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CONTENTS I. - USER IDENTIFICATION and MESSAGE
AUTHENTICATION/INTEGRITY

Most of today’s cryptographic applications ask for identification of communicating
parties, and/or for data integrity/authentication during communication, rather than
for secrecy of transferring data.

Main related problems to deal with are:

1 User identification (authentication): How can a person/computer prove her/his
identity?

2 Message authentication: Can tools be provided to find out, for the recipient, that
the message is indeed from the person who was supposed to send it?

3 Message integrity (authentication): Can tools be provided to decide for the
recipient whether or not the message was changed on the fly?

Important practical objectives are to find identification schemes that are so simple
that they can be implemented on smart cards – they are essentially credit cards
equipped with a chip that can perform arithmetical operations and communications.

With all of the above problems we will deal in the first part of this chapter.
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CONTENTS II. - SECRET SHARING and E-COMMERCE

Secret sharing problem is the problem how to share a ”secret” among a group of users
in such a way that only well specified subsets of them can determine the secret.

Secret sharing schemes are ideal, for example, for storing information that is highly
sensitive and important. For example, for encryption keys.

Secret sharing protocols/schemes are another often used cryptographic primitives, with a
variety of applications, we will deal with in second part of this chapter.

E-commerce: One of the main new applications of the cryptographic techniques is to
establish secure and convenient manipulation with digital money (e-money), especially for
e-commerce.

An example how e-commerce can be realized, in a simplified setting, will be shown at the
end of this chapter.
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USER IDENTIFICATION (AUTHENTICATION)

User identification (authentication) is a process at which one party (often referred to
as a Prover or as Alice), convinces a second party (often referred to as a Verifier or as
Bob) of Prover’s identity.

Namely, that the Prover (Alice) convinces the other party that she has indeed
participated (or is participating) in the identification process.

In other words that the Prover has been herself active in proving her identity in the time
the confirmative evidence of her identity has been required.

The purpose of any identification (authentication) process is to preclude (vylucit)
some impersonation (zosobnenie) of one person (the Prover) by someone else.

Identification usually serves to control access to a resource (often a resource should be
accessed only by privileged users).

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 5/71



OBJECTIVES of IDENTIFICATIONS

User identification process has to satisfy the following objectives:

The Verifier will accept Prover’s identity if both parties are honest;

The Verifier cannot later, after participating in a successful identification, learn how
to act as the Prover and to identify himself (as the Prover) to another verifier;

A third party (called attacker here), say E , following the identification process
of the Prover to the Verifier, has only a negligible chance to identify itself to
someone else successfully as the Prover;

Each of the above conditions should remain valid even if an attacker has observed,
or has even participated in, several identification processes of the same party.
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USER IDENTIFICATION PROTOCOLS

Identification protocols have to satisfy two security
conditions:

1 If one party, say Bob (a Verifier), gets a message from
the other party, that claims to be Alice (a Prover), then
Bob should be able to verify that the sender was indeed
Alice.

2 There should be no way to pretend, for a third party,
say Charles, when communicating with Bob, that he is
Alice without Bob having a large chance to find that
out.
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IDENTIFICATION SYSTEM BASED on a PKC

Alice chooses a random r and sends eB(r) to Bob.

Alice identifies a communicating person as Bob if he can send her back r.

Bob identifies a communicating person as Alice if she can send him back r.

A potential misuse of the above system

We show that (any non-honest) Alice could misuse the above identification scheme.

Indeed, Alice could intercept a communication of Jane (some new ”player”) with Bob,
and get a cryptotext eB(w), the one Jana has been sending to Bob, and then Alice could
send eB(w) to Bob.

Honest Bob, who always follows fully the protocol, would then return w to Alice and she
would get this way the plaintext w.
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IDENTIFICATION SYSTEM BASED on a PKC - a better version

Alice chooses a random r and sends eB(r) to Bob.

Alice identifies a communicating person as Bob if he
can send her back r through eA(r , r1) for a random r1.

Bob identifies a communicating person as Alice if she
can send him back r , r1.
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ELEMENTARY AUTHENTICATION PROTOCOLS

USER IDENTIFICATION

Static means of identification: People can be identified by their (a) attributes
(fingerprints), possessions (passports), or knowledge (of a key or a method.

Dynamic means of identification: Challenge and respond protocols.

Example: Let both Alice and Bob share a key k and a one-way function fk .

1 Bob sends Alice a random number, or a random string, RAND.

2 Alice sends to Bob PI = fk(RAND).

3 If Bob gets PI, then he verifies whether PI = fk(RAND).

If yes, he starts to believe that the person he has communicated with is Alice (more
exactly that Alice is the person who sent RAND to him).

The process can be repeated to increase probability of a correct identification.

MESSAGE AUTHENTICATION – to be discussed in details later

MAC -method (Message Authentication Code) Let Alice and Bob share a key k and an
encoding algorithm Ak

1 To communicate a message m, Alice sends a pair(m,Ak(m)) – {Ak(m) is said to
be MAC}.

2 If Bob gets (m′,MAC), then he computes Ak(m′) and compares it with MAC.
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THREE-WAY AUTHENTICATION and also KEY-AGREEMENT I

In this protocol a PKC will be used with encryption/decryption algorithms (eU , dU), for
each user U, and a DSS with signing/verification algorithms(sU , vU). In addition, Alice
and Bob will have their, public, identification strings IA and IB .

