
Part IV

Secret-key cryptosystems

PROLOGUE - I.

Decrypt cryptotexts:

GBLVMUB JOGPSNBUJLZ

VMNIR

RPNBMZ EBMFLP OFABKEFT
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PROLOGUE - II.

Decrypt:

VHFUHW GH GHXA

VHFUHW GH GLHX,

VHFUHW GH WURLV

VHFUHW GH WRXV.
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CHAPTER 4: SECRET-KEY (SYMMETRIC) CRYPTOGRAPHY

In this chapter we deal with some of the very old, or quite old, classical
(secret-key or symmetric) cryptosystems and their cryptanalysis that were
primarily used in the pre-computer era.

These cryptosystems are too weak nowadays, too easy to break, especially
with computers.

However, these simple cryptosystems give a good illustration of several of the
important ideas of the cryptography and cryptanalysis.

Moreover, most of them can be very useful in combination with more modern
cryptosystem - to add a new level of security.
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BASICS

BASICS
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CRYPTOLOGY - HISTORY + APPLICATIONS

Cryptology (= cryptography + cryptanalysis)
has more than four thousand years long history.

Some historical observation

People have always had fascination with keeping information away from others.

Some people – rulers, diplomats, military people, businessmen – have always had
needs to keep some information away from others.

Importance of cryptography nowadays

Applications: cryptography is the key tool to make modern information transmission
secure, and to create secure information society.

Foundations: cryptography gave rise to several new key concepts of the foundation
of informatics: one-way functions, computationally perfect pseudorandom
generators, zero-knowledge proofs, holographic proofs, program self-testing and
self-correcting, . . .
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APPROACHES and PARADOXES in CRYPTOGRAPHY

Sound approaches to cryptography

Shannon’s approach based on information theory (Enemy could not have enough
information to break a given cryptosystem).

Current approach based on complexity theory. (Enemy could not have enough
computation power to break a given cryptosystem).

Very recent a new approach has been developed that is based on the laws and
limitations of quantum physics. (Enemy would need to break laws of nature in
order to break a given cryptosystem).

Paradoxes of modern cryptography:

Positive results of modern cryptography are based on negative results of
computational complexity theory.

Computers, that were designed originally for decryption, seem to be now more useful
for encryption.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS - CIPHERS

The cryptography deals with problem of sending a message (plaintext, ciphertext,
cleartext), through an insecure channel, that may be tapped by an adversary
(eavesdropper, cryptanalyst), to a legal receiver.

Secret-key (symmetric) cryptosystems scheme:

encryption
plaintext

key source

adversary
?

sender

decryption
plaintext

legal
receivercryptotext

C
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SECRET-KEY (PRIVATE-KEY - SYMMETRIC)
CRYPTOSYSTEMS

A secret-key (private-key or symmetric)

cryptosystem is the one where the sender and the

recepient share a common and secret key.

Security of such a cryptosystem depends solely on
the secrecy of shared key.
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COMPONENTS of CRYPTOSYSTEMS:

Plaintext-space: P – a set of plaintexts (messages) over an alphabet
∑

Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet ∆

Key-space: K – a set of keys

Each key k ∈ K determines an encryption algorithm ek and an decryption
algorithm dk such that, for any plaintext w , ek(w) is the corresponding cryptotext
and

w ∈ dk(ek(w)) or w = dk(ek(w)).

Note: As encryption algorithms we can use also randomized algorithms.
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SECRET-KEY CRYPTOGRAPHY BASICS - SUMMARY

Symmetric cryptography relies on three algorithms:

Key generating algorithm which generates a secret key
in a cryptographically (pseudo)random way.

Encryption algorