IV054 Coding, Cryptography and Cryptographic Protocols **2015 - Exercises III.**

- 1. Let $q, n \in \mathbb{N}$, where q is a prime number and let C_1, C_2 be cyclic q-ary codes of length n. In each of the following cases, determine if C_3 is necessarily a cyclic code.
 - (a) $C_3 = C_1 \setminus C_2;$
 - (b) $C_3 = (C_1 \cup C_2) \setminus (C_1 \cap C_2);$
 - (c) $C_3 = \{a_1b_1a_2b_2\dots a_nb_n \mid a_1a_2\dots a_n \in C_1, b_1b_2\dots b_n \in C_2\};$
 - (d) $C_3 = \{a_1b_1a_2b_2\dots a_nb_n \mid a_1a_2\dots a_n, b_1b_2\dots b_n \in C_1\};$
 - (e) $C_3 = \{w_1 w_2 \mid w_1 \in C_1, w_2 \in C_2\}.$
- 2. Consider the following binary [8, 4]-code C with a generator matrix

G =	/1	1	1	1	1	1	1	1	
	0	1	1	1	0	1	1	1	
	0	0	1	1	0	0	1	1	•
	$\setminus 0$	0	0	1	0	0	0	1/	

- (a) Prove that C is a cyclic code.
- (b) Find the generator polynomial of C.
- 3. Let C_1, C_2 be q-ary cyclic codes of length n with generator polynomials $g_1(x)$ and $g_2(x)$, respectively. Show that $C_3 = C_1 \cap C_2$ is also cyclic. Find the generator polynomial of C_3 .
- 4. Determine the number of
 - (a) all cyclic ternary codes of length 16;
 - (b) all cyclic quaternary codes of length 12.
- 5. Find the parity check matrix and list all codewords of the binary cyclic code $C = \langle 1 + x + x^2 \rangle$ in \mathcal{R}_3 .
- 6. Let C be a cyclic code of length n over \mathbb{F}_q with generator polynomial g(x). Let v(x) be a polynomial in \mathcal{R}_n such that $gcd(v(x), x^n 1) = g(x)$ over $\mathbb{F}_q[x]$. Show that v(x) is the generator polynomial of C as well.
- 7. Find the channel capacity for the channels specified by the following conditional distributions (where $0 \le e \le 1$ is the probability of receiving error E, the expression $0 \log 0$ is considered by convention to be equal to zero in information theory):