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SECURE ENCRYPTION - a PRACTICAL POINT OF VIEW

From practical point of view encryptions by a

cryptosystem can be considered as secure if they

cannot be broken by

many (thousands) supercomputers with exaflop
performance working for some years.
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MOST POWERFUL SUPERCOMPUTERS NOWADAYS

1 Tianhe-2, China, 33.8 petaflops, 3,120.000 cores

2 Titan, Cray XK7, OAK Ridge, 17.6 petaflops, 560,640 processors

3 Sequoia, IBM BlueGene, 16.32 petaflops, 1,472,864 cores

4 K, Fujitsu, 11 petaflops, 705,024 cores

5 Mira, IBM BlueGene/Q Argone National Lab., 10 petaflops, 786,432 cores

In April 2013 (June 2014) [June 2015] there were 26 (37) [68] computer systems with
more than one petaflop performance.

Performance of the computer on 100 position increased in six months from 172 to 241
Teraflops

Out of 500 most powerful computer systems in June 2014, 233 was in US, 123 in Asia,
105 in Europe, 76 in China, 30 in UK, 30 in Japan, 27 in France, 11 in India...

Exaflops computers (1018) are expected in 2019

Combined performance of 500 top supercomputers was 361 petaflops in June 2015, and
274 petaflops a year ago - 31% increase in one year.

Supercomputer Salomon in Ostrava, with performance 1.407 petaflops was on 40th place
in June 2015; best in India on 79th place.
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K COMPUTER
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K-COMPUTER
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TITAN-COMPUTER
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ENIAC-COMPUTER
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CHAPTER 5: PUBLIC-KEY CRYPTOGRAPHY I. RSA

The main problem of secret key (or symmetric)
cryptography is that in order to send securely

a message

there is a need to send at first securely

a secret key.

Therefore, secret key cryptography is not a
sufficiently good tool for massive communication
capable to protect secrecy, privacy and anonymity.
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PUBLIC KEY CRYPTOGRAPHY

In this chapter we first describe the birth of public key cryptography, that can better
manage the key distribution problem, and then three public-key cryptosystems, especially
RSA cryptosystem.

The basic idea of a public key cryptography:

In a public key cryptosystem not only the encryption and decryption algorithms are
public, but for each user U also the key eU for encrypting messages (by anyone) for
U is public.

Moreover, each user U gets/creates and keeps secret a specific (decryption) key,
dU , that can be used for decryption of messages that were addressed to him and
encrypted with the help of the public encryption key eU .

Encryption and decryption keys of public key cryptography could (and should) be
different - we can therefore say also that pulic-key cryptography is asymmetric
cryptography. Secret key cryptography, that has the same key for encryption and for
decryption is then called also as symmetric cryptography.
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SYMMETRIC versus ASYMMETRIC CRYPTOSYSTEMS
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KEYS DISTRIBUTION PROBLEM

KEY DISTRIBUTION PROBLEM
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KEYS DISTRIBUTION PROBLEM - HISTORY

The main problem of secret-key cryptography: Before two users can exchange
secretly (a message) they must already share a secret (the encryption/decryption
key).

Key distribution has been a big problem for 2000 of years, especially during both
World Wars.

Around 1970 the vision of an internet started to appear (ARPAnet was created in
1969) and it started to be clear that an enormous communication potential that a
whole world connecting network could provide, could hardly be fully utilized unless
secrecy of communication can be established. Therefore the key distribution
problem started to be seen as the problem of an immense importance.

For example around 1970 only US government institutions needed to distribute daily
tons of keys (on discs, tapes,...) to users they planned to communicate with.

Big banks had special employees that used to travel all the time around the world
and to deliver keys, in special briefcases, to everyone who had to get a message next
week.

Informatization of society was questioned because if governments had problems with
key distribution how smaller companies could handle the key distribution problem
without bankrupting?

At the same time, the key distribution problem used to be considered, practically
by all, as an unsolvable problem.
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PADLOCKS
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FIRST INGENIOUS IDEA - KEY PLAYERS

Whitfield Diffie (1944), graduated in mathematics in 1965, and started to be obsessed
with the key distribution problem - he realized that whoever could find a solution of this
problem would go to history as one of the all-time greatest cryptographers.

In 1974 Diffie convinced Martin Hellman (1945), a professor in Stanford, to work
together on the key distribution problem - Diffie was his graduate student.

In 1975 they got a basic idea that the key distribution may not be needed that can be
now illustrated as follows

A padlock protocol

If Alice wants to send securely a message to Bob, she puts the message into a
box, locks the box with a padlock and sends the box to Bob.
Bob has no key to open the box, so he uses another padlock to double-lock the
box and sends this now doubly padlocked box back to Alice.
Alice uses her key to unlock her padlock (but, of course, she cannot unlock
Bob’s padlock) and sends the box back to Bob.
Bob uses his key to unlock his (now single) padlock and reads the message.

Great idea was born. The problem then was to find a computational realization of
this great idea. The first idea - to model locking of padlocks by doing an encryption.
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FIRST ATTEMPT to DIGITALIZE THE PADLOCK PROTOCOL

Let us try to replace locking of padlocks by substitution encryptions.

Alice’s encryption substitution.
a b c d e f g h i j k l m n o p q r s t u v w x y z
H F S U G T A K V D E O Y J B P N X W C Q R I M Z L

Bob’s encryption substitution.
a b c d e f g h i j k l m n o p q r s t u v w x y z
C P M G A T N O J E F W I Q B U R Y H X S D Z K L V

Message m e e t m e a t n o o n

Alice’s encrypt. Y G G C Y G H C J B B J
Bob’s encrypt. L N N M L N O M E P P E
Alice’s decrypt. Z Q Q X Z Q L X K P P K
Bob’s decrypt. w n n t w n y t x b b x

Observation The first idea does not work. Why?

