IV054 Coding, Cryptography and Cryptographic Protocols

2015 - Exercises III.

1. Let $q, n \in \mathbb{N}$, where q is a prime number and let C_{1}, C_{2} be cyclic q-ary codes of length n. In each of the following cases, determine if C_{3} is necessarily a cyclic code.
(a) $C_{3}=C_{1} \backslash C_{2}$;
(b) $C_{3}=\left(C_{1} \cup C_{2}\right) \backslash\left(C_{1} \cap C_{2}\right)$;
(c) $C_{3}=\left\{a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} \mid a_{1} a_{2} \ldots a_{n} \in C_{1}, b_{1} b_{2} \ldots b_{n} \in C_{2}\right\}$;
(d) $C_{3}=\left\{a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} \mid a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n} \in C_{1}\right\}$;
(e) $C_{3}=\left\{w_{1}-w_{2} \mid w_{1} \in C_{1}, w_{2} \in C_{2}\right\}$.
2. Consider the following binary $[8,4]$-code C with a generator matrix

$$
G=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Prove that C is a cyclic code.
(b) Find the generator polynomial of C.
3. Let C_{1}, C_{2} be q-ary cyclic codes of length n with generator polynomials $g_{1}(x)$ and $g_{2}(x)$, respectively. Show that $C_{3}=C_{1} \cap C_{2}$ is also cyclic. Find the generator polynomial of C_{3}.
4. Determine the number of
(a) all cyclic ternary codes of length 16 ;
(b) all cyclic quaternary codes of length 12 .
5. Find the parity check matrix and list all codewords of the binary cyclic code $C=\left\langle 1+x+x^{2}\right\rangle$ in \mathcal{R}_{3}.
6. Let C be a cyclic code of length n over \mathbb{F}_{q} with generator polynomial $g(x)$. Let $v(x)$ be a polynomial in \mathcal{R}_{n} such that $\operatorname{gcd}\left(v(x), x^{n}-1\right)=g(x)$ over $\mathbb{F}_{q}[x]$. Show that $v(x)$ is the generator polynomial of C as well.
7. Find the channel capacity for the channels specified by the following conditional distributions (where $0 \leq e \leq 1$ is the probability of receiving error E , the expression $0 \log 0$ is considered by convention to be equal to zero in information theory):
(a)

x	y	$P_{Y \mid X}(y \mid x)$
0	0	0.5
0	1	0.5
1	0	0.5
1	1	0.5

(b) | x | y | $P_{Y \mid X}(y \mid x)$ |
| :---: | :---: | :---: |
| 0 | 0 | $1-e$ |
| 0 | 1 | 0 |
| 0 | E | e |
| 1 | 0 | 0 |
| 1 | 1 | $1-e$ |
| 1 | E | e |

