IV054 Coding, Cryptography and Cryptographic Protocols 2015 - Exercises IX.

- 1. Consider the elliptic curve $E: y^2 = x^3 + 2x + 1 \pmod{11}$.
 - (a) Find all points of the curve E.
 - (b) Solve x(0,1) = (5,9) for x.
- 2. Consider elliptic curves over \mathbb{Z}_5 . Which group are the following elliptic curves isomorphic to?
 - (a) $y^2 = x^3 + x + 1$
 - (b) $y^2 = x^3 + 4x + 2$
 - (c) $y^2 = x^3 + 4x + 3$
- 3. Use the first version of Pollard ρ -factorization with $x_0 = 15$ to factorize 39271.
- 4. Consider the elliptic curve variant of the Diffie-Hellman key exchange protocol with the elliptic curve $E: y^2 = x^3 + 3x + 4 \pmod{17}$ and the point P = (1, 5). Let Alice's choice of integer be $n_a = 3$ and let Bob's choice be $n_b = 4$. Finish the protocol and show your steps.
- 5. Consider an elliptic curve version of the ElGamal signatures with public information p = 13, $E : y^2 = x^3 + 3x + 5 \pmod{13}$, P = (1, 3), Q = (11, 11) and private information a = 4.
 - (a) Sign the message m = 6 with r = 5.
 - (b) Verify the signature (4, (12, 12), 5).
- 6. Let E be the elliptic curve over \mathbb{Q} defined by the equation $y^2 = x^3 7x + 6$. Find all of its 2-torsion points, eg. points P such that P = -P.
- 7. Is there a (non-singular) elliptic curve E defined over \mathbb{Z}_5 such that
 - (a) E contains exactly 11 points (including the point at infinity \mathcal{O});
 - (b) E contains exactly 10 points (including the point at infinity \mathcal{O})?

If the answer is positive, find such a curve and list all of its points, If it is negative, prove it.