A way out: One-way functions(encryption substitutions) are needed
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ONE-WAY FUNCTIONS

Informally, a function F : N → N is said to be a one-way function if it is easily
computable - in polynomial time - but any computation of its inverse is infeasible.

easy

computationaly infeasible

x f(x)

A one-way permutation is a 1-1 one-way function.
A more formal approach
Definition A function f : {0, 1}∗ → {0, 1}∗ is called a strongly one-way function if the
following conditions are satisfied:

1 f can be computed in polynomial time;

2 there are c, ε > 0 such that |x |ε ≤ |f (x)| ≤ |x |c ;

3 for every randomized polynomial time algorithm A, and any constant c > 0,
there exists an nc such that for |x | = n > nc

Pr (A(f (x)) ∈ f −1(f (x))) < 1
nc

.

Candidates: Modular exponentiation: f (x) = ax mod n
Modular squaring f (x) = x2 mod n, n − a Blum integer
Prime number multiplication f (p, q) = pq.
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APPLICATION - COMPUTER PASSWORDS SECRECY PROBLEM

A naive solution to the password secrecy problem is to keep in computer a file
with entries as

login CLINTON password BUSH,

that is a list of login names and corresponding passwords. This is obviously not
safe enough.

A more safe method is to keep in the computer a file with entries as

login CLINTON password BUSH one-way function fc

where BUSH is a “public” password and CLINTON is the only one that knows a
“secret” password, say MADONNA, such that

fc(MADONNA) = BUSH
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PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: is a need to make a secure
distribution (establishment) of secret keys ahead of intended transmissions.

Diffie+Hellman solved this problem of key distribution first in 1976 by designing a
protocol for secure key establishment (distribution) over public communication
channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on large primes p and a q < p of large order in Z∗p
and then they perform, using a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the same (key)

k = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.
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MERKLE JOINING DIFFIE-HELLMAN

After Diffie and Hellman announced their solution to the
key generation problem, Ralph Merkle claimed, and could
prove, that he had a similar idea some years ago.

That is the way why some people talk about
Merkle-Diffie-Hellman key exchange.
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MAN-IN-THE-MIDDLE ATTACKS

The following attack, called ” a man-in-the-middle attack, is possible against the
Diffie-Hellman key establishment protocol.

1 Eve chooses an integer (exponent) z.

2 Eve intercepts qx and qy – when they are sent from Alice to Bob and from Bob to
Alice.

3 Eve sends qz to both Alice and Bob. (After that Alice believes she has received qy

and Bob believes he has received qx .)

4 Eve computes KA = qxz (mod p) and KB = qyz (mod p).
Alice, not realizing that Eve is in the middle, also computes KA and
Bob, not realizing that Eve is in the middle, also computes KB .

5 When Alice sends a message to Bob, encrypted with KA, Eve intercepts it, decrypts
it, then encrypts it with KB and sends it to Bob.

6 Bob decrypts the message with KB and obtains the message. At this point he has no
reason to think that communication was insecure.

7 Meanwhile, Eve enjoys reading Alice’s message.
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GENERALISATION - BLOOM’s KEY PRE-DISTRIBUTION
PROTOCOL that

allows a trusted authority (Trent - TA) to distribute secret keys to n(n−1)
2

pairs of n users.

Let a large prime p > n be publicly known. Steps of the protocol follow:

1 Each user U in the network is assigned, by Trent, a unique public number rU < p.

2 Trent chooses three secret random numbers a, b and c, smaller than p.

3 For each user U, Trent calculates two numbers

aU = (a + brU) mod p, bU = (b + crU) mod p

and sends them via his secure channel to U.

4 Each user U creates the polynomial

gU(x) = aU + bU(x).

5 If Alice (A) wants to send a message to Bob (B), then Alice computes her key
KAB = gA(rB) and Bob computes his key KBA = gB(rA).

6 It is easy to see that KAB = KBA and therefore Alice and Bob can now use their
(identical) keys to communicate using some agreed on secret-key cryptosystem.
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SECURE COMMUNICATION with SECRET-KEY
CRYPTOSYSTEMS

and without any need for secret key distribution

The idea contained in the above mention padlock protocol has been materialized by
Shamir as follows:

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob
2 Bob sends eB(eA(w)) to Alice
3 Alice sends dA(eB(eA(w))) = eB(w) to Bob
4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a too large number).
Advantage: It is a perfect protocol for distribution of secret keys.
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BIRTH of PUBLIC KEY CRYPTOGRAPHY I

Diffie and Hellman demonstrated their discovery of the hey
establishment protocol at the National Computer
Conference in June 1976 and astonished the audience.

Next year they applied for a US-patent.

However, the solution of the key distribution problem
through Diffie-Hellman protocol could still be seen as not
good enough. Why?

The protocol required still too much communication and a
cooperation of both parties for quite a time.
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BIRTH of PUBLIC KEY CRYPTOGRAPHY II

Already in 1975 Diffie got the an idea for key distribution that seemed to be better: To
design asymmetric cryptosystems - public key cryptosystems.

The basic idea was that in a public key cryptosystem not only the encryption and
decryption algorithms would be public, but for each user U also the key eU for
encrypting messages (by anyone) for U would be public, and each user U would
keep secret another key, dU , that could be used for decryption of messages that
were addressed to him and encrypted with the help of public encryption key eU .

The realization that a cryptosystem does not need to be symmetric can be seen
nowadays as the single most important breakthrough in modern cryptography.

Diffie published his idea in the summer of 1975 in spite of the fact that he had no idea
how to design such a system.

To turn asymmetric cryptosystems from a great idea into a practical invention, somebody
had to discover an appropriate mathematical function.

Mathematically, the problem was to find a simple enough one-way trapdoor function.

A search (hunt) for such a function started.
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TRAPDOOR ONE-WAY FUNCTIONS

The key concept for design of public-key cryptosystems stsrted to be that of
trapdoor one-way functions.

A function f : X → Y is a trapdoor one-way function if

f and its inverse can be computed efficiently,

yet even the complete knowledge of the algorithm to compute f does not
make it feasible to determine a polynomial time algorithm to compute the
inverse of f .

However, the inverse of f can be computed efficiently if some special, ”trapdoor”,
knowledge is available.

New basic question: How to find such a (trapdoor one-way) function?

New basic idea: To make a clever use of outcomes of the computational complexity.
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CRYPTOGRAPHY and COMPUTATIONAL COMPLEXITY

Modern cryptography uses such encryption methods that no “enemy” can have enough
computational power and time to do decryption (even those capable to use thousands of
supercomputers during tens of years for encryption).

