the message. Receiver R_{i} accepts the message as authentic if and only if all MACs corresponding to the keys in A_{i} are valid. Which property should sets A_{1}, \ldots, A_{n} satisfy to be resistant to the attack from (a)? Assume that receivers cannot collude.
(c) Suppose that $n=6$. What is the minimal number of keys so as the condition from (b) is satisfied? Describe sets A_{1}, \ldots, A_{6}.
4. There are four people in a room and exactly one of them is an adversary. The other three people share a secret using the Shamir's $(3,2)$-secret sharing scheme over \mathbb{Z}_{11}. The adversary has randomly chosen a pair of numbers for himself. The four pairs are $\left(x_{1}, y_{1}\right)=(1,4),\left(x_{2}, y_{2}\right)=(3,7),\left(x_{3}, y_{3}\right)=(5,1)$ and $\left(x_{4}, y_{4}\right)=(7,2)$. Determine which pair was created by the adversary. Determine also the shared secret. Explain your reasoning.
5. Consider the following secret sharing scheme. A secret polynomial $f(x) \in \mathbb{R}[x]$ is given, its absolute term $f(0)$ is the secret. There are six people who know different pieces of information:

- Alice knows that $\operatorname{deg} f=3$.
- Bob knows that $f(1)=1701$.
- Charlie knows that $f(-1)=2299$.
- Dave knows that f is monic.
- Emily knows that the linear term of f^{\prime} is zero.
- Frank knows that the linear term of f is -300 .

Find the secret and determine all possible groups of people that are together able to determine the secret with certainty.
6. Consider the Okamoto Identification Scheme with public keys p, q, α_{1} and α_{2}. For simplification, consider omitting the digital signatures.
(a) Given v, show that there are exactly q pairs $\left(a_{1}, a_{2}\right), 0 \leq a_{1}, a_{2} \leq q-1$, such that $v \equiv \alpha_{1}^{-a_{1}} \alpha_{2}^{-a_{2}}$ $(\bmod p)$ and that for any two such pairs $\left(a_{1}, a_{2}\right) \neq\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ it holds $a_{1} \neq a_{1}^{\prime}$ and $a_{2} \neq a_{2}^{\prime}$.
(b) Suppose that Alice choose the random numbers a_{1}, a_{2}, k_{1} and k_{2} and sends v and γ to Bob according to the protocol. Suppose that as a response to the challenge r Bob receives y_{1} and y_{2} calculated by Alice according to the protocol. Show that if Alice choose a_{1}^{\prime} and a_{2}^{\prime} instead of a_{1} and a_{2} such that $\left(a_{1}, a_{2}\right) \neq\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$ and $v \equiv \alpha_{1}^{-a_{1}^{\prime}} \alpha_{2}^{-a_{2}^{\prime}}(\bmod p)$ then there exist k_{1}^{\prime} and k_{2}^{\prime} such that

$$
\begin{array}{ll}
& \gamma \equiv \alpha_{1}^{k_{1}^{\prime}} \alpha_{2}^{k_{2}^{\prime}} \quad(\bmod p) \\
y_{1} \equiv k_{1}^{\prime}+a_{1}^{\prime} r & (\bmod q) \text { and } y_{2} \equiv k_{2}^{\prime}+a_{2}^{\prime} r \quad(\bmod q)
\end{array}
$$