1 Alice chooses a random integer rA, sets t = (IB , rA), signs it as sigsA(t) and sends
m1 = (t, sigsA(t)) to Bob.

2 Bob verifies Alice’s signature, chooses a random rB and a random session key k. He
then encrypts k with Alice’s public key to get EeA(k) = c, sets

t1 = (IA, rA, rB , c),

and signs it as sigsB (t1). Then he sends m2 = (t1, sigsB (t1)) to Alice.
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THREE-WAY AUTHENTICATION and KEY AGREEMENT II

3 Alice verifies Bob’s signature sigsB (t1) with t1 = (IA, rA, rB , c),, and then checks that
the rA she just got matches the one she generated in Step 1.
Once verified, she is convinced that she is communicating with Bob. She also gets
the session key k via computation

DdA(c) = DdA(EeA(k)) = k,

sets t2 = (IB , rB) and signs it as sigsA(t2). Then she sends m3 = (t2, sigsA(t2)) to
Bob.

4 Bob verifies Alice’s signature and checks that rB he just got matches his choice in
Step 2. If both verifications pass, Alice and Bob have mutually authenticated each
others identity and, in addition, have agreed upon a session key k.
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DATA AUTHENTICATION

The goal of data authentication schemes
(protocols) is to handle the case that data are sent
through unreliable (and/or insecure) channels.

By creating a so-called Message Authentication Code
(MAC) and sending this MAC, together with the message,
through an insecure channel, one can create possibility to
verify whether data were not changed in the channel.

The price to pay is that communicating parties need to
share a secret random key that needs to be transmitted
through a secure channel.
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SCHEMES for DATA AUTHENTICATION

Basic difference between MACs and digital signatures is that MACs are symmetric in the
following sense: Anyone who is able to verify MAC of a message is also able to generate
the same MAC for that message.

A scheme (M, T, K) for a data authentication is given by:

M is a set of possible messages (data)

T is a set of possible MACs – (tags)

K is a set of possible keys

Moreover, it is required that

to each k ∈ K there is a single and easy to compute authentication mapping

authk : {0, 1}∗ ×M → T

and a single and easy to compute verification mapping

verk : M × T → {true, false}
such that the following two conditions should be satisfied:

Correctness: For each m ∈ M and k ∈ K the following holds: verk(m, c) = true if there
exists an r ∈ {0, 1}∗ such that c = authk(r ,m)

Security: For any m ∈ M and any k ∈ K it is computationally unfeasible, without a
knowledge of k, to determine t ∈ T such that verk(m, t) = true
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FROM BLOCK CIPHERS to MAC – CBC-MAC

Let C be an encryption algorithm that maps k-bit strings into k-bit strings.

If a message

m = m1m2 . . .ml

is divided into blocks of length k, then so-called CBC-mode of encryption assumes a
choice (random) of a special block y0 of the length k, and performs the following
computations, for i = 1, . . . ,l

yi = C(yi−1 ⊕mi )

In such a case

y1‖y2‖ . . . ‖yl

is the encryption of m and

yl can be considered as the MAC for m.

A modification of this method is to use another crypto-algorithm to encrypt the last
block ml .
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SPECIAL WEAKNESS of the CBS-MAC METHOD

Let us have three pairs and in each pair a message and its MAC

(m1, t1), (m2, t2), (m3, t3)

where messages m1, m3 and also t1, t3 are of the length k. In addition, let us have

m2 = m1‖B‖m′2
for some B that has also the length k. The encryption of the block B within m2 using
CBC-method will then be C(B ⊕ t1).

If we now define

B ′ = B ⊕ t1 ⊕ t3, m4 = m3‖B ′‖m′2 ,

then, during the encryption of m4, we get

C(B ′ ⊕ t3) = C(B ⊕ t1),

This implies that MAC’s for m4 and m2 are the same. One can therefore forge a new
valid pair

(m4, t2).
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FROM HASH FUNCTIONS TO HMAC

So called HMAC protocol was published as the internet standard RFC2104.

Let a hash function h produce hashes of b bytes and let t be the size of the resulting
MAC, in bytes. HMAC of a message m with a key k is computed as follows:

If k has more than b bytes replace k with h(k).

If k has less than b bytes than it is with zeros padded.

Compute (using constant b-bytes strings opad and ipad)

h(k ⊕ opad‖h(k ⊕ ipad‖m)).

and truncate the results to its t leftmost bytes to get HMACk(m).

In HMAC ipad (opad) consists of b bytes equal to 0× 36 (0× 5c) hexadecimal.
There is a variety of HMAC systems and they are usually specified by a hash function
that is used.

The above version of HMAC was motivated by the existence of attacks for more trivial
mechanisms for combining a key with a hash function.
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DISADVANTAGE of STATIC USER IDENTIFICATION SCHEMES

Everybody who knows your password or PIN can impersonate you.

Better are dynamic means of identification - for example so called
challenge and response (or challenge-response) protocols.

Basic idea of such protocols:

Let Alice be known to have a capability to solve some hard problem P.

Bob challenges a party claimed to be Alice by asking her to solve a
particular instance of the P problem.

If the party succeeds, Bob intends to believe that he is indeed
communicating with Alice.

Using so called zero-knowledge identification schemes, discussed in the next
chapter, you can identify yourself without giving to the identificator the
ability to impersonate you.
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CHALLENGE-RESPONSE PROTOCOLS - A GENERAL
SPECIFICATION

In a challenge-response identification protocol a party
A proves its identity to a party B by demonstrating
knowledge of a secret/method known to be associated
with A only, without revealing the secret/method itself to
B .