Modern cryptography is based on negative and positive results of complexity theory – on
the fact that for some algorithm problems no efficient algorithm seem to exists,
surprisingly, and for some “small” modifications of these problems, surprisingly, simple,
fast and good (randomized) algorithms do exist. Examples:

Integer factorization: Given an integer n(= pq), it is, in general, unfeasible, to find p, q.

There is a list of “most wanted to factor integers”. Top recent successes, using
thousands of computers for months.

(*) Factorization of 229

+ 1 with 155 digits (1996)

(**) Factorization of a “typical” 232 digits integer RSA-768 (2009)

Primes recognition: Is a given n a prime? – fast randomized algorithms exist (1977).
The existence of polynomial deterministic algorithms for primes recognition has been
shown only in 2002
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COMPUTATIONALLY INFEASIBLE PROBLEMS

Discrete logarithm problem: Given integers x , y , n, determine an integer a such
that y ≡ xa (mod n) – infeasible in general.

Discrete square root problem: Given integers y , n, compute an integer x such
that y ≡ x2 (mod n) – infeasible in general, but easy if factorization of n is known

Knapsack problem: Given a ( knapsack - integer) vector X = (x1, . . . , xn) and an
(integer capacity) c , find a binary vector (b1, . . . , bn) such that∑n

i=1 bixi = c .

Problem is NP-hard in general, but easy if xi >
∑i−1

j=1 xj , 1 < i ≤ n.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 28/93



BIRTH of PUBLIC-KEY CRYPTOGRAPHY- II.

A candidate for a one-way trapdoor function:
modular squaring

√
y mod n with a fixed modulus n.

computation of discrete square roots is unfeasible in
general, but quite easy if the decomposition of the
modulus n into primes is known.

A way to design a trapdoor one-way function is to
transform an easy case of a hard (one-way) function to a
hard-looking case of such a function, that can be,
however, solved easily by those knowing how the above
transformation was performed.
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FORMAL VIEW of PUBLIC-KEY CRYPTOSYSTEMS

A public-key cryptosystem consists of three fixed and publically known deterministic
algorithms:

E — encryption algorithm;

D — decryption alorithm;

G — key-generation algorithm

In addition: the following binary words will be considered:

M — message;

C — cryptotext

Ke — encryption key

Kd — decription key

X — trapdoor

Prior to transformation a message M of length n, the receiver generates X, say randomly,
where |X | is polynomial in n, and then computes the pair (Ke ,Kd) = G(X ).

Ke is made public, but Kd and X are kept secret.

When a sender wants to send a message M of length n to the receiver, he computes
C = E(Ke ,M) and sends C on a public channel. The receiver reconstructs M by
computing M = D(Kd ,C).

It is also assumed that, for every X, if (Ke ,Kd) = G(X ), then M = D(Kd ,E(Ke ,M)).
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INGENIOUS IDEA

The realization that a cryptosystem does
not need to be symmetric can be seen as
the single most important breakthrough in
the modern cryptography.
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GENERAL, UNFEASIBLE, KNAPSACK PROBLEM

KNAPSACK PROBLEM: Given an integer-vector X = (x1, . . . , xn) and an integer c.
Determine a binary vector B = (b1, . . . , bn) (if possible) such that XBT = c.

However, the Knapsack problem with a superincreasing vector is easy.

Problem Given a superincreasing integer-vector X = (x1, . . . , xn) (i.e.
xi >

∑i−1
j=1 xj , i > 1) and an integer c,

determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Algorithm – to solve knapsack problems with superincreasing vectors:

for i = n← downto 2 do
if c ≥ 2xi then terminate {no solution}

else if c ≥ xi then bi ← 1; c ← c − xi ;
else bi = 0;

if c = x1 then b1 ← 1
else if c = 0 then b1 ← 0;

else terminate {no solution}

Example X = (1,2,4,8,16,32,64,128,256,512), c = 999
X = (1,3,5,10,20,41,94,199), c = 242
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KNAPSACK and MCELIECE CRYPTOSYSTEMS

KNAPSACK and MCELIECE CRYPTOSYSTEMS
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KNAPSACK ENCRYPTION – BASIC IDEAS

Let a (knapsack) vector (of integers)

A = (a1, . . . , an)

be given.

Encryption of a (binary) message/plaintext B = (b1, b2, . . . , bn) by A is done by the
vector × vector multiplication:

ABT = c

and results in the cryptotext c.

Decoding of c requires to solve the knapsack problem for the instant given by the
knapsack vector A and the cryptotext c.

The problem is that decoding seems to be infeasible.

Example
If A = (74, 82, 94, 83, 39, 99, 56, 49, 73, 99) and B = (1100110101) then

ABT =
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DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing raw vector X = (x1, . . . , xn).

2 Choose integers m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi︸︷︷︸

diffusion

mod m.

︸ ︷︷ ︸
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary raw vector w of length n: c = X ′wT

Decryption: compute c ′ = u−1c mod m
and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′wT = c. Then

c ′ ≡ u−1c ≡ u−1X ′wT ≡ u−1uXwT ≡ XwT (mod m).

Since X is superincreasing and m > 2xn we have

(XwT ) mod m = XwT

c ′ = XwT .and therefore
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DESIGN of KNAPSACK CRYPTOSYSTEMS – EXAMPLE

Example X = (1,2,4,9,18,35,75,151,302,606)
m = 1250, u = 41
X’ = (41,82,164,369,738,185,575,1191,1132,1096)

In order to encrypt an English plaintext, we first encode its letters by 5-bit numbers -
00000, A - 00001, B - 00010,. . . and then divide the resulting binary strings into blocks of
length 10.

Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption:
c1′ = X ′wT

1 = 3061 c2′ = X ′wT
2 = 2081 c3′ = X ′wT

3 = 2203

Cryptotext: (3061,2081,2203)

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u–1 = 61 (mod 1250) we get new cryptotexts (several new c ′)

(693, 326, 320, 789)

And, in the binary form, solutions B of equations XBT = c ′ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

Therefore, the resulting plaintext is: ZIMBABWE
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STORY of KNAPSACK

Invented: 1978 - Ralph C. Merkle, Martin Hellman
Patented: in 10 countries
Broken: 1982: Adi Shamir

New idea: to use iterated knapsack cryptosystem with hyper-reachable vectors.

Definition A knapsack vector X ′ = (x1′ , . . . , xn′) is obtained from a knapsack vector
X = (x1, . . . , xn) by strong modular multiplication if

x ′i = uxi mod m, i = 1, . . . , n,
m > 2

∑n
i=1 xiwhere

and gcd(u,m) = 1. A knapsack vector X ′ is called hyper-reachable, if there is a sequence
of knapsack vectors Y = X0,X1, . . . ,Xk = X ′,

where X0 is a super-increasing vector, and for i = 1, . . . , k Xi is obtained from Xi−1 by a
strong modular multiplication.

Iterated knapsack cryptosystem was broken in 1985 - by E. Brickell

New idea: to use knapsack cryptosystems with dense vectors. Density of a knapsack
vector X = (x1, . . . , xn) is defined by d(x) = n

log(max{xi |1≤i≤n})

Remark. Density of super-increasing vectors of length n is ≤ n
n−1
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KNAPSACK CRYPTOSYSTEM – COMMENTS

The term “knapsack” in the name of the cryptosystem is quite misleading.

By Knapsack problem one usually understands the following problem:

Given n items with weights w1,w2, . . . ,wn, values v1, v2, . . . , vn and a knapsack
limit c , the task is to find a bit vector (b1, b2, . . . , bn) such that

∑n
i=1 biwi ≤ c

and
∑n

i=1 bivi is as large as possible.

The term subset problem is usually used for problems deployed in our
construction of knapsack cryptosystems. It is well-known that the decision version
of this problem is NP-complete.

For our version of the knapsack problem the term Merkle-Hellman (Knapsack)
Cryptosystem is often used.
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McELIECE CRYPTOSYSTEM

McEliece cryptosystem is based on a similar design principle as the
Knapsack cryptosystem. McEliece cryptosystem is formed by transforming an
easy to break cryptosystem (based on an easy to decode linear code) into a
cryptosystem that is hard to break ( because it seems to be based on a linear code
that is, in general, NP-hard).

The underlying fact is that the decision version of the decryption problem for
linear codes is in general NP-complete. However, for special types of linear codes
polynomial-time decryption algorithms exist. One such a class of linear codes, the
so-called Goppa codes, are often used to design McEliece cryptosystem.

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

(McEliece suggested to use m = 10, t = 50.)
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McELIECE CRYPTOSYSTEM – DESIGN

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

Design of McEliece cryptosystems. Let

G be a generating matrix for an [n, k, d ] Goppa code C ;

S be a k × k binary matrix invertible over Z2;

P be an n × n permutation matrix;

G ′ = SGP.

Plaintexts: P = (Z2)k ; cryptotexts: C = (Z2)n, key: K = (G , S ,P,G ′), message: w
G ′ is made public, G , S ,P are kept secret.

Encryption: eK (w , e) = wG ′ + e, where e is a binary vector of length n & weight ≤ t.

Decryption of a cryptotext c = wG ′ + e ∈ (Z2)n.

1 Compute c1 = cP−1 = wSGPP−1 + eP−1 = wSG + eP−1

2 Decode c1 to get w1 = wS ,

3 Compute w = w1S
−1
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COMMENTS on McELIECE CRYPTOSYSTEM I

1 Each irreducible polynomial over Zm
2 of degree t generates a Goppa code with

distance at least 2t + 1.

2 In the design of McEliece cryptosystem the goal of matrices S and C is to modify a
generator matrix G for an easy-to-decode Goppa code to get a matrix that looks as
a random generator matrix for a linear code for which the decoding problem is
NP-complete.

3 An important novel and unique trick is an introduction, in the encoding process, of a
random vector e that represents an introduction of up to t errors – such a number
of errors that are correctable using the given Goppa code and this is the basic trick
of the decoding process.

4 Since P is a permutation, the vector eP−1 has the same weight as e.

5 As already mentioned, McEliece suggested to use a Goppa code with m = 10 and
t = 50. This provides a [1024, 524, 101]-code. Each plaintext is then a 524-bit
string, each cryptotext is a 1024-bit string. The public key is an 524 × 1024 matrix.

6 Observe that the number of potential matrices S and P is so large that probability
of guessing these matrices is smaller than probability of guessing correct plaintext!!!

7 It can be shown that it is not safe to encrypt twice the same plaintext with the same
public key (and different error vectors).
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COMMENTS on McELIECE CRYPTOSYSTEM II

Cryptosystem was invented in 1978 by Robert McEliece.

Cryptosystem is a candidate for post-quantum cryptography - all attempts to break
it using quantum computers failed.

There are nowadays various variant of the cryptosystem that use different easy to
decode linear codes. Some are known not to be secure.

McEliece cryptosystem was the first public key cryptosystem that used randomness -
a very innovative step.

For a standard selection of parameters the public key is more than 521 000 bits long.

That is why cryptosystem is rarely used in practise in spite of the fact that it has
some advantages comparing with RSA cryptosystem discussed next - it has more
easy encoding and decoding.
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FINAL COMMENTS

1 Deterministic public-key cryptosystems can never provide absolute security.
This is because an eavesdropper, on observing a cryptotext c can encrypt each
possible plaintext by the encryption algorithm eA until he finds c such that
eA(w) = c.

2 One-way functions exist if and only if P = UP, where UP is the class of languages
accepted by unambiguous polynomial time bounded nondeterministic Turing
machine.

3 There are actually two types of keys in practical use: A session key is used for
sending a particular message (or few of them). A master key is usually used to
generate several session keys.

4 Session keys are usually generated when actually required and discarded after their
use. Session keys are usually keys of a secret-key cryptosystem.

5 Master keys are usually used for longer time and need therefore be carefully stored.
Master keys are usually keys of a public-key cryptosystem.
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RSA CRYPTOSYSTEM

RSA
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RSA CRYPTOSYSTEM

The most important public-key cryptosystem is the
RSA cryptosystem on which one can also illustrate a
variety of important ideas of modern public-key
cryptography.

For example, we will discuss various possible attacks on
the security of RSA cryptosystems.

A special attention will be given in Chapter 7 to the
problem of factorization of integers that play such an
important role for security of RSA.

In doing that we will illustrate modern distributed
techniques to factorize very large integers.
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HISTORY of RSA

Diffie published his idea of asymmetric cryptosystem in summer 1975, though he
had no example of such a cryptosystem.

The problem was to find a one-way function with a backdoor.

Rivest, Shamir and Adleman, from MIT, started to work on this problem in 1976.

Rivest and Shamir spent a year coming up with new ideas and Adleman spent a year
shooting them down.

In April 1977 they spent a holiday (Pasover) evening drinking quite a bit of wine.

At night Rivest could not sleep, mediated and all of sudden got an idea. In the
morning the paper about a new cryptosystem, called now RSA, was practically
written down.
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DESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978 by Rivest, Shamir, Adleman
Basic idea: prime multiplication is very easy, integer factorization seems to be unfeasible.

Design of RSA cryptosystems

1 Choose randomly two large about s-bit primes p,q, where s ∈ [512, 1024], and denote

n = pq, φ(n) = (p − 1)(q − 1)

2 Choose a large d such that
gcd(d , φ(n)) = 1

and compute
e = d−1(mod φ(n))

Public key: n (modulus), e (encryption exponent)
Trapdoor information: p, q, d (decryption exponent)

Plaintext w
Encryption: cryptotext c = w e mod n
Decryption: plaintext w = cd mod n

Details: A plaintext is first encoded as a word over the alphabet {0, 1, . . . , 9}, then
divided into blocks of length i − 1, where 10i−1 < n < 10i . Each block is taken as an
integer and decrypted using modular exponentiation.
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PROOF of the CORRECTNESS of RSA

Let c = w emod n be the cryptotext for a plaintext w , in the cryptosystem with

n = pq, ed ≡ 1 (mod φ(n)), gcd(d , φ(n)) = 1

In such a case
w ≡ cd mod n

and, if the decryption is unique, w = cdmod n.
Proof Since ed ≡ 1 (mod φ(n)), there exists a j ∈ N such that ed = jφ(n) + 1.

Case 1. Neither p nor q divides w .
In such a case gcd(n,w) = 1 and by the Euler’s Totient Theorem we get that

cd = w ed = w jφ(n)+1 ≡ w (mod n)

Case 2. Exactly one of numbers p, q divides w – say p.
In such a case w ed ≡ w (mod p) and by Fermat’s Little theorem wq−1 ≡ 1 (mod q)

⇒ wq−1 ≡ 1 (mod q)⇒ wφ(n) ≡ 1 (mod q)

⇒ w jφ(n) ≡ 1 (mod q)

⇒ w ed ≡ w (mod q)

Therefore: w ≡ w ed ≡ cd (mod n)
Case 3. Both p, q divide w .
This cannot happen because, by our assumption, w < n.
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HOW TO DO EFFICIENTLY RSA COMPUTATIONS

How to compute w e mod n? Use the method of exponentiation by squaring - see the
Appendix - and perform all operations modulo n

How to compute d−1 mod φ(n)? :

Method 1 Use Extended Euclid algorithm, see the Appendix, that shows
how to find, given integers 0 < m < n with GCD(m, n) = 1, integers x , y
such that

xm + yn = 1

Once this is done, x = m−1 mod n

Method 2 It follows from Euler’s Totient Theorem that

m−1 ≡ mφ(n)−1 mod φ(n)

if m < n and GCD(m, n) = 1
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EXPONENTIATION by squaring

Exponentiation (modular) plays the key role in many cryptosystems. If

n =
k−1∑
i=0

bi2
i , bi ∈ {0, 1}

then

e = an = a
∑k−1

i=0 bi 2
i

=
k−1∏
i=0

abi 2
i

=
k−1∏
i=0

(a2i )bi

Algorithm for exponentiation

begin e ← 1; p ← a;
for i ← 0 to k − 1

do if bi = 1 then e ← e · p;
p ← p · p

od
end

Modular exponentiation: an mod m = ((a mod m)n) mod m
Modular multiplication: ab mod n = ((a mod n)(b mod n) mod n)
Example 31000 mod 19 = 16
310000 mod 13 = 3
3340 mod 11 = 1
3100 mod 79 = 51
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GOOD e-EXPONENTS

Good values of the encryption exponent e should:

have:

short bits length;

small Hamming weight

e = 3, 17, 65.537 = 216 + 1
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EXAMPLE of ENCRYPTION and DECRYPTION in RSA

Example of the design and of the use of RSA cryptosystems.

By choosing p = 41, q = 61 we get n = 2501, φ(n) = 2400
By choosing d = 2087 we get e = 23
By choosing d = 2069 we get e = 29
By choosing other values of d we would get other values of e.

Let us choose the first pair of exponents (e = 23 and d = 2087).

Plaintext: KARLSRUHE First encoding (letters–int.): 100017111817200704

Since 103 < n < 104, the numerical plaintext is divided into blocks of 3 digits ⇒
therefore 6 integer plaintexts are obtained

100, 017, 111, 817, 200, 704

Encryptions:

10023 mod 2501, 1723 mod 2501, 11123 mod 2501
81723 mod 2501, 20023 mod 2501, 70423 mod 2501

provide cryptotexts:
2306, 1893, 621, 1380, 490, 313

Decryptions:

23062087 mod 2501 = 100, 18932087 mod 2501 = 17
6212087 mod 2501 = 111, 13802087 mod 2501 = 817
4902087 mod 2501 = 200, 3132087 mod 2501 = 704
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RSA CHALLENGE

The first public description of the RSA cryptosystem was in the paper.

Martin Gardner: Mathematical games, Scientific American, 1977

and in this paper the RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5154

encrypted using the RSA cryptosystem with 129 digit number, called also RSA129

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 561
842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147 599 290 026
879 543 541.

and with e = 9007.

The inventors expected that to do encryption would require millions of years.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and one
65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE
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Abstract of the US RSA patent 4,405,829

The system includes a communication channel coupled to
at least one terminal having an encoding device and to at
least one terminal having a decoding device.

A message-to-be-transferred is enciphered to
ciphertext at the encoding terminal by encoding a
message as a number, M, in a predetermined set.

That number is then raised to a first predetermined power
(associated with the intended receiver) and finally
computed. The remainder of residue, C , is ... computed
when the exponentiated number is divided by the product
of two predetermined prime numbers (associated with the
predetermined receiver).
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RSA SECURITY

Security of RSA is based on the fact that for the

following two problems no classical polynomial

time algorithms seem to exist.

Integer factorization problem.

RSA problem: Given a public key (n, e) and a

cryptotext c find an m such that

c = me(modn).
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HISTORY of RSA

Diffie published his idea of asymmetric cryptosystem in summer 1975, though he
had no example of such a cryptosystem.

The problem was to find a one-way function with a backdoor.

Rivest, Shamir and Adleman, from MIT, started to work on this problem in 1976.

Rivest and Shamir spent a year coming up with new ideas and Adleman spent a year
shooting them down.

In April 1977 they spent a holiday evening drinking quite a bit of wine.

At night Rivest could not sleep, mediated and all of sudden got an idea. In the
morning the paper about RSA was practically written down.
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Ron Rivest, Adi Shamir and Leonard Adleman
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PRIMES - key tools of modern cryptography

A prime p is an integer with exactly two divisors - 1 and p.

Primes play very important role in mathematics.

Already Euclid new that there are infinitely many primes.

Probability that an n-bit integer is prime is 1
2.3n

. (The accuracy of this estimate is
closely related to the Rieman Hypothesis considered often as the most important
open problem of mathematics.)

Each integer has a uniquer decomposition as a product of primes.

Golbach conjecture: says that every even integer n can be written as the sum of two
primes (verified for n ≤ 4 · 1014).

Vinogradov Theorem: Every odd integer n > 1043000 is the sum of three primes.

There are fast ways to determine whether a given integer is prime or not.

However, if an integer is not a prime then it is very hard to find its factors.
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PRIMES PRIZES

Electronic frontiers foundation offered several prizes for
record primes:

In 1999 $ 50,000 prize was given for first 1 million
digits prime.

In 2008 $ 100,000 prize was given for first 10 million
digits prime.

A special prize is offered for first 100 million digits
prime.

Another special prize is offered for first 1 billion digits
prime.
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HOW to DESIGN REALLY GOOD RSA CRYPTOSYSTEMS?

1 How to choose large primes p, q?
Choose randomly a large integer p and verify, using a randomized algorithm,
whether p is prime. If not, check p + 2, p + 4, . . . for primality.

From the Prime Number Theorem it follows that there are approximately

2d

log 2d
− 2d−1

log 2d−1

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)

2 What kind of relations should be between p and q?
2.1 Difference |p − q| should be neither too small nor too large.
2.2 gcd(p − 1, q − 1) should not be large.
2.3 Both p − 1 and q − 1 should not contain small prime factors.
2.4 Quite ideal case: q, p should be safe primes -such that also (p–1)/2 and (q − 1)/2 are

primes. (83, 107, 10100 − 166517 are examples of safe primes).

3 How to choose e and d?
3.1 Neither d nor e should be small.
3.2 d should not be smaller than n

1
4 . (For d < n

1
4 a polynomial time algorithm is known

to determine d).
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WHAT ”SMALL” MEANS

If n = pq and p − q is ”small”, then
factorization can be quite easy.

For example, if p − q < 2n0.25

(which for even small 1024-bit values of n

is about 3 · 1077)

then factoring of n is quite easy.
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PRIMES RECOGNITION and INTEGERS FACTORIZATION

The key problems for the development of RSA cryptosystem are that of primes
recognition and integers factorization.

On August 2002, the first polynomial time algorithm was discovered that allows to
determine whether a given m bit integer is a prime. Algorithm works in time O(m12).

Fast randomized algorithms for prime recognition has been known since 1977. One of the
simplest one is due to Rabin and will be presented later.

For integer factorization situation is somehow different.

No polynomial time classical algorithm is known.

Simple, but not efficient factorization algorithms are known.

Several sophisticated distributed factorization algorithms are known that allowed to
factorize, using enormous computation power, surprisingly large integers.

Progress in integer factorization, due to progress in algorithms and technology, has
been recently enormous.

Polynomial time quantum algorithms for integer factorization are known since 1994
(P. Shor).

Several simple and some sophisticated factorization algorithms will be presented and
illustrated in the following.
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LARGEST PRIMES

Largest known prime so far is the Mersenne prime

257,885,161 − 1

that has 17, 425, 170 digits and was discovered on

25.1.2013 at 23.30.26 UTC

The last 15 record primes were also Mersenne primes (of
the form 2p − 1).

Record was obtained by Great Internet Mersenne
Prime Search (GIMPS) consortium established in 1997.
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RABIN-MILLER’s PRIME RECOGNITION

The fastest known sequential deterministic algorithm to decide whether a given integer n
is prime has complexity O

(
(lg n)14

)
A simple randomized Rabin-Miller’s Monte Carlo algorithm for prime recognition is based
on the following result from the number theory.

Lemma Let n ∈ N, n = 2sd + 1, d is odd. Denote, for 1 ≤ x < n, by C(x) the condition:

xd 6≡ 1 (mod n) and x2r d 6≡ −1 (mod n) for all 1 < r < s

Fact: If C(x) holds for some 1 ≤ x < n, then n is not prime (and x is a witness for
compositness of n). If n is not prime, then C(x) holds for at least half of x between 1
and n.

In other words most of the numbers between 1 and n are witnesses for composability of
n. Rabin-Miller algorithm

Choose randomly integers x1, . . . , xm such that 1 ≤ xj < n;

For each xj determine whether C(xj) holds;

if C(xj) holds for some xj ;
then n is not prime
else n is prime, with probability of error 2−m
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FACTORIZATION of 512-BITS and 708-BITS NUMBERS

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and “represented” 95% of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, they
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.

In 2005 RSA-640 was factorized - this took approximately 30 2.2GHz-Opteron-CPU years
- over five months of calendar time.

