	EMPIRICAL NOTION of SECRECY of CRYPTOSYSTEMS
Part VIII	
Elliptic curves cryptography and factorization	A cryptographic system is consider as sufficiently secure until someone finds an attack against it.
ELLIPTIC CURVES - PRELIMINARIES	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 2/84 ELLIPTIC CURVES CRYPTOGRAPHY and FACTORIZATION
Elliptic curves E are graphs of points of plane curves defined by equations $\mathcal{E}: y^2 = x^3 + ax + b,$ For example: $y^2 = x(x+1)(x-1)$ $y^2 = x^3 + 73$ Elliptic curves crptography is based on a special operation of addition of points on eleptic curves at which it is easy to make addition of two points, but it is infeasible to find one point given the sum of two points and second one.	 Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of points on elliptic curves over finite fields. One of the main benefits of ECC, comparing with non-ECC, is the same level of security provided by keys of the smaller size - reducing storage and transmission requirements For example, a 256-bit ECC public key should provide comparable security to a 3072-bit RSA public key. ECC is used for encryption, digital signatures and PRG. Security of ECC is based on infeasibility of computing discrete logarithms of random elliptic curves elements. In USA two of the most prominent institutions, NIST (National Institute of Standards and Technology) and NSA (National Security Agency) endorsed in 2004 to use ECC with 384-bit keys for top secret communications. In August 2015 NSA announced plans to replace ECC cryptography by, not yet determined post-quantum cryptography.

COMMENTS I.	COMMENTS II.
<list-item><list-item> Biliptic curves belong to very important and deep mathematical concepts with a very broad use. The use of elliptic curves for cryptography was suggested, independently, by Neal Koblitz and Victor Miller in 1985. ECC started to be widely used after 2005. Biliptic curves are also the basis of a very important Lenstra's integer factorization algorithm. Both of these uses of elliptic curves, ECC cryptography and ECC based integer factorization are dealt with in this chapter. </list-item></list-item>	 Elliptic curves are also seen by some mathematicians as the simplest non-trivial mathematical object. Historically, computing the integral of an arc-length of an ellipse lead to the idea of elliptic functions and curves. Niels Henrik Abel (1802-1829) and K. W. T. Weierstrass (1815-1897) are considered as pioneers in the area of elliptic functions. Abel has been considered, by his contemporaries, as mathematical genius that left enough for mathematical genius to study for next 500 years.
COMMENTS III.	ELLIPTIC CURVES
It is amazing how practical is the elliptic curve cryptography that is based on very strangely looking and very theoretical concepts.	An elliptic curve E is the graph of points of the plane curve defined by the Weierstrass equation $E: y^2 = x^3 + ax + b$, (where a, b are either rational numbers or integers (and computation is then done modulo some integer n)) extended by a "point at infinity", denoted usually as ∞ (or 0) that can be regarded as being, at the same time, at the very top and very bottom of the <i>y</i> -axis. We will consider only those elliptic curves that have no multiple roots - which is equivalent to the condition $4a^3 + 27b^2 \neq 0$. In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has one of the forms shown in the following figure. The graph depends on whether the

In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has one of the forms shown in the following figure. The graph depends on whether the polynomial $x^3 + ax + b$ has three or only one real root.

7/84

prof. Jozef Gruska

EXAMPLES OF SINGULAR "ELLIPTIC CURVES"

A more precise definition of elliptic curves requires that it is the curve of points of the equation

 $E: v^2 = x^3 + ax + b$

in the case the curve is non-singular.

Geometrically, this means that the graph has no cusps, self-interactions, or isolated points.

Algebraically a curve is non-singular if and only if the discriminant

$$\Delta = -16(4a^3 + 27b^3) \neq 0$$

The graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative.

IV054 8. Elliptic curves cryptography and factorization

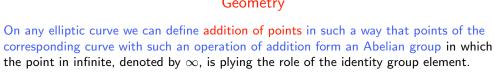
Geometry

ADDITION of POINTS on ELLIPTIC CURVES - GEOMETRY

Types of singularities: on the left, a curve with a cusp $(y^2 = x^3)$. On the right, a curve with a self-intersection ($y^2 = x^3 - 3x + 2$). None of them is a valid elliptic curve.

IV054 8. Elliptic curves cryptography and factorization

ADDITION of POINTS - EXAMPLES 1 and 2



9/84

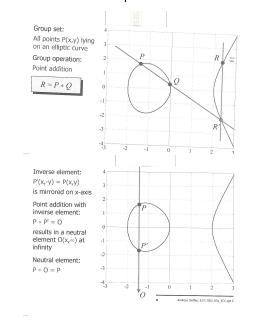
prof. Jozef Gruska

If the line through two different points P_1 and P_2 of an elliptic curve E intersects E in a point Q = (x, y), then we define $P_1 + P_2 = P_3 = (x, -y)$. (This also implies that for any point P on E it holds $P + \infty = P$.) ∞ therefore indeed play a role of the null/identity element of the group.

If the line through two different points P_1 and P_2 is parallel with y-axis, then we define $P_1 + P_2 = \infty$.

In case $P_1 = P_2$, and the tangent to E in P_1 intersects E in a point Q = (x, y), then we define $P_1 + P_1 = (x, -y)$.

It should now be obvious how to define subtraction of two points of an elliptic curve. It is now easy to verify that the above addition of points forms Abelian group with ∞ as the identity (null) element.



