IV054 Coding, Cryptography and Cryptographic Protocols

2015 - Exercises IV.

1. Decrypt the following ciphertexts:
(a) AUCOMDOFCOM
(b) BH BI DH DI CI DG BI AJ DH
2. Consider the following cryptosystem:

$$
\begin{aligned}
& P=\{a, b, c\}, K=\left\{k_{1}, k_{2}, k_{3}\right\}, C=\{1,2,3,4\} \\
& \operatorname{Pr}(a)=\frac{1}{2}, \operatorname{Pr}(b)=\frac{1}{3}, \operatorname{Pr}(c)=\frac{1}{6} \\
& \operatorname{Pr}\left(k_{1}\right)=\operatorname{Pr}\left(k_{2}\right)=\operatorname{Pr}\left(k_{3}\right)=\frac{1}{3},
\end{aligned}
$$

and encryption/decryption function defined by the following matrix:

	a	b	c
k_{1}	1	2	3
k_{2}	2	3	4
k_{3}	3	4	1

(a) Compute the probability distribution of ciphertexts.
(b) Compute the conditional probability distributions of the plaintext given a certain ciphertext.
(c) Does this cryptosystem have perfect secrecy?
3. Suppose you have stolen an encryption machine that uses the Affine cryptosystem. You performed a known-plaintext attack by feeding the input hahaha and obtaining the output KNKNKN. Break the cipher.
4. Consider the Hill cryptosystem using the same secret key M for all plaintexts. You have intercepted the following plaintext-cryptotext pairs:

$$
\left\{\binom{3}{15},\binom{18}{22}\right\},\left\{\binom{24}{1},\binom{8}{14}\right\} .
$$

Decrypt the cryptotext $\binom{8}{24}$ without computing M or M^{-1}.
5. Consider the Affine cipher with modulus n. Determine the number of keys for $n=26, n=27$, $n=28$ and $n=29$?
6. Consider the following cryptosystem with $P=C=K=\mathbb{Z}_{5}^{*}, e_{k}(w)=w k^{2}(\bmod 5)$ and $d_{k}(c)=c k^{-2}$ $(\bmod 5)$. Suppose that keys are chosen with uniform probability. Is this cryptosystem perfectly secure? Explain your reasoning.
7. Consider the Hill cryptosystem with a matrix M of degree $n \in \mathbb{N}$.
(a) Find a necessary and sufficient condition for M to be invertible modulo 26.
(b) Compute the cardinality of the key-space for $n=1$ and $n=2$.
(c) How many plaintexts does an attacker need to determine M in a chosen-plaintexts attack?
8. Provide a satisfying solution (we only recommend decryption): TESTER FLIRTS