Structure of challenge-response protocols:

1 Commitment (to a secret).

2 Challenge.

3 Response.

4 Verification (of the response).
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SIMPLIFIED Fiat-Shamir IDENTIFICATION SCHEME

A trusted authority (TA) chooses: large random primes p,q, computes n = pq; and
chooses a quadratic residue v ∈ QRn, and s such that s2 = v (mod n).

public-key: v

private-key: s (that Alice knows, but not Bob)

Challenge-response Identification protocol

1 Alice chooses a random r < n, computes x = r 2 mod n and sends x, her
commitment, to Bob.

2 Bob sends to Alice a random bit (a challenge) b.

3 Alice sends Bob (a response) y = rsb mod n

4 Bob identifies the sender as Alice if and only if, verification, y 2 = xvb mod n,
which is taken as a proof that the sender knows square roots of x and of v.

This protocol is a so-called single accreditation protocol

Alice proves her identity by convincing Bob that she knows the square root s of v
(without revealing s to Bob) and the square root r of x .

If protocol is repeated t times, Alice has a chance 2−t to fool Bob if she does not know s
and r.
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ANALYSIS of Fiat-Shamir IDENTIFICATION I

public-key: v

private-key: s (of Alice) such that s2 = v (mod n).

Protocol

1 Alice chooses a random r < n, computes x = r 2 mod n and sends x (a
commitment) to Bob.

2 Bob sends to Alice a random bit b (a challenge).

3 Alice sends to Bob (a response) y = rsb.

4 Bob verifies (a verification)if and only if y 2 = xvb mod n, proving that Alice knows
a square root of x.
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ANALYSIS of Fiat-Shamir IDENTIFICATION II

Analysis

1 The first message is a commitment by Alice that she knows square root of x.

2 The second message is a challenge by Bob.
If Bob sends b = 0, then Alice has to open her commitment and reveal r.
If Bob sends b = 1, the Alice has to show her secret s in an ”encrypted form”.

3 The third message is Alice’s response to the challenge of Bob.

Completeness If Alice knows s, and both Alice and Bob follow the protocol, then the
response rsb is the square root of xvb.
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HOW CAN BAD EVE CHEAT?

Eve can send, to fool Bob, as her commitment, either r 2

for a random r or r 2v−1

In the first case Eve can respond correctly to the Bob’s
challenge b=0, by sending r; but cannot respond correctly
to the challenge b = 1.

In the second case Eve can respond correctly to Bob’s
challenge b = 1, by sending r again; but cannot respond
correctly to the challenge b = 0.

Eve has therefore a 50% chance to cheat.
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Fiat-Shamir IDENTIFICATION SCHEME – PARALLEL VERSION

In the following parallel version of Fiat-Shamir identification scheme the probability of a
false identification is decreased.

Choose primes p, q and compute n = pq and choose as security parameters integers k, t.

Choose quadratic residues v1, . . . , vk ∈ QRn.

Compute s1, . . . , sk such that si =
√
vi mod n

public-key: v1, . . . , vk secret-key: s1, . . . , sk of Alice PROTOCOL:

1 Alice chooses a random r < n, computes a = r 2 mod n and sends a to Bob.

2 Bob sends Alice a random k-bit string b1 . . . bk .

3 Alice sends to Bob

y = r
k∏

i=1

sbii mod n

4 Bob accepts if and only if

y 2 = a
k∏

i=1

vbi
i mod n

Alice and Bob repeat this protocol t times, until Bob is convinced that Alice knows
s1, . . . , sk .

The chance that Alice can fool Bob is 2−kt , a significant decrease comparing with the
chance 1

2
of the previous version of the identification scheme.
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THE SCHNORR IDENTIFICATION SCHEME – SETTING

This is a practically attractive, because being computationally efficient (in time, space +
communication) identification scheme, which minimizes storage + computations
performed by Alice (to be, for example, a smart card).
Scheme also requires a trusted authority (TA) who

1 chooses: a large prime p < 2512,
a large prime q dividing p - 1 and q ≤ 2140,
an α ∈ Z∗p of order q,
a security parameter t such that 2t < q,
p, q, α, t are made public.

2 establishes: a secure digital signature scheme with a secret signing algorithm sigTA

and a public verification algorithm verTA.

Protocol for issuing a certificate to Alice

1 TA establishes Alice’s identity by conventional means and forms a 512-bit string
ID(Alice) which contains the identification information.

2 Alice chooses a secret random 0 ≤ a ≤ q − 1 and computes

v = α−a mod p

and sends v to the TA.
3 TA generates signature

s = sigTA(ID(Alice), v)

and sends to Alice as her certificate: C (Alice) = (ID(Alice), v, s)
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Schnorr IDENTIFICATION SCHEME - PROTOCOL

1 Alice chooses a random 0 ≤ k < q and computes

γ = αk mod p.

2 Alice sends to Bob her certificate C (Alice) = (ID(Alice), v, s) and also γ.

3 Bob verifies the signature of TA by checking that

verTA(ID(Alice), v , s) = true.

4 Bob chooses a random 1 ≤ r ≤ 2t , where t < lg q is a security parameter and sends
it to Alice (often t ≤ 40).

5 Alice computes and sends to Bob

y = (k + ar) mod q.

6 Bob verifies that

γ ≡ αyv r mod p

7 This way Alice proofs her identity to Bob. Indeed,

αyv r ≡ αk+arα−ar mod p
≡ αk mod p
≡ γ mod p.

Total storage needed: 512 bits for ID(Alice), 512 bits for v, 320 bits for s (if DSS is
used). In total – 1344 bits.

Total communication needed from: Alice → Bob – 1996 (= 1344+512+140) bits,
Bob → Alice 40 bits (to send r).
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Okamoto IDENTIFICATION SCHEME

The disadvantage of the Schnorr identification scheme is that there is no proof of its
security. For the following modification of the Schnorr identification scheme presented
below, for so called Okamoto identification scheme, a proof of security exists.