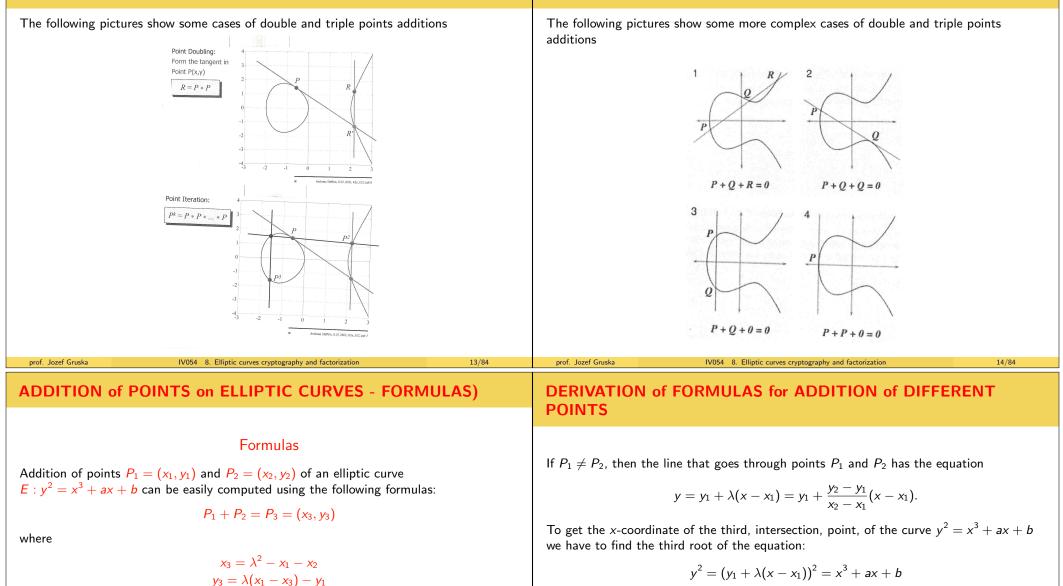
The following pictures show some cases of points additions

prof. Jozef Gruska

11/84

10/84

ADDITION of POINTS - EXAMPLES 3 and 4



and

$$\lambda = \begin{cases} \frac{(y_2 - y_1)}{(x_2 - x_1)} & \text{if } P_1 \neq P_2, \\ \frac{(3x_1^2 + a)}{(2y_1)} & \text{if } P_1 = P_2. \end{cases}$$

All that holds for the case that $\lambda \neq \infty$; otherwise $P_3 = \infty$. **Example:** For curve $y^2 = x^3 + 73$ and $P_1 = (2,9)$, $P_2 = (3,10)$ we have $\lambda = 1$, $P_1 + P_2 = P_3 = (-4,-3)$ and $P_3 + P_3 = (72,611)$. $- \{\lambda = -8\}$

because $-\lambda^2$ is the coefficient at x^2 and therefore $x_1 + x_2 + x_3 = -(-\lambda^2) = \lambda^2$.

Since its two roots have coordinates x_1 and x_2 for the third, x_3 , it has to hold

 $x^{3} - \lambda^{2}x^{2} + (a - 2\lambda(y_{1} - \lambda x_{1}))x + (b - (y_{1} - \lambda x_{1})^{2}) = 0$

 $x_3 = \lambda^2 - (x_1 + x_2) = \lambda^2 - x_1 - x_2$

that can be rewritten in the form

ADDITION of POINTS - EXAMPLES 5 and 6

prof. Jozef Gruska	IV054 8. Elliptic curves cryptography and factorization	15/84	prof. Jozef Gruska	IV054 8. Elliptic curves cryptography and factorization	16/84

ELLIPTIC CURVES mod n

IV054 8. Elliptic curves cryptography and factorization

prof. Jozef Gruska

EXAMPLE OF AN ELIPTIC CURVE OVER A PRIME

IV054 8. Elliptic curves cryptography and factorization

20/84

The points on an elliptic curve $E: y^2 = x^3 + ax + b \pmod{n},$ notation $E_n(a, b)$ are such pairs (x,y) mod n that satisfy the above equation, along with the point ∞ at infinity. Example: Elliptic curve $E: y^2 = x^3 + 2x + 3 \pmod{5}$ has points $(1, 1), (1, 4), (2, 0), (3, 1), (3, 4), (4, 0), \infty.$ Example For elliptic curve $E: y^2 = x^3 + x + 6 \pmod{11}$ and its point $P = (2, 7)$ it holds $2P = (5, 2); 3P = (8, 3)$. Number of points on an elliptic curve (mod p) can be easily estimated - as shown later. The addition of points on an elliptic curve mod n is done by the same formulas as given previously, except that instead of rational numbers c/d we deal with $cd^{-1} \mod n$ Example: For the curve $E: y^2 = x^3 + 2x + 3 \mod 5$, it holds (1, 4) + (3, 1) = (2, 0); (1, 4) + (2, 0) = (?, ?).	Points of the elliptic curve $y^2 = x^3 + x + 6$ over Z_{11} $\begin{array}{c c c c c c c c c c c c c c c c c c c $
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 17/84 ADDITION of POINTS on ELLIPTIC CURVES - REPETITIONS	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 18/84 A VERY IMPORTANT OBSERVATION
Formulas Addition of points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ of an elliptic curve $E : y^2 = x^3 + ax + b$ can be easily computed using the following formulas: $P_1 + P_2 = P_3 = (x_3, y_3)$ where $x_3 = \lambda^2 - x_1 - x_2$ $y_3 = \lambda(x_1 - x_3) - y_1$ and $\lambda = \begin{cases} \frac{(y_2 - y_1)}{(x_2 - x_1)} & \text{if } P_1 \neq P_2, \\ \frac{(3x_1^2 + a)}{(2y_1)} & \text{if } P_1 = P_2. \end{cases}$ All that holds for the case that $\lambda \neq \infty$; otherwise $P_3 = \infty$. Example For curve $y^2 = x^3 + 73$ and $P_1 = (2, 9), P_2 = (3, 10)$ we have $\lambda = 1$, $P_1 + P_2 = P_3 = (-4, -3)$ and $P_3 + P_3 = (72, 611) \{\lambda = -8\}$	In case of modular computation of coordinates of the sum of two points of an elliptic curve $E_n(a, b)$ one needs, in order to determine value of λ to compute $u^{-1}(\mod n)$ for various u . This can be done in case $gcd(u, n) = 1$ and therefore we need to compute $gcd(u, n)$ first. Observe that if this gcd-value is between 1 and n we have a factor of n .

19/84

prof. Jozef Gruska

POINTS on CURVE $y^2 = x^3 + x + 6 \mod 11$	EXAMPLE
x y^2 $y_{1,2}$ P (x , y) P '(x , y) $y^2 + y^2 + y^2$	On the elliptic curve $y^2 \equiv x^3 + x + 6 \pmod{11}$ lies the point $P = (2,7) = (x_1,y_1)$

1	8				There are 12 points lying on the elliptic curve.	Indeed, $49 \equiv 16 \mod 11$.
2 3	5	4,7	(2,4)	(2,7)		
3	3	5,6	(3,5)	(3,6)	Together with the point O at	To compute $2P = (x_3, y_3)$ we have
4	8	-			infinity, the points on the	
5	4	2,9	(5,2)	(5,9)	elliptic curve form a group	$\lambda = \frac{3x_1^2 + a}{2y_1} \equiv (3 \cdot 2^2 + 1)/(14) \equiv 13/14 \equiv 2/3 \equiv 2 \cdot 4 \equiv 8 \equiv \text{mod } 11$
6	0				with $n=13$ elements.	$2y_1$
7	4	2,9	(7,2)	(7,9) (8,8) (10,9)		Therefore
8	9	3,8	(8,3)	(8,8)	n is called the order of the elliptic curve group and	$x_3 = \lambda^2 - x_1 - x_2 \equiv 8^2 - 2 - 2 \equiv 60 \equiv 5 \mod{11}$
9	7	-			depends on the choice of the	and
10	4	2,9	(10,2)	(10,9)	curve parameters a and b.	$y_3 = \lambda(x_1 - x_3) - y_1 \equiv 8(2 - 5) - 7 \equiv -31 \equiv -9 \equiv 2 \mod 11$

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 21/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 22/84
ADDITION Of a POINT to ITSELF - FORMULAS+EXAMPLES	PROPERTIES of ELLIPTIC CURVES MODULO p
In the following $P = (x_1, y_1)$, $P + P = (x_R, y_R)$, $\lambda = s$ • Iterate the point P(2,4) lying on $y^2 = x^3 + x + 6 \mod 11$: • Compute $P^2 = P * P$ by doubling the point P $s = \frac{dy}{dx} = \frac{3x_P^2 + a}{2y_P}$ $y_0 = y_P - s \cdot x_P$ $x_R = s^2 - 2x_P$ $y_R = -(s \cdot x_R + y_0)$ • Compute $P^3 = P * P * P = P^2 * P$ by point addition $s = \frac{y_Q - y_P}{x_Q - x_P}$ $y_0 = y_P - s \cdot x_P$ $x_R = s^2 - x_P - x_Q$ $y_R = -(s \cdot x_R + y_0)$ • All operations are computed in GF ₁ .	 ■ Elliptic curves modulo an integer p have finitely many points and are finitely generated - all points can be obtained from few given points using the operation of addition. ■ Hasse's theorem If an elliptic curve E_p has E_p points then E_p - p - 1 < 2√p
• Compute $P^2 = P * P$ by doubling the point $P(2,4)$ $ \begin{bmatrix} s = \frac{3 \cdot 4 + 1}{2 \cdot 4} = \frac{13}{8} = 7 \cdot 2 = 3 \\ y_0 = 4 - 3 \cdot 2 = -2 = 9 \end{bmatrix} \begin{bmatrix} x_R = 9 - 2 \cdot 2 = 5 \\ y_R = -(3 \cdot 5 + 9) = -2 = 9 \end{bmatrix} P^2 = (5,9)$ • Compute $P^3 = P * P * P = P^2 * P$ by point addition $ \begin{bmatrix} s = \frac{9 - 4}{5 - 2} = \frac{5}{3} = 4 \cdot 5 = 9 \\ y_R = -(9 \cdot 8 + 8) = -3 = 8 \end{bmatrix} P^3 = (8,8)$ Point for the second	In other words, the number of points of a curve grows roughly as the number of elements in the field. The exact number of such points is, however, rather difficult to calculate.

SECURITY of ECC	USE OF ELLIPTIC CURVES IN CRYPTOGRAPHY
 The entire security of ECC depends on our ability to compute addition of two points and on inability to compute one summon given the sum and the second summon. However, no proof of security of ECC has been published so far. 	USE OF ELLIPTIC CURVES IN CRYPTOGRAPHY
ELLIPTIC CURVES DISCRETE LOGARITHM	FROM DISCRETE LOGARITHM to ELLIPTIC CURVE DISCRETE LOGARITHIC CRYPTO PROTOCOLS
Let <i>E</i> be an elliptic curve and <i>A</i> , <i>B</i> be its points such that $B = kA = (A + A +, A + A) - k$ times – for some <i>k</i> . The task to find (given <i>A</i> and <i>B</i>) such a <i>k</i> is called the discrete logarithm problem for elliptic curves. No efficient algorithm to compute discrete logarithm problem for elliptic curves is known and also no good general attacks. Elliptic curves based cryptography is based on these facts.	 There is the following general procedure for changing a discrete logarithm based cryptographic protocols <i>P</i> to a cryptographic protocols based on elliptic curves: Assign to a given message (plaintext) a point on the given elliptic curve <i>E</i>. Change, in the cryptographic protocol <i>P</i>, modular multiplication to addition of points on <i>E</i>. Change, in the cryptographic protocol <i>P</i>, each exponentiation to a multiplication of points of the elliptic curve <i>E</i> by integers. To the point of the elliptic curve <i>E</i> that results from such a protocol assign a message (cryptotext).

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there

are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.

Technicalities

Let K be a large integer such that a failure rate of $\frac{1}{2^{\kappa}}$ is acceptable when trying to encode a message (m) by a point.

of an elliptic curve $F \cdot y^2 = x^3 + ax + b$. For $i \in \{0\}$ K - 1 verify whether for

rtunately, there is a factors essages, that can fail x sic idea: Given an elli y such that (x, y) is ven a message (numb til we get a number x	with prob ptic curve a point o er) m we such tha	ability that E = E(mod p) f = E. adjoin to $t = x^3 + ax^3$	t can be m p), the prob m few bits + <i>b</i> is a sc	hade arbitr blem is tha at the en quare mod	rarily small at not to e nd of <mark>m</mark> an	l. every x there is d adjust them	of an elliptic curve $E: y^2 = x^3 + ax + b$. For $j \in \{0,, K - 1\}$ verify whether for $x = mK + j, x^3 + ax + b \pmod{p}$ is a square (mod p) of an integer y. If such an j is found, encoding is done; if not the algorithm fails (with probability $\frac{1}{2^K}$ because $x^3 + ax + b$ is a square approximately half of the time). In order to get the outcome of the protocol from its final point (x, y) , compute: $\left\lfloor \frac{x}{K} \right\rfloor$
FICIENCY of va			cryptography and		TEMO	29/84	
FICIEINCE OF Va	mous C	RTPIC	JGRAPF		DI EIVIS		ELLIPTIC CURVES KEY EXCHANGE
e following pictures s achieve the same sec Equivalent Cry	urity.			of differe	nt cryptog	raphic systems	Elliptic curve version of the Diffie-Hellman key generation protocol goes as follows: Let Alice and Bob agree on a prime p, on an elliptic curve $E_p(a, b)$ and on a point P on $E_p(a, b)$.
Symmetric	56	80	112	128	192	256	Alice chooses an integer n_a , computes $n_a P$ and sends it
RSA n	512	1024	2048	3072	7680	15360	to Bob.
ECC p	112	161	224	256	384	512	Bob chooses an integer n_b , computes $n_b P$ and sends it
Key size ratio	5:1	6:1	9:1	12:1	20:1	30:1	to Alice.
							Alice computes $n_i(n, P)$ and Rob computes $n_i(n, P)$

Alice computes $n_a(n_b P)$ and Bob computes $n_b(n_a P)$. This way they have the same key.

prof. Jozef Gruska

31/84

IV054 8. Elliptic curves cryptography and factorization

32/84

COMMENT

Standard version of ElGamal: Bob chooses a prime p, a generator q < p, an integer x, computes $y = q^x \pmod{p}$, makes public p, q, y and keeps x secret.

To send a message **m** Alice chooses a random **r**, computes:

 $a = q^r$; $b = my^r$

and sends it to Bob who decrypts by calculating $m = ba^{-x} \pmod{p}$

Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve E_p , a point P on E, an integer x, computes Q = xP, makes E_p , and Q public and keeps x secret.

To send a message m ALice expresses m as a point X on E_{ρ} , chooses a random number r, computes

A = rP; B = X + rQ

and sends the pair (A, B) to Bob who decrypts by calculating X = B - xA.

There are two problems when implementing directly ElGamal cryptosystem on an elliptic curve:

- Expansion factor is 4;
- There is no deterministic method known to generate points (plaintexts) on the curve.

 To use ECC, all parties involved have to agree on all basic elements concerning the elliptic curve <i>E</i> being used: A prime <i>p</i>. Constants <i>a</i> and <i>b</i> in the equation y² = x³ + ax + b. Generator <i>G</i> of the underlying cyclic subgroup such that its order is a prime. The order <i>n</i> of <i>G</i> is the smallest integer <i>n</i> such that nG = 0 Co-factor h = E /n should be small (h ≤ 4) and, preferably h = 1. To determine domain parameters (especially <i>n</i> and <i>h</i>) may be much time consuming task. That is why mostly so called "standard or "named' elliptic curves are used that have been published by some standardization bodies. 	 Security of ECC depends on the difficulty of solving the discrete logarithm problem over elliptic curves. Two general methods of solving such discrete logarithm problems are known. The square root method and Silver-Pohling-Hellman (SPH) method. SPH method factors the order of a curve into small primes and solves the discrete logarithm problem as a combination of discrete logarithms for small numbers. Computation time of the square root method is proportional to O(√eⁿ) where n is the order of the based element of the curve.
KEY SIZE	BREAKING ECC
 All known algorithms to solve elliptic curves discrete logarithm problem need at least θ(√n) steps, where n is the order of the group. This implies that the size of the underlying field (number of points on the chosen elliptic curve) should be roughly twice the security parameter. For example, for 128-bit security one needs a curve over E_q, where q ≈ 2²⁵⁶. This can be contrasted with RSA cryptography that requires 3072-bit public and private keys to keep the same level of security. 	 The hardest ECC scheme (publicly) broken to date had a 112-bit key for the prime field case and a 109-bit key for the binary field case. The prime field case was broken in July 2009 using 200 PlayStation 3 game consoles and could be finished in 3.5 months. The binary field case was broken in April 2004 using 2600 computers for 17 months.

GOOD ELLIPTIC CURVES	INTEGER FACTORIZATION			
 NIST recommended 5 elliptic curves for prime fields, one for prime sizes 192, 224, 256, 384 and 521 bits. NIST also recommended five elliptic curves for binary fields F₂^m one for <i>m</i> equal 163, 233, 283, 409 and 571. 	INTEGER FACTORIZATION			
INTEGER FACTORIZATION - PROBLEM I	INTEGER FACTORIZATION - PROBLEM II			
Two very basic questions concerning integers are of large theoretical and also practical cryptographical importance. Can a given integer <i>n</i> be factorized? (Or, is <i>n</i> prime?) If <i>n</i> can be factorized, find its factors. Till around 1977 no polynomial algorithm was know to determine primality of integers. In spite of the fact that this problem bothered mathematicians since antique ancient times. In 1977 several very simple and fast randomized algorithms for primality testing were discovered - one of them is on the next slide. One of them - Rabin-Miller algorithm - has already been discssed. So called Fundamental theorem of arithmetic, known since Euclid, claims that factorization of an integer <i>n</i> into a power of primes $n = \prod_{i=1}^{k} p_i^{e_i}$ is unique when primes p_i are ordered. However, theorem provides no clue how to find such a factorization and till now no classical polynomial factorization algorithm is know.	 In 2002 a deterministic, so called ASK, polynomial time algorithm for primality testing, with complexity O(n¹²) were discovered by three scientists from IIT Kanpur. For factorization no polynomial deterministic algorithm is known and development of methods that would allow to factorized large integers is one of mega challenges for the development of computing algorithms and technology. Largest recent success was factorization of so called RSA-768 number that has 232 digits (and 768 bits). Factorization took 2 years using several hundred of fast computers all over the world (using highly optimized implementation of the general field sieve method). On a single computer it would take 2000 years. There is a lot of heuristics to factorized integers - some are very simple, other sophisticated. A method based on elliptic curves presented later, is one of them. Factorization could be done in polynomial time using Shor's algorithm and a powerful quantum computer, as discussed later. 			

prof. Jozef Gruska	IV054 8. Elliptic curves cryptography and factorization	43/84	prof. Jozef Gruska	IV054 8. Elliptic curves cryptography and factorization	44/84

Fermat numbers FACTORIZATION	FACTORIZATION BASICS
Factorization of so-called Fermat numbers $2^{2^i} + 1$ is a good example to illustrate progress that has been made in the area of factorization. Pierre de Fermat (1601-65) expected that all following numbers are primes: $F_i = 2^{2^i} + 1$ $i \ge 1$ This is indeed true for $i = 0,, 4$. $F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537$. 1732 L. Euler found that $F_5 = 4294967297 = 641 \cdot 6700417$ 1880 Landry+LeLasser found that $F_6 = 18446744073709551617 = 274177 \cdot 67280421310721$ 1970 Morrison+Brillhart found factorization for $F_7 = (39digits)$ $F_7 = 340282366920938463463374607431768211457 = = 5704689200685129054721 \cdot 59649589127497217$ 1980 Brent+Pollard found factorization for F_8 1990 A. K. Lenstra+ found factorization for F_9 (155 digits). Currently, also factorizations of F_{10} (308 digits) and F_{11} (610 digits) are known.	 Not all numbers of a given length are equally hard to factor. The hardest instances are semi-primes - products of two primes of similar length. Concerning complexity classes it holds. Function version of the factorization problem is known to be in FNP and it is not known to be in FP. Decision version of the factorization problem: Does an integer n has a factor smaller than d? is known to be in NP and not known to be in P. Moreover it is known to be both in NP and co-NP as well both in UP and co-UP. The fastest known factorization algorithm has time e^{(1.9 ln n)^{1/3}(ln ln n)^{2/3})} and with it we can factor 140 digit numbers in reasonable time.
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 45/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 46/84
BASIC FACTORIZATION METHODS.	TRIAL DIVISION
<section-header><text><text></text></text></section-header>	Algorithm Divide <i>n</i> with all primes up to \sqrt{n} and collect all divisors. Time complexity: $e^{\frac{1}{2}\ln n} = L(1, \frac{1}{2})$ Notation $L(\varepsilon, c)$ is used to denote complexity $O(e^{(c+o(1))(\ln n)^{\varepsilon}(\ln \ln n)^{1-\varepsilon}})$

EULER's FACTORIZATION

FERMAT's FACTORIZATION

The idea is to factorize an integer n by writing it at first as two different sums of two different integer squares. Famous example of Euler,

$$n = a^{2} + b^{2} = c^{2} + d^{2} - - - - - - 1000009 = 1000^{2} + 3^{2} = 972^{2} + 235^{2}$$

Denote then

k = gcd(a - c, d - b) h = gcd(a + c, d + b)

In such a case either both k and h are even or both $\frac{a-c}{k}$ and $\frac{d-b}{k}$ are even. It holds

$$n = \left(\left(\frac{k}{2}\right)^2 + \left(\frac{h}{2}\right)^2\right) \left(\left(\frac{a-c}{k}\right)^2 + \left(\frac{d-b}{k}\right)^2\right)$$

Unfortunately, disadvantage of Euler's factorization method is that it cannot be applied to factor an integer with any prime factor of the form 4k + 3 occurring to an old power in its prime factorization.

If n = pq,
$$p < \sqrt{n}$$
, then

$$n = \left(\frac{q+p}{2}\right)^2 - \left(\frac{q-p}{2}\right)^2 = a^2 - b^2$$

Therefore, in order to find a factor of n, we need only to investigate the values

$$x = a^2 - n$$

for $a = \left\lceil \sqrt{n} \right\rceil + 1$, $\left\lceil \sqrt{n} \right\rceil + 2, \dots, \frac{(n-1)}{2}$

until a perfect square is found.

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 49/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 50/84
SIMPLE but POWER IDEAS	Pollard <i>p</i> -FACTORIZATION - basic idea
 To find a factor of a given integer n do the following Original idea: Generate, in a simple and clever way, a pseudorandom sequence of integers x₀, x₁, x₂ and compute, for i = 1, 2, gcd(x_i, n) until a factor of n is found. Huge-computer-networks-era idea: Generate, in a simple and clever way, huge number of well related pseudorandom sequences x₀, x₁, and make a huge number of computers (all over the world) to compute, each for a portion of such sequences, gcd(x_i, n) until one of them finds a factor of n. 	To factorize an integer <i>n</i> : 1. Randomly choose $x_0 \in \{1, 2,, n\}$. Compute $x_i = x_{i-1}^2 + x_{i-1} + 1 \pmod{n}$, for $i = 1, 2,$ 2. Two versions: Version 1: Compute $gcd(x_i - x_j, n)$ for $i = 1, 2,$ and j = 1, 2,, i - 1 until a factor of <i>n</i> is found. Version 2: Compute $gcd(x_i - x_{2i}, n)$ for $i = 1, 2,$ until a factor is found. Time complexity: $L(1, \frac{1}{4})$. Note: Some other polynomial than $x_{i-1}^2 + x_{i-1} + 1$ can be used. The second method was used to factor 8-th Fermat
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 51/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 52/84

JUSTIFICATION of VERSION 1	JUSTIFICATION of VERSION 2		
Let <i>p</i> be a non-trivial factor of <i>n</i> much smaller than <i>n</i> . Since there is a smaller number of congruence classes modulo <i>p</i> than modulo <i>n</i> , it is quite probable that there exist <i>x_i</i> and <i>x_j</i> such that $x_i \equiv x_j \pmod{p}$ and $x_i \not\equiv x_j \pmod{n}$ In such a case $n \not\mid (x_i - x_j)$ and therefore $gcd(x_i - x_j, n)$ is a nontrivial factor of <i>n</i> .	Let <i>p</i> be the smallest factor of <i>n</i> . Sequence $x_0, x_1, x_2,$ behaves randomly modulo $p \le \sqrt{n}$. Therefore, the probability that $x_i \equiv x_j \pmod{p}$ for some $j \ne i$ is not negligible - actually about $\frac{1}{\sqrt{p}}$. In such a case $x_{i+k} \equiv x_{j+k} \pmod{p}$ for all <i>k</i> . Therefore, there exists an <i>s</i> such that $x_s \equiv x_{2s} \pmod{p}$. Due to the pseudorandomness of the sequence x_0, x_1, x_2 , with probability at least $1/2 x_s \not\equiv x_{2s} \pmod{n}$ and therefore $p gcd(x_s - x_{2s}, n)$. For good probability of success we need to generate roughly $\sqrt{p} = n^{1/4}$ of x_i . Time complexity is therefore $O(e^{\frac{1}{4}\ln n})$.		
BASIC FACTS	ρ-ALGORITHM - EXAMPLE		
 Factorization using <i>ρ</i>-algorithms has its efficiency based on two facts. ■ Fact 1 For a given prime <i>p</i>, as in birthday problem, two numbers are congruent modulo <i>p</i>, with probability 0.5 after 1.177√<i>p</i> numbers have been randomly chosen. ■ Fact 2 If <i>p</i> is a factor of an <i>n</i>, then <i>p</i> < gcd(x - y, n) since <i>p</i> divides both <i>n</i> and x - y. 	$f(x) = x^{2} + x + 1$ $n = 18923; x = y = x_{0} = 2347$ $x \leftarrow f(x) \mod n; y \leftarrow f(f(y)) \mod n$ $x = 4164 y = 9593 gcd = 1$ $x = 9593 y = 2063 gcd = 1$ $x = 12694 y = 14985 gcd = 1$ $x = 2063 y = 14862 gcd = 1$ $x = 358 y = 3231 gcd = 1$ $x = 14985 y = 3772 gcd = 1$ $x = 5970 y = 16748 gcd = 1$ $x = 14862 b = 3586 gcd = 1$ $x = 5728 b = 16158 gcd = 149$		
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 55/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 56/84		

JUSTIFICATION of FIRST Pollard's $p-1$ ALGORITHM
Let a bound <i>B</i> be chosen and let $p n$ and $p-1$ has no factor greater than <i>B</i> . This implies that $(p-1) m$, where $m = \prod_{\{q \mid q \text{ is a prime} \leq B\}} q^{\log n}$ By Fermat's Little Theorem, this implies that $p (a^m - 1)$ for any integer <i>a</i> and therefore by computing $gcd(a^m - 1, n)$ (for some <i>a</i>) some factor <i>p</i> of <i>n</i> can be obtained.
A BRIEF VERSION of THE BASIC ALGORITHM
 Fix a B - to be a factor base (of all primes smaller than B). Compute m = ∏ q^{log n}. {q q is a prime≤B} q^{log n}. Choose random a, b such that a³ - 27b² ≠ 0 (mod n). Choose randomly a point P on the elliptic curve E_n(a, b). Try to compute mP.

IMPORTANT OBSERVATIONS (1)

Example: For elliptic curve $E: y^2 = x^3 + x - 1 \pmod{35}$ and its point $P = (1, 1)$ we have 2P = (2, 32); 4P = (25, 12); 8P = (6, 9) and at the attempt to compute 9P one needs to compute gcd(15, 35) = 5 and factorization is done. It remains to be explored how efficient this method is and when it is more efficient than other methods.	 If n = pq for primes p, q, then an elliptic curve E_n can be seen as a pair of elliptic curves E_p and E_q. It follows from the Lagrange theorem that for any elliptic curve E_n and its point P there is an k < n such that kP = ∞. In case of an elliptic curve E_p for some prime p, the smallest positive integer m such that mP = ∞ for some point P divides the number N of points on the curve E_p. Hence NP = ∞. If N is a product of small primes, then b! will be a multiple of N for a reasonable small b. Therefore, b!P = ∞. The number with only small factors is called smooth and if all factors are smaller than an b, then it is called b-smooth. It can be shown that the density of smooth integers is so large that if we choose a random elliptic curve E_n then it is a reasonable chance that n is smooth.
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 61/84 PRACTICALITY of FACTORING USING ECC I	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 62/84 PRACTICALITY of FACTORING USING ECC - II
Let us continue to discuss the following key problem for factorization using elliptic curves: Problem: How to choose an integer k such that for a given point P we should try to compute points iP or $2^{i}P$ for all multiples of P smaller than kP?	Digits of to-be-factors 6 9 12 18 24 B 147 682 2462 23462 162730
Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple of as many as possible of those m-digit numbers which do not have too large prime factors. In such a case one has a good chance that k is a multiple of the number of the second seco	Number of curves 10 24 55 231 833
elements of the group of points of the elliptic curve modulo n. Method 1: One chooses an integer B and takes as k the product of all maximal powers of primes smaller than B. Example: In order to find a 6-digit factor one chooses B=147 and $k = 2^7 \cdot 3^4 \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot \ldots \cdot 139$. The following table shows B and the number of elliptic curves one has to test:	Computation time by the elliptic curves method depends on the size of factors.
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 63/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 64/84

ELLIPTIC CURVES FACTORIZATION: FAQ	FACTORIZATION on QUANTUM COMPUTERS		
 How to choose (randomly) an elliptic curve <i>E</i> and point <i>P</i> on <i>E</i>? An easy way is first choose a point <i>P</i>(<i>x</i>, <i>y</i>) and an <i>a</i> and then compute <i>b</i> = <i>y</i>² − <i>x</i>³ − <i>ax</i> to get the curve <i>E</i> : <i>y</i>² = <i>x</i>³ + <i>ax</i> + <i>b</i>. What happens at the factorization using elliptic curve method, if for a chosen curve <i>b</i> a the corresponding cubic polynomial <i>x</i>³ + <i>ax</i> + <i>b</i> has multiple roots (that is if <i>a</i>³ + 27<i>b</i>² = 0)? No problem, method still works. What kind of elliptic curves are really used in cryptography? Elliptic curves over fields <i>G</i>(2ⁿ) for <i>n</i> > 150. Dealing with such elliptic curves requires, however, sightly different rules. History of ECC? The idea came from Neal Koblitz and Victor S. Miller in 1985. Best known algorithm is due to Lenstra. How about patents concerning ECC? There are patents in force covering certain aspects of ECC technology. 	In the following we present the basic idea behind a polynomial time algorithm for quantum computers to factorize integers. Quantum computers works with superpositions of basic quantum states on which very special (unitary) operations are applied and and very special quantum features (non-locality) are used. Quantum computers work not with bits, that can take on any of two values 0 and 1, but with qubits (quantum bits) that can take on any of infinitely many states $\alpha 0\rangle + \beta 1\rangle$, where α and β are complex numbers such that $ \alpha ^2 + \beta ^2 = 1$.		
REDUCTIONS	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 66/84 FIRST REDUCTION		
Shor's polynomial time quantum factorization algorithm is	Lemma If there is a polynomial time deterministic (randomized) [quantum] algorithm to find a nontrivial solution of the modular quadratic equations $a^2 \equiv 1 \pmod{n},$		

$$a^2 \equiv 1 \pmod{n},$$

then there is a polynomial time deterministic (randomized) [quantum] algorithm to factorize integers.