In 2009 RSA-768, a 768-bits number, was factorized by a team from several institutions.
Time needed would be 2000 years on a single 2.2 GHz AND Opterons. Cash price
obtained - 30 000 $.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 65/93



LARGE NUMBERS

Hindus named many large numbers - one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand grains
needed to fill the universe.

Large numbers with special names:

duotrigintillion=googol−10100 googolplex−1010100

FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits.

J. Harley factorized: 10101000

+ 1.

One factor: 316, 912, 650, 057, 350, 374, 175, 801, 344, 000, 001

In 1992 E. Crandal, Doenias proved, using a computer that F22, which has more than
million of digits, is composite (but no factor of F22 is known).

Number 10101034

was used to develop a theory of the distribution of prime numbers.
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DESIGN OF GOOD RSA CRYPTOSYSTEMS

Claim 1. Difference |p − q| should not be small.

Indeed, if |p − q| is small, and p > q, then (p+q)
2

is only slightly larger than
√
n because

(p + q)2

4
− n =

(p − q)2

4

In addition, (p+q)2

4
− n is a square, say y 2.

In order to factor n, it is then enough to test x >
√
n until x is found such that x2 − n is

a square, say y 2. In such a case

p + q = 2x , p − q = 2y and therefore p = x + y , q = x − y .

Claim 2. gcd(p − 1, q − 1) should not be large.

Indeed, in the opposite case s = lcm(p − 1, q − 1) is much smaller than φ(n) If

d ′e ≡ 1 mod s,

then, for some integer k,

cd ≡ w ed ≡ w ks+1 ≡ w mod n

since p − 1|s, q − 1|s and therefore w ks ≡ 1 mod p and w ks+1 ≡ w mod q. Hence, d ′

can serve as a decryption exponent.
Moreover, in such a case s can be obtained by testing.
Question Is there enough primes (to choose again and again new ones)?
No problem, the number of primes of length 512 bit or less exceeds 10150.
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HOW IMPORTANT is FACTORIZATION for BREAKING RSA?

1 If integer factorization is feasible, then RSA is breakable.

2 There is no proof that factorization is indeed needed to break RSA.

3 If a method of breaking RSA would provide an effective way to get a trapdoor
information, then factorization could be done effectively.

Theorem Any algorithm to compute φ(n) can be used to factor integers with the
same complexity.

Theorem Any algorithm for computing d can be converted into a break randomized
algorithm for factoring integers with the same complexity.

4 There are setups in which RSA can be broken without factoring modulus n.

Example An agency chooses p, q and computes a modulus n = pq that is publicized
and common to all users U1,U2, . . . and also encryption exponents e1, e2, . . . are
publicized. Each user Ui gets his decryption exponent di .

In such a setting any user is able to find in deterministic quadratic time another
user’s decryption exponent.
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BASIC RSA SECURITY PROBLEM

Breaking RSA encryptions is known as RSA problem..

RSA problem Given cryptotext c , public key n, e find
plaintext w such that c = w e(mod n).

RSA problem is not equivalent to the integer
factorization problem.

Computation of the secret key exponent and
factorization of moduli are equivalent problems.
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CHOSEN CRYPTOTEXT ATTACK

To encrypt a cryptotext c = w e the attacker can ask the
holder of the decryption exponent d to decrypt an
innocently looking message c ′ = cr e for some value r
chosen by the attacker.

In such a case c ′ is an encryption of wr . Indeed,

c ′ ≡ cr e ≡ w er e ≡ (wr)e mod n

Hence, if w ′ is outcome of such a decryption, then

w = w ′r−1 mod n

This attack is based on the fact that
w e

1w
e
2 = (w1w2)e mod n -
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SECURITY of RSA in PRACTICE

None of the numerous attempts to develop attacks on any RSA cryptosystem has turned
out to be successful.

There are various results showing that it is impossible to obtain even only partial
information about the plaintext from the cryptotext produced by the RSA cryptosystem.

We will show that would the following two functions, that are computationally
polynomially equivalent, be efficiently computable, then the RSA cryptosystem with the
encryption (decryption) exponents ek(dk) would be breakable.

parityek
(c) =the least significant bit of such an w that ek(w) = c;

halfek (c) = 0 if 0 ≤ w < n
2

and halfek (c) = 1 if n
2
≤ w ≤ n − 1

We show two important properties of the functions half and parity .

1 Polynomial time computational equivalence of the functions half and parity follows
from the following identities

halfek (c) = parityek ((c × ek(2)) mod n

parityek (c) = halfek ((c × ek(
1

2
)) mod n

and from the multiplicative rule ek(w1)ek(w2) = ek(w1w2).

2 There is an efficient algorithm, on the next slide, to determine the plaintexts w from
the cryptotexts c obtained from w by an RSA-encryption provided the efficiently
computable function half can be used as the oracle:
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BREAKING RSA USING THE ORACLE half

Algorithm:

for i = 0 to dlgne do
ci ← halfek (c); c ← (c × ek (2)) mod n

u ← n
for i = 0 to dlgne do

m← (i + u)/2;
if ci = 1 then i ← m else u ← m;

output ← [u]

The algorithm does the job. Indeed, in the first cycle

ci = halfek (c × (ek(2))i ) = halfek (ek(2iw)),

is computed for 0 ≤ i ≤ lgn.

In the second part of the algorithm binary search is used to determine interval in which w
lies. For example, we have that

halfek (ek(w)) = 0 ≡ w ∈ [0,
n

2
)

halfek (ek(2w)) = 0 ≡ w ∈ [0,
n

4
) ∪ [

n

2
,

3n

4
)

halfek (ek(4w)) = 0 ≡ w ∈ [0,
n

8
) ∪ [

n

4
,

3n

8
) ∪ [

n

2
,

5n

8
) ∪ [

3n

4
,

7n

8
)
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SECURITY of RSA in PRACTICE II

There are many results for RSA showing that certain parts are as hard as whole. For
example, any feasible algorithm to determine the last bit of the plaintext can be
converted into a feasible algorithm to determine the whole plaintext.

Example Assume that we have an algorithm H to determine whether a plaintext x for a
cryptotext y designed by RSA with the public key e, n is smaller than n

2
.