Basic setting: To set up the scheme TA chooses:

a large prime p ≤ 2512,

a large prime q ≥ 2140 dividing p - 1;

two elements α1, α2 ∈ Z∗p of the order q.

TA makes public p, q, α1, α2 and keeps secret (also before Alice and Bob)

c = lgα1α2.

Finally, TA chooses a signature scheme and a hash function.

Issuing a certificate to Alice

TA establishes Alice’s identity and issues her identification string ID(Alice).

Alice secretly and randomly chooses 0 ≤ a1, a2 ≤ q − 1 and sends to TA

v = α−a1
1 α−a2

2 mod p.

TA generates a signature s = sigTA(ID(Alice), v) and sends to Alice the certificate

C (Alice) = (ID(Alice), v, s).
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Okamoto IDENTIFICATION SCHEME – BASICS ONCE MORE

Basic setting
TA chooses: a large prime p ≤ 2512,large prime q ≥ 2140 dividing p - 1; two elements
α1, α2 ∈ Z∗p of order q. TA keep secret (also from Alice and Bob)

c = lgα1
α2.

Issuing a certificate to Alice

TA establishes Alice’s identity and issues an identification string ID(Alice).

Alice randomly chooses 0 ≤ a1, a2 ≤ q − 1 and sends to TA.

v = α−a1
1 α−a2

2 mod p.

TA generates a signature s = sigTA(ID(Alice), v) and sends to Alice the certificate

C (Alice) = (ID(Alice), v, s).
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Okamoto IDENTIFICATION SCHEME

Okamoto IDENTIFICATION SCHEME

Alice chooses random 0 ≤ k1, k2 ≤ q − 1 and computes

γ = αk1
1 α

k2
2 mod p.

Alice sends to Bob her certificate (ID(Alice), v, s) and γ.

Bob verifies the signature of TA by checking that

verTA(ID(Alice), v , s) = true.

Bob chooses a random 1 ≤ r ≤ 2t and sends it to Alice.

Alice sends to Bob

y1 = (k1 + a1r) mod q; y2 = (k2 + a2r) mod q.

Bob verifies

γ ≡ αy1
1 α

y2
2 v r (mod p)
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DATA (MESSAGE) INTEGRITY and AUTHENTICATION

DATA (MESSAGE) INTEGRITY
and

AUTHENTICATION
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DATA INTEGRITY and AUTHENTICATION PROBLEMS

One of the main features of the current information processing era is that it
becomes more and more a data-driven era - society is accumulating enormous
amounts of data and has big problems with its reliable and efficient storing,
transmission and processing.

In general, data integrity refers to maintaining and assuring the accuracy and
consistency of data over their whole real life cycle and becomes a very important
feature of database systems.

The goal is to ensure accuracy, validity and correctness of data - a protection from
hardware, software and human errors.

In database systems, data integrity is normally enforced by a series of so called
integrity constrains/rules.

Closely related to data integrity problems is the problem of authentication of data at
their transmissions.

With the use of cryptographic techniques to deal with data authentication problem
we deal briefly in the next.

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 31/71



AUTHENTICATION CODES

They provide methods to ensure authentication of data/messages – that a message has
not been tampered/changed, and that the message originated with the presumed sender.

The goal is to achieve authentication even in the presence of Mallot, a man in the middle,
who can observe transmitted messages and replace them by messages of his own choice.

Formally, an authentication code consists of:

A set M of possible messages.

A set T of possible authentication tags.

A set K of possible keys.

A set R of authentication algorithms ak : M → T , one for each k ∈ K

Transmission process

Alice and Bob jointly choose a secret key k.

If Alice wants to send a message w to Bob, she sends (w, t), where t = ak(w).

If Bob receives (w, t) he computes t′ = ak(w) and if t = t’, then Bob accepts the
message w as authentic.
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ATTACKS and DECEPTION PROBABILITIES

There are two basic types of attacks Mallot, the man in the middle, can do.

Impersonation. Mallot introduces a message (w, t) into the channel – expecting that
message will be received as being sent by Alice.

Substitution. Mallot replaces a message (w, t) in the channel by another one, (w’, t’) –
expecting that message will be accepted as being sent by Alice.

With any impersonation (substitution) attack a probability Pi (Ps) is associated that
Mallot will deceive Bob, if Mallot follows an optimal strategy.

In order to determine such probabilities we need to know probability distributions Pm on
messages and Pk on keys.

In the following so called authentication matrices |K | × |M| will tabulate all
authentication tags. The item in a row corresponding to a key k and in a column
corresponding to a message w will contain the authentication tag tk(w).

The goal of authentication codes, to be discussed next, is to decrease probabilities that
Mallot performs successfully impersonation or substitution.
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THE AUTHENTICATION MATRIX - EXAMPLE

Let M = T = Z3, K = Z3 × Z3 −−Z3 = {0, 1, 2}.
For (i , j) ∈ K and w ∈ M, let tij(w) = (iw + j) mod 3.
Let the matrix key × message of authentication tags has the form

Key 0 1 2
(0,0) 0 0 0
(0,1) 1 1 1
(0,2) 2 2 2
(1,0) 0 1 2
(1,1) 1 2 0
(1,2) 2 0 1
(2,0) 0 2 1
(2,1) 1 0 2
(2,2) 2 1 0

Impersonation attack: Let us assume that Mallot picks a message w and tries to guess
the correct authentication tag.
Problem is that for each message w and each tag a there are exactly three keys k such
that tk(w) = a. Hence Pi = 1

3
.