Proof. Let $a \neq \pm 1$ be such that $a^2 \equiv 1 \pmod{n}$. Since

 $a^{2}-1=(a+1)(a-1),$

if *n* is not prime, then a prime factor of *n* has to be a prime factor of either a + 1 or a - 1. By using Euclid's algorithm to compute

gcd(a+1,n) and gcd(a-1,n)

we can find, in $O(\lg n)$ steps, a prime factor of n.

based on an understanding that factorization problem can be reduced

- In first on the problem of solving a simple modular quadratic equation;
- second on the problem of finding periods of functions $f(x) = a^x \bmod n.$

SECOND REDUCTION	EXAMPLE		
The second key concept is that of the period of functions $f_{n,x}(k) = x^k \mod n.$	Let $n = 15$. Select $a < 15$ such that $gcd(a, 15) = 1$. {The set of such a is {2,4,7,8,11,13,14}}		
Period is the smallest integer r such that	Choose $a = 11$. Values of 11^{\times} mod 15 are then		
$f_{n,\times}(k+r) = f_{n,\times}(k)$	11, 1, 11, 1, 11, 1		
for any k , i.e. the smallest r such that	which gives $r = 2$.		
$x' \equiv 1 \pmod{n}.$	Hence $a^{r/2} = 11 \pmod{15}$. Therefore		
AN ALGORITHM TO SOLVE EQUATION $x^2 \equiv 1 \pmod{n}$.	$gcd(15, 12) = 3, \qquad gcd(15, 10) = 5$		
$\square Choose randomly 1 < a < n.$	For $a = 14$ we get again $r = 2$, but in this case		
Compute $gcd(a, n)$. If $gcd(a, n) \neq 1$ we have a factor. Find period r of function $a^k \mod n$.	$14^{2/2} \equiv -1 \pmod{15}$		
If r is odd or $a^{r/2} \equiv \pm 1 \pmod{n}$, then go to step 1; otherwise stop.	and the following algorithm fails.		
If this algorithm stops, then $a^{r/2}$ is a non-trivial solution of the equation $x^2\equiv 1 \pmod{n}.$	 Choose randomly 1 < a < n. Compute gcd(a, n). If gcd(a, n) ≠ 1 we have a factor. Find period r of function a^k mod n. If r is odd or a^{r/2} ≡ ±1 (mod n),then go to step 1; otherwise stop. 		
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 69/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 70/84		
EFFICIENCY of REDUCTION	A GENERAL SCHEME for Shor's ALGORITHM		
EFFICIENCY of REDUCTION Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \not\equiv \pm 1\} \ge \frac{9}{16}.$	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose \ randomly\\ a \in \{2, \dots, n-1\}\\ \hline \\ compute\\ z = gcd(a, n)\\ \hline \\ no 4\\ \hline \\ z = 1? \end{array}$		
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \neq \pm 1\} \geq \frac{9}{16}.$ $\blacksquare Choose randomly 1 < a < n.$ $\blacksquare Compute gcd(a, n). If gcd(a, n) \neq 1 \text{ we have a factor.}$ $\blacksquare Find period r of function a^k \mod n.$ $\blacksquare If r \text{ is odd or } a^{r/2} \equiv \pm 1 \pmod{n}, then go to step 1; otherwise stop.$	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $ \begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\}\\ \hline compute\\ z = gcd(a, n)\\ no \end{array} $		
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \not\equiv \pm 1\} \ge \frac{9}{16}.$	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\} \\ \hline \\ compute\\ z = gcd(a, n)\\ no \\ z = 1?\\ yes\\ quantum\\ subroutine\\ \hline \\ r is \\ no \\ \hline \\ r is \\ no \\ \hline \\ r is \\ no \\ \hline \end{array}$		
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \not\equiv \pm 1\} \ge \frac{9}{16}.$ $\square Choose randomly 1 < a < n.$ $\square Compute gcd(a, n). If gcd(a, n) \neq 1 \text{ we have a factor.}$ $\square Find period r of function a^k \mod n.$ $\square If r \text{ is odd or } a^{r/2} \equiv \pm 1 \pmod{n}, \text{then go to step 1; otherwise stop.}$ Corollary If there is a polynomial time randomized [quantum] algorithm to compute the period of the function	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\} \\ \hline \\ compute\\ z = gcd(a, n)\\ no \\ z = 1?\\ yes \\ \hline \\ guantum \\ subroutine \\ \hline \\ r is \\ even? \\ yes \\ \hline \\ yes \\ \hline \end{array}$		

QUADRATIC SIEVE METHOD of FACTORIZATION - BASIC IDEAS

Step 1 To factorize an *n* one finds many integers x such that $x^2 - n$ has only small factors and decomposition of $x^2 - n$ into small factors.

$$\begin{cases} xample & 83^2 - 7429 = -540 = (-1) \cdot 2^2 \cdot 3^3 \cdot 5 \\ n = & 87^2 - 7429 = 140 = 2^2 \cdot 5 \cdot 7 \\ 88^2 - 7429 = 315 = 3^2 \cdot 5 \cdot 7 \end{cases}$$
 relations

Step 2 One multiplies some of the relations such that their product is a square. For example

$$(87^2 - 7429)(88^2 - 7429) = 2^2 \cdot 3^2 \cdot 5^2 \cdot 7^2 = 210^2$$

Now, compute product modulo *n*:

 $(87^2 - 7429)(88^2 - 7429) \equiv (87 \cdot 88)^2 \equiv 7656^2 \equiv 227^2 \mod{7429}$ and therefore $227^2 \equiv 210^2 \mod{7429}$

Hence 7429 divides $227^2 - 210^2$ and therefore 17 = 227 - 210 is a factor of 7429. **A method to choose relations to form equations**: For the i-th relation one takes a variable λ_i and forms the expression

QUADRATIC SIEVE (QS) FACTORIZATION - SUMMARY I

- Method was invented Carl Pomerance in 1981.
- It is currently second fastest factorization method known and the fastest one for factoring integers under 100 decimal digits.
- It consists of two phases: data collection and data processing.
- In data collection phase for factoring *n* a huge set of such integers *x* is found that numbers $(x + \lceil \sqrt{n} \rceil)^2 n$ have only small factors as well all these factors. This phase is easy to parallelize and can use methods called **sieving** for finding all required integers with only small factors.
- In data processing phase a system of linear congruences is formed on the basis of factorizations obtained in the data collection phase and this system is solved to reach factorization. This phase is much memory consuming for storing huge matrices and so hard to parallelise.
- The basis of sieving is the fact that if $y(x) = x^2 n$, then for any prime p it holds $y(x + kp) \equiv y(x) \pmod{p}$ and therefore solving $y(x) \equiv 0 \mod p$ for x generate a whole sequence of y which are divisible by p.
- The general running time of QS, to factor n, is

 $e^{(1+o(1))\sqrt{\lg n \lg \lg n}}$

The current record of QS is a 135-digit co-factor of $2^{803} - 2^{402} - 1$.