We construct an algorithm A to determine in which of the intervals ( jn
8
, (j+1)n

8
), 0 ≤ j ≤ 7

the plaintext lies.

Basic idea: algorithm H will be used to decide whether the plaintexts for cryptotexts
xe mod n, 2exe mod n, 4exe mod n are smaller than n

2
.

Let us summarize answers all possible outcomes of tests imply:

yes, yes, yes 0 <x <
n

8

yes, yes, no
n

8
<x <

n

4

yes, no, yes
n

4
<x <

3n

8

yes, no, no
3n

8
<x <

n

2

no, yes, yes
n

2
<x <

5n

8

no, yes, no
5n

8
<x <

3n

4

no, no, yes
3n

4
<x <

7n

8

no, no, no
7n

8
<x < n
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COMMON MODULUS ATTACK

Let a message w be encoded with a modulus n and
two encryption exponents e1 and e2 such that
gcd(e1, e2) = 1. Therefore

c1 = w e1 mod n, c2 = w e2 mod n;

Then

w = ca1c
b
2 ,

where, a, b are such that

a · e1 + b · e2 = 1
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PRIVATE-KEY versus PUBLIC-KEY CRYPTOGRAPHY

The prime advantage of public-key cryptography is increased security – the private
keys do not ever need to be transmitted or revealed to anyone.

Public key cryptography is not meant to replace secret-key cryptography, but rather
to supplement it, to make it more secure. The public-key cryptosystem

Example RSA and the most spread out secret-key cryptosystems DES (AES) are
usually combined as follows

1 The message is encrypted with a random DES key
2 DES-key is encrypted with RSA
3 DES-encrypted message and RSA-encrypted DES-key are sent.

This protocol is called RSA digital envelope.

In software (hardware) DES is generally about 100 (1000) times faster than RSA.

If n users communicate with secrete-key cryptography, they need n (n - 1) / 2 keys.

If n users communicate with public-key cryptography 2n keys are sufficient.

Public-key cryptography allows spontaneous communication.
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APPENDIX I

APPENDIX I
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KERBEROS

We describe a very popular key distribution protocol with trusted authority TA with
which each user A shares a secret key KA.

To communicate with user B the user A asks TA for a session key (K)

TA chooses a random session key K , a time-stamp T , and a lifetime limit L.

TA computes

m1 = eKA(K , ID(B),T , L); m2 = eKB (K , ID(B),T , L);

and sends m1,m2 to A.

A decrypts m1, recovers K ,T , L, ID(B), computes m3 = eK (ID(B),T ) and sends m2

and m3 to B.

B decrypts m2 and m3, checks whether two values of T and of ID(B) are the same.
If so, B computes m4 = eK (T + 1) and sends it to A.

A decrypts m4 and verifies that she got T + 1.
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KEY DISTRIBUTION versus KEY AGREEMENT

One should distinguish between key distribution and key agreement

Key distribution is a mechanism whereby one party chooses a secret key and then
transmits it to another party or parties.

Key agreement is a protocol whereby two (or more) parties jointly establish a secret
key by communication over a public channel.

The objective of key distribution or key agreement protocols is that, at the end of the
protocols, the two parties involved both have possession of the same key k, and the value
of k is not known to any other party (except possibly the TA).
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RSA in PRACTICE

660-bits integers were already (factorized) broken in practice.

1024-bits integers are currently used as moduli.

512-bit integers can be factorized with a device costing 5 K $ in about
10 minutes.

1024-bit integers could be factorized in 6 weeks by a device costing 10
millions of dollars.
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ATTACKS on RSA

RSA can be seen as well secure. However, this does not mean that under special
circumstances some special attacks can not be successful. Two of such attacks are:

The first attack succeeds in case the decryption exponent is not large enough.
Theorem (Wiener, 1990) Let n = pq, where p and q are primes such that
q < p < 2q and let (n, e) be such that de ≡ 1(modφ(n)). If d < 1

3
n1/4. then there

is an efficient procedure for computing d .

Timing attack P. Kocher (1995) showed that it is possible to discover the
decryption exponent by carefully counting the computation times for a series of
decryptions. Basic idea: Suppose that Eve is able to observes times Bob needs to
decrypt several cryptotext s. Knowing cryptotext and times needed for their
decryption, it is possible to determine decryption exponent.
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CASES WHEN RSA IS EASY TO BREAK

If an user U wants to broadcast a value x to n other users, using for a
communication with a user Pi a public key (e,Ni ), where e is small, by sending
yi = xe mod Ni .

If e = 3 and 2/3 of the bits of the plaintext are known, then one can decrypt
efficiently;

If 25% of the least significant bits of the decryption exponent d are known, then d
can be computed efficiently.

If two plaintexts differ only in a (known) window of length 1/9 of the full length and
e = 3, one can decrypt the two corresponding cryptotext.

Wiener showed how to get secret key efficiently if n = pq, q < p < 2q and
d < 1

3
n0.25.
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SECURITY POTENTIAL of McELIECE CRYPTOSYSTEM

McEliece cryptosystem is one of those cryptosystems that
has not been yet shown to be breakable by quantum
computers.

McEliece cryptosystem is not practical, because for the
recommended security parameters the public key size is 219

bits; and therefore its security was not much scrutinised.

Big problem of cryptography is to find practical public-key
cryptosystem that could not be broken even with quantum
computers.

Big question? What comes first, powerful quantum
computers or practical public-key cryptosystem secure also
against quantum computers.
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COMPLEXITY of RSA

Let modulus be product of two s-bit primes.

Setting cryptosystem requires O(s4) operations.
generation of two s bit primes requires O(s4);
multiplication of primes p and q requires O(s2);
finding exponent e requires one GCD-computation - O(s2);
finding exponent d requires computation of generalized GCD - O(s2).

Encryption requires one exponentiation - O(s3);

Decryption requires one exponentiation - O(s3).
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IMPLICATIONS of HARD INVERTABILITY of RSA

Under the assumption that RSA is hard to invert we
can design:

cryptographically perfect pseudorandom generators;
zero-knowledge proofs for any NP statement;
multiparty protocols for computing securely any
multi-variant function.

The fact that RSA is hard to invert does not imply that
RSA is secure cryptosystem.
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