Substitution attack: By checking the table one can see that if Mallot observes an
authenticated message (w, a), then there are exactly three possibilities for the key that
was used.
Moreover, for each choice (w’, a’), w 6= w’, there is exactly one of the three possible keys
for (w’,a’) that can be used. Therefore Ps = 1

3
.
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ORTHOGONAL ARRAYS

Definition An orthogonal array OA(n, k, λ) is a λn2 × k array of n symbols, such that in
any two columns of the array every one of the possible n2 pairs of symbols occurs in
exactly λ rows.

Example IA(3,3,1) obtained from the authentication matrix presented before;

0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0


Theorem Suppose we have an orthogonal array OA(n, k, λ).Then there is an

authentication code with |M| = k, |T | = n, |K | = λn2 and PI = Ps =
1

n
.

Proof Use each row of the orthogonal array as an authentication rule (key) with equal
probability. Therefore we have the following correspondence:

orthogonal array authentication code
row authentication rule

column message
symbol authentication tag
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CONSTRUCTION and BOUNDS for OAs

In an orthogonal array OA(n, k, λ)

n determines the number of authenticators/tags (security of the code);

k is the number of messages the code can accommodate;

λ relates to the number of keys −λn2.

The following holds for orthogonal arrays.

If p is prime, then OA(p, p, 1) exits.

Suppose there exists an OA(n, k, λ). Then

λ ≥ k(n − 1) + 1

n2
;

Suppose that p is a prime and d ≤ 2 an integer. Then there is an orthogonal array

OA(p,
(pd − 1)

(p − 1)
, pd−2).

Let us have an authentication code with |A| = n and Pi = Ps =
1

n
.Then |K | ≥ n2.

Moreover, |K | = n2 if and only if there is an orthogonal array OA(n, k,1), where

|M| = k and PK (k) =
1

n2
for every key k ∈ K .

The last claim shows that there are no much better approaches to authentication codes
with deception probabilities as small as possible than orthogonal arrays.
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COMMENTS on ORTHOGONAL ARRAYS

Orthogonal arrays are a very important concept of
recreational mathematics, combinatorial mathematics,
coding theory.

They were introduced by Rao in 1946.

One of the non-trivial questions is for which parameters
one can construct the corresponding Orthogonal array.

There is a library of more than 200 Orthogonal arrays.
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SECRET SHARING

SECRET SHARING

Secret sharing refers to methods for distribution a secret
amongst a group of users (usually called players), using
”shares of the secret”, in such a way that only eligible
groups of players can determine the secret by their
cooperation and using their shares only.

Secret sharing problem was discovered, as an important cryptographic primitive,
independently by Adi Shamir and George Blakeley in 1979 and they also constructed first
secret sharing protocols.

For example, secret sharing is used as cryptographic primitive in several protocols
for secure multiparty computation.
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SECRET SHARING - PROBLEM

In some applications, it is of importance to distribute a sensitive information, called here
as a secret (for example an algorithm how to open a safe or a secret key) among several
parties in such a way that only a well define subsets of parties can determine the secret -
if members of the parties cooperate.

For example, in some cases one can increase security of confidential information, say a
secret key, by sharing it between several parties.

In the following we show how to solve this problem in the following ”threshold” setting:

How to ”partition” a number S (called here as a ”secret”)
into n ”shares” and distribute them among n parties in
such a way that for a fixed (threshold) t < n any t of
parties can create S, but no t − 1, or less, of parties can
have the slightest idea how to do that.
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BASIC IDEA of the (n,t) THRESHOLD SECRET SHARING

In order to distribute a secret (number) S among n parties,
the dealer creates a degree t − 1 random polynomial p
such that p(0)=S and distributes to each party as a
”share” of the secret – a value of p in a separate point.

Since each degree t − 1 polynomial p is uniquely
determined by any t points on p, the above distribution of
points allows any t users to determine p, and so also
p(0)=S, and no smaller group of parties, can have the
slightest idea about S.
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SECRET SHARING between TWO PARTIES

A dealer creates shares of a binary-string secret s and
distributes them between two parties P1 and P2 as follows:
He chooses a random binary string b, of the same length

as s, and

sends b (as a ”share” of s), to P1 and
sends s ⊕ b (as another share of s), to P2.

This way, none of the parties P1 and P2 alone has a
slightest idea about s, but both together easily recover s
by computing

b ⊕ (s ⊕ b) = s.

The above scheme can be easily extended to the case of n
users so that only all of them can reveal the secret.
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THRESHOLD SECRET SHARING SCHEMES - FORMALITIES

An important special simple case of secret sharing schemes are threshold secret sharing
schemes at which a certain threshold of participant is needed and sufficient to assemble
the secret.

For example, a vault in the bank can be opened only if at least two out of three
responsible employees use their knowledge and tools (keys) to open the vault.

Definition Let t ≤ n be positive integers. A (n, t)-threshold scheme is a method of
sharing a secret S among a set P of n parties, P = {Pi | 1 ≤ i ≤ n}, in such a way that
any t, or more, parties can compute the value S , but no group of t - 1, or less, parties
can compute S .

Secret S is chosen by a ”dealer” D /∈ P.

It is assumed that the dealer ”distributes” the secret through shares to parties secretly
and in such a way that no party knows shares of other parties.
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THE CASE n = t

Such a case is easy to deal with.

In the case of an m bit secret S ,

each but one of n parties is assigned a different m bit
random number

and the last participant gets, as his share X ⊕ S , where X
is xor of all remaining random shares.

By xoring all shares the secret S can be obtained.
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BASIC PROPERTIES of SECURE SECRET SHARING SCHEMES

All shares have to be ”as large as the secret” in an
(n, t) secret sharing scheme.