QUADRATIC SIEVE FACTORIZATION - SKETCH of METHODS

Problem How to find which relations to choose? Using the algorithm called Quadratic sieve method.

Step 1 One chooses a set of primes that can be factors – a so-called factor basis.

One chooses an m such that $m^2 - n$ is small and considers numbers $(m + u)^2 - n$ for $-k \le u \le k$ for small k.

One then tries to factor all $(m + u)^2 - n$ with primes from the factor basis, from the smallest to the largest - see table for n=7429 and m=86.

ſ	u	-3	-2	-1	0	1	2	3
	$(m + u)^2 - n$	-540	-373	-204	-33	140	315	492
ſ	Sieve with 2	-135		-51		35		123
	Sieve with 3	-5		-17	-11		35	41
	Sieve with 5	-1				7	7	
	Sieve with 7					1	1	

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations 569 466 equations 544 939 elements in the factor base

IV054 8. Elliptic curves cryptography and factorization

74/84

76/84

ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows:

Choose an integer parameter **r** and:

Select, randomly, an elliptic curve

$$E: y^2 = x^3 + ax + b$$

such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E.

Choose integer bounds A,B,M such that

$$M = \prod_{j=1}^{l} p_j^{a_j}$$

for some primes $p_1 < p_2 < \ldots < p_l \leq B$ and a_j , being the largest exponent such that $p_j^{a_j} \leq A$.

Set j = k = 1

prof. Jozef Gruska

3 Calculate $p_j P$.

4 Computing gcd.

If
$$p_j P \neq O \pmod{n}$$
, then set $P = p_j P$ and reset $k \leftarrow k + 1$
If $k \leq a_{p_i}$, then go to step (3).

ELLIPTIC CURVES FACTORIZATION - DETAILS II	FACTORING ALGORITHMS RUNNING TIMES			
■ If k > a _j , then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) ■ If p _j P ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) ■ Reset r ← r − 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as $B = e^{\sqrt{\frac{lnF(lnlnF)}{2}}}$ and in such a case the running time is $O(e^{\sqrt{2 + O(1/nF(lnlnF))}ln^2n)$	Let <i>p</i> denote the smallest factor of an integer <i>n</i> and <i>p</i> [*] the largest prime factor of <i>p</i> – 1. Pollard's Rho algorithm $\begin{array}{c} O(\sqrt{p}) \\ Pollard's \ p - 1 \ algorithm \\ Elliptic curve method \\ Quadratic sieve method \\ Quadratic sieve method \\ General number field sieve (GNFS) method \\ \end{array}$ $\begin{array}{c} \emptyset(e^{\left(\frac{1+o(1)}{\sqrt{2\ln p \ln \ln p}}\right)} \\ \emptyset(e^{\left(\frac{1+o(1)}{\sqrt{2\ln p \ln \ln p}}\right)} \\ \emptyset(e^{\left(\frac{1+o(1)}{\sqrt{2\ln p \ln \ln p}}\right)} \\ \emptyset(e^{\left(\frac{64}{9} \ln n\right)^{1/3}(\ln \ln n)^{2/3}}) \\ \end{array}$ The most efficient factorization method, for factorization of integers with more than 100 digits, is the general number field sieve method.			
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 77/84 APPENDIX	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 78/84 HISTORICAL REMARKS on ELLIPTIC CURVES			
APPENDIX	Elliptic curves are not ellipses and therefore it seems strange that they have such a name. Elliptic curves actually received their names from their relation to so called elliptic integrals $\int_{x1}^{x2} \frac{dx}{\sqrt{x^3 + ax + b}} \qquad \qquad \int_{x1}^{x2} \frac{xdx}{\sqrt{x^3 + ax + b}}$ that arise in the computation of the arc-length of ellipses. It may also seem puzzling why to consider curves given by equations $E: y^2 = x^3 + ax + b$ and not curves given by more general equations $y^2 + cxy + dy = x^3 + ex^2 + ax + b$ The reason is that if we are working with rational coefficients or mod p, where $p > 3$ is a prime, then such a general equation can be transformed to our special case of equation. In other cases, it may be indeed necessary to consider the most general form of equation.			
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 79/84	prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 80/84			

HISTORY of ELLIPTIC CURVES CRYPTOGRAPHY
 The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985. Behind this method is the belief that the discrete logarithm of a random elliptic curve element with respect to publicly known base point is infeasible. At first only elliptic curves over a prime finite field were used for ECC. Later also elliptic curves over the fields <i>GF</i>(2^m) started to be used. In 2005 the US NSA endorsed to use ECC (Elliptic curves cryptography) with 384-bit key to protect information classified as "top secret". There are patents in force covering certain aspects of ECC technology. Elliptic curves played an important role in perhaps most celebrated mathematical proof of the last hundred years - in the proof of Fermat's Last Theorem - due to A. Wiles and R. Taylor.
prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 82/84
ELLIPTIC CURVES FACTORIZATION - DETAILS II If $k > a_{p_j}$, then reset $j \leftarrow j + 1$, $k \leftarrow 1$. If $j \le l$, then go to step (3); otherwise go to step (5) If $p_j P \equiv O(\mod n)$ and no factor of n was found at the computation of inverse elements, then go to step (5) Reset $r \leftarrow r - 1$. If $r > 0$ go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as $B = e^{\sqrt{\frac{lnF(lnlnF)}{2}}}$ and in such a case running time is $O(e^{\sqrt{2} + o(1lnF(lnlnF))}ln^2n)$

prof. Jozef Gruska

83/84

IV054 8. Elliptic curves cryptography and factorization

84/84

IV054 8. Elliptic curves cryptography and factorization

prof. Jozef Gruska