2015 - Exercises II.

1. (a) What is the maximum number of codewords in a linear binary code of length 8 and minimal distance of 3 bits?
(b) What is the maximum dimension of a linear ternary code of length 4 in which the Hamming distance between every two of its distinct words is odd?
2. Consider a binary linear code C generated by the matrix

$$
G=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(a) Construct a standard array for C.
(b) Decode the received word 000101.
(c) Is this code perfect?
(d) Find an example of a received word with two errors which is not decoded correctly using the coset decoding method.
3. Consider the following 7 -ary codes C_{1}, C_{2} and C_{3} of length 3 such that
(a) $a_{1} a_{2} a_{3} \in C_{1} \Longleftrightarrow a_{1} \cdot a_{2}+a_{3} \equiv 0(\bmod 7) ;$
(b) $a_{1} a_{2} a_{3} \in C_{2} \Longleftrightarrow a_{1}+a_{2}+a_{3} \equiv 0(\bmod 7)$;
(c) $a_{1} a_{2} a_{3} \in C_{3} \Longleftrightarrow a_{1}+a_{2}+a_{3} \equiv 3(\bmod 7)$.

Decide whether they are linear codes.
4. What is the number of different binary self-dual [4, 2]-codes.
5. Let $n \in \mathbb{N}$ and let C be the ternary code of length n satisfying

$$
a_{1} a_{2} \ldots a_{n} \in C \Leftrightarrow a_{1}+a_{2}+\cdots+a_{n} \equiv 0 \quad(\bmod 3) .
$$

Show that C is linear and determine the number of its words.
6. Let C be a linear code over \mathbb{F}_{q}. Show that either all codewords of C begin with 0 or exactly $\frac{1}{q}$ of codewords of C begin with 0 .

