IV054 Coding, Cryptography and Cryptographic Protocols 2015 - Exercises I.

- 1. Consider a perfect binary (n, M, 5)-code. Find the two lowest values of n for which such a code exists.
- 2. Let $C = \{111111, 101000, 000101, 010010\}$. Suppose the codewords are transmitted using a binary symmetric channel with an error probability $p < \frac{1}{2}$.
 - (a) How many errors can C detect?
 - (b) How many errors can C correct?
 - (c) Calculate the probability of an undetected error.
- 3. Let n, q be positive integers and let $q \ge 2$. Show that

$$A_q(2n,2) \ge A_{2q}(n,4).$$

4. Consider a source producing 8 letters (A-H) with probabilities given in the table below.

Letter	Probability
А	0.40
В	0.27
С	0.10
D	0.08
Е	0.06
F	0.04
G	0.03
Н	0.02

- (a) Construct the Huffman code for this source.
- (b) Calculate the average length of codewords of this code and compare it to the bound given by Shannon's coding theorem.
- 5. (a) Give an example of a ternary (6,7,4)-code, all of whose words are palindroms (*ie.* their *i*-th letter is equal to their (7-i)-th letter for $i \in \{1,2,3\}$).
 - (b) Give an example of four binary pairwise disjoint (4, 4, 2)-codes.
- 6. For $n \in \mathbb{N}$, we will denote the set of all binary codewords of length n as \mathcal{C}_n .
 - (a) Let $n \in \mathbb{N}$ and $p = (p_1, \ldots, p_n) \in (\mathbb{R}^+)^n$ and define a function $d_p : \mathcal{C}_n \times \mathcal{C}_n \to \mathbb{R}_0^+$ as

$$d_p(w_1, w_2) = \sum_{i=1}^n p_i \cdot |w_1(i) - w_2(i)|,$$

where w(i) denotes the *i*-th coordinate of the word w. Show that d_p is a metric which generalizes the Hamming distance on C_n .

(b) Let $n \in \mathbb{N}$ and $p = (p_1, \ldots, p_n) \in (\mathbb{R}^+)^n$. Calculate the sum

$$\sum_{w_i, w_j \in \mathcal{C}_n} d_p(w_i, w_j)$$