Indeed, any share SHi has to have the property that no
group of t − 1 of the remaining shares contains any
information about the secret, but adding the share SHi ,
the secret can be obtained.

Therefore: (1) No share can contain ”some information
about secret”; (2) but also each share contains ”all
information about the secret” - both in some sense.

All secure secret sharing schemes have to use random
elements.
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Shamir’s (n,t)-THRESHOLD SCHEME

Initial phase:
Dealer D chooses a prime p, n randomly chosen integers xi , 1 ≤ i ≤ n and sends xi to the
user Pi .
The values xi are then made public.
Share distribution: Suppose that the dealer D wants to distribute a secret S ∈ Zp among
n parties. (1) D randomly chooses, and keeps secret, t - 1 elements of Zp, a1, . . . , at−1.
(b) For 1 ≤ i ≤ n, the dealer D computes ”shares” yi = a(xi ), where

a(x) = S +
t−1∑
j=1

ajx
j mod p.

(3) Finally, D sends the share yi to the party Pi , 1 ≤ i ≤ n and keeps coefficients ai
secret.
Secret accumulation: Let parties Pi1 , . . . ,Pit want to determine the secret S. Since,
unknown to them, polynomial a(x) has degree t-1 they know that it has, in general, the
form

a(x) = a0 + a1x + . . .+ at−1x
t−1,

and therefore they can determine all coefficients ai from t equations a(xij ) = yij , where all
arithmetic is done modulo p.

It can be shown that equations obtained this way are linearly independent and the system
has a unique solution.
In such a case S = a0.
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Shamir’s SCHEME — TECHNICALITIES

Shamir’s scheme uses the following result concerning polynomials over fields Zp, where p
is prime.

Theorem Let f (x) =
t−1∑
i=0

aix
i ∈ Zp[x ] be a polynomial of degree t - 1 and let

Ω = {(xi , f (xi )) | xi ∈ Zp, i = 1, . . . , t, xi 6= xj if i 6= j}

For any Q ⊆ Ω, let PQ = {g ∈ Zp[x ]|deg(g) = t − 1, g(x) = y for all (x,y) ∈ Q}. Then
it holds:

PΩ = {f (x)}, i.e. f is the only polynomial of degree t - 1, whose graph contains all t
points in Ω.

If Q is a proper subset of Ω and x 6= 0 for all (x , y) ∈ Q, then each a ∈ Zp appears
with the same frequency as the constant coefficient of polynomials in PQ .

Corollary (Lagrange formula) Let f (x) =
t−1∑
i=0

aix
i ∈ Zp[x ] be a polynomial and let

P = {(xI , f (xi )) | i = 1, . . . , t, xi 6= xj , i 6= j}. Then

f (x) =
t∑

i=1

f (xi )
∏

1≤j≤t, j 6=i

x − xj
xi − xj
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Shamir’s (n,t)-THRESHOLD SCHEME — SUMMARY

To distribute n shares of a secret S among parties P1, . . . ,Pn a dealer - a trusted
authority TA - proceeds as follows:

TA chooses a prime p > max{S , n} and sets a0 = S .

TA selects randomly a1, . . . , at−1 ∈ Zp and creates the polynomial f (x) =
t−1∑
i=0

aix
i .

TA computes si = f (i), i = 1, . . . , n and transfers each (i , si ) to the party Pi in a
secure way.

Any group J of t or more parties can compute the secret. Indeed, from the previous
corollary we have

S = a0 = f (0) =
∑
i∈J

f (i)
∏

j∈J,j 6=i

j

j − i

In case |J| < t, then each a0 ∈ Zp is equally likely to be the secret.
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PROPERTIES of SHAMIR’s SECRET (n, t) SHARING SCHEMES

Security: The scheme is information theoretically
secure.

Minimality: The size of each share does not exceed
the size of the secret.

Dynamicity: Shares can be replaced by another ones
without affecting other shares.

Flexibility: Parties can obtain different number of
shares according to their importance (within an
organization they are in).
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ORTHOGONAL ARRAYS BASED SHARING SCHEME

General form of orthogonal arrays: An t − (n, k, λ) orthogonal array for t ≤ k is a
λnt × k array, whose entries are from a set X of n points such that in every subset of t
columns of the array, every t-tuple of points of X appears in exactly λ rows.

A t − (n, n + 1, 1) orthogonal array may be used to construct a perfect (n, t) threshold
secret sharing scheme, in the following way:

Let A be an t − (v , n + 1, 1) orthogonal array. The first n columns will be used to provide
shares to the parties, while the last column represents the secret to be shared.If the
dealer wishes to share a secret S only the rows of A where the last entry is S are used in
the scheme. The dealer then randomly selects one of these rows and sends out to the
party Pi the entry in this raw and in the column i as the share.

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 49/71



SECRET SHARING – GENERAL CASE

A serious limitation of the threshold secret sharing schemes is that all groups of parties
with the same number of parties have the same access to the secret.

Practical situations usually require that some (sets of) parties are more important than
others.

Let P be a set of parties. To deal with the above situation such concepts as an
authorized set of users of P and access structures are used.

An authorized set of parties A ⊆ P is a set of parties who should be able, when
cooperating, to construct the secret.

An unauthorized set of parties U ⊆ P is a set of parties who alone should not be able to
learn anything about the secret.

Let P be a set of parties. The access structure Γ ⊆ 2P is a set such that A ∈ Γ for all
authorized sets A and U ∈ 2P − Γ for all unauthorized sets U.

Theorem: For any access structure there exists a secret sharing scheme realizing this
access structure.
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EXAMPLE of an ACCESS STRUCTURE

An access structure for the set of players

P = {P1,P2,P3,P4,P5}

is the set of subsets of P that contains sets

{P2,P5}, {P1,P4} {P1,P2,P3}
and all their supersets.
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SECRET SHARING SCHEME with VERIFICATION

Secret sharing protocols increase security of a secret information by
sharing it between several parties.

Some secret sharing scheme are such that they work even in case some
parties behave incorrectly.
A secret sharing scheme with verification is such a secret sharing
scheme that:

Each party Pi is capable to verify correctness of his/her share si
No party Pi is able to provide incorrect information and to convince
other parties about its correctness

In general, a player might lie about his own share, in order to gain
information about other shares. Secret sharing schemes with
verification allow players to be certain that no other players are lying
about their shares.
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Feldman’s (n,k)-PROTOCOL

Feldman’s protocol is an example of the secret sharing scheme with verification. The
protocol is a generalization of Shamir’s protocol. It is assumed that all n participants can
broadcast messages to all others and each of them can determine all senders.

Given are large primes p, q, q|(p − 1), q > n and h < p – a generator of Z∗p . All these

numbers, and also the number g = h
p−1
q mod p, will be public.

As in Shamir’s scheme, to share a secret S, the dealer assigns to each party Pi a specific
random xi from {1, . . . , q − 1} and generates a random secret polynomial

f (x) =
k−1∑
j=0

ajx
j mod q (1)

such that f(0) = S and sends to each Pi the value yi = f (xi ). In addition, using a
broadcasting scheme, the dealer sends to each Pi all values vj = g aj mod p.
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Feldman’s (n,k)-PROTOCOL - continuation

Each Pi verifies that

g yi =
k−1∏
j=0

(vj)
x ji mod p (1)

If (1) does not hold, Pi asks, using the broadcasting scheme, the dealer to
broadcast correct value of yi . If there are at least k such requests, or some
of the new values of yi does not satisfy (1), the dealer is considered as not
reliable.

One can easily verify that if the dealer works correctly, then all relations (1)
hold.
Observe that (vj)

x ji and therefore

g yi =
k−1∏
j=0

(vj)
x ji mod p = g(f (xi ))

(1)
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Blakley’s SECRET SHARING SCHEME

This is a secret sharing scheme based on the following facts:

Two nonparallel lines in the same plane intersect at
exactly one point.

Three nonparallel planes in space intersect in exactly
one point.

In general any n nonparallel (n − 1)-dimensional
hyperplanes intersect in exactly one point.

The secret can be therefore encoded as any single
coordinate of the point of the intersection of n nonparallel
(n − 1)-dimensional hyperplanes.
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VISUAL SECRET SHARING

The basic idea is to create, for a visual information (a
secret) S, a set of n transparencies in such a way that one
can see S only if all n transparencies are overlaid.
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E-COMMERCE

Very important is to ensure security of e-money
transactions needed for e-commerce.

In addition to providing security and privacy, the task is
also to prevent alterations of purchase orders and forgery
of credit card information.
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BASIC REQUIREMENTS for e-COMMERCE SYSTEMS

Authenticity: Participants in transactions cannot be
impersonated and signatures cannot be forged.

Integrity: Documents (purchase orders, payment
instructions,...) cannot be forged.

Privacy: Details of transaction should be kept secret.

Security: Sensitive information (as credit card numbers)
must be protected.

Anonymity: Anonymity of money senders should be
guaranteed.
Additional requirement: In order to allow an efficient fighting of the organized crime a
system for processing e-money has to be such that under well defined conditions it has to
be possible to revoke customer’s identity and flow of e-money.
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HISTORICAL COMMENT

So called Secure Electronic Transaction protocol
was created to standardize the exchange of credit
card information.

Development of SET initiated in 1996 credit card
companies MasterCard and Visa.
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EXAMPLE – DUAL SIGNATURE PROTOCOL

We present a protocol to solve the following security and privacy problem in e-commerce:
How to arrange e-shopping in such a way that shoppers’ banks should not know what
shoppers/cardholders are ordering and shops should not learn credit card numbers of
shoppers.

Participants of our e-commerce protocol will be: banks, shoppers/cardholders, shops

The cardholder will use the following information:

GSO – Goods and Services Order (cardholder’s name, shop’s name, items being
ordered, their quantity,...)

PI - Payment Instructions (shop’s name, card number, total price,...)

Protocol will use also a public hash function h.

RSA cryptosystem will also be used and

eC , eS and eB will be public (encryption) keys of the cardholder, shop, bank and

dC , dS and dB will be their secret (decryption) keys.
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CARDHOLDER and SHOP ACTIONS

A cardholder performs the following procedure – to create a GSO-goods and services
order

1 Computes HEGSO = h(eS(GSO)) – the hash value of the encryption of GSO.

2 Computes HEPI = h(eB(PI )) – hash value of the encryption of the payment
instructions for the bank.

3 Computes HPO = h(HEPI‖HEGSO) – Hash value of the Payment Order.

4 Signs HPO by computing ”Dual Signature” DS = dC (HPO).

5 Sends eS(GSO), DS, HEPI, and eB(PI ) to the shop.

The Shop does the following: – to create payment instructions

Calculates h(eS(GSO)) = HEGSO;

Calculates h(HEPI |HEGSO) and eC (DS). If they are equal, the shop has verified by
that the cardholder signature;

Computes dS(eS(GSO)) to get GSO.

Sends HEGSO,HEPI , eB(PI ), and DS to the bank.
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BANK and SHOP ACTIONS

The Bank has received HEPI, HEGSO, eB(PI ), and DS and performs the following
actions.

1 Computes h(eB(PI )) – which should be equal to HEPI.

2 Computes h(h(eB(PI ))‖HEGSO) which should be equal to eC (DS) = HPO.

3 Computes dB(eB(PI )) to obtain PI;

4 Returns an encrypted (with eS) digitally signed authorization to shop, guaranteeing
the payment.

Shop completes the procedure by encrypting, with eC , the receipt to the cardholder,
indicating that transaction has been completed.

It is easy to verify that the above protocol fulfills basic requirements concerning security,
privacy and integrity.
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DIGITAL MONEY

Is it possible to have electronic (digital) money?

It seems that not, because copies of digital information are indistinguishable from their
origin and one could therefore hardly prevent double spending,....

T. Okamoto and K. Ohia formulated six properties digital money systems should have.

1 One should be able to send e-money through e-networks.

2 It should not be possible to copy and reuse e-money.

3 Transactions using e-money could be done off-line – that is no communication with
central bank should be needed during translation.

4 One should be able to sent e-money to anybody.

5 An e-coin could be divided into e-coins of smaller values.

Several systems of e-money have been created that satisfy all or at least some of the
above requirements.
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BLIND SIGNATURES – APPLICATIONS

Blind digital signatures allow the signer (bank) to sign a message without seeing its
content.

Scenario: Customer Bob would like to give e-money to Shop. E-moneys have to be
signed by a Bank. Shop must be able to verify Bank’s signature. Later, when Shop sends
e-money to Bank, Bank should not be able to recognize that it signed these e-money for
Bob. Bank has therefore to sign money blindly.

Bob can obtain a blind signature for a message m from Bank by executing the Schnorr
blind signature protocol described on the next slide.

Basic setting

Bank chooses large primes p, q|(p − 1) and an g ∈ Zp of order q.

Let h : {0, 1}∗ → Zp be a collision-free hash function.

Bank’s secret will be a randomly chosen x ∈ {0, . . . , p − 1}.
Public information: (p, q, g , y = g x).
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BLIND SIGNATURES – protocols

1 Schnorr’s simplified identification scheme in which Bank proves its identity by
proving that it knows x.

Bank chooses a random r ∈ {0, . . . , q − 1} and send a = g r to Bob. {By that Bank
”commits” itself to r}
Bob sends to Bank a random c ∈ {0, . . . , q − 1} {a challenge}.
Bank sends to Bob b = r – cx {a response}.
Bob accepts the proof that bank knows x if a = gby c . {because y = gx}

2 Transfer of the identification scheme to a signature scheme:

Bob chooses as c = h(m‖a), where m is the message to be signed.

Signature: (c, b); Verification rule: a = gby c ; Transcript: (a, c, b).

3 Shnorr’s blind signature scheme

Bank sends to Bob a′ = g r′ with random r ′ ∈ {0, . . . , q − 1}.
Bob chooses random u, v ,w ∈ {0, . . . , q − 1}, u 6= 0, computes a = a′ugvyw ,
c = h(m‖a), c ′ = (c − w)u−1 and sends c’ to Bank.
Bank sends to Bob b’ = r’ - c’x.

Bob verifies whether a′ = gb′y c′ , computes b = ub’ + v and gets blind signature
σ(m) = (c, b) of m.

Verification condition for the blind signature: c = h(m‖gby c).

Both (a,c,b) and (a’,c’,b’) are valid transcripts.
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APPENDIX

APPENDIX
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SOME BASIC CONCEPTS Of APPLIED CRYPTOGRAPHY

In applied cryptography literature the following concepts are often used:

random string - a string obtained by tossing coins.

nonce - a number that is used only once (in a use of a
protocol).

salt - a short random string.

salting (padding) - attaching a short random string - a
salt

A use of such concepts will be illustrated in the next.
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KEY AGREEMENT and AUTHENTICATION over INTERNET

A variety of protocols have been developed to connect hosts on Internet. (Host are
here those computers that provide services to other computers and users of Internet.)

TCP/IP (Transmission Control Protocol/Internet protocol) is a set of
communication protocols used to connect hosts on Internet.

Important protocols are EKE (Encrypted Key Exchanged patented in 1993) and
SPEKE (Simple Password Exponential key Exchange) and their various
modifications.

Of large importance is Secure Remote Protocol (SRP-6). In this protocol Alice
interacts with Bob to establish a password k, and upon mutual authentication, a
session key S is derived that is then used to establish a ”permanent” key, to be used
to encrypt all future traffic.
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SRP-6 PROTOCOL

Public values: A large prime p is chosen, such that (p − 1)/2 is also prime, a primitive
root α modulo p is chosen as well as a hash function h. Protocol:

1 To establish a password k with Bob, Alice picks a salt s and computes
d = h(s, k), v = αd(modp). Bob stores v and s as Alice’s password and salt.

2 Alice sends to Bob her identification Ia and A = αa, where a is a nonce.

3 Bob looks up Alice’s password entry, retrieves v and s from her database and sends
both s and B = 3v + αb, where b is another nonce, to Alice.

4 Alice and Bob compute, independently, u = h(A,B).

5 Alice computes S = (B − 3αd)(a+ud). Bob independently computes S = (Avu)b.

6 Both, Alice and Bob compute K = h(S).

7 To verify that she has the correct key, Alice sends to Bob

h1 = h(h(p ⊕ h(α)), h(Ia), s,A,B,K).

8 Bob computes h1, compares with value received from Alice and if they agree, he
sends to Alice h2 = h(A, h1,K).

9 Upon receiving h2 Alice verifies that K is a correct key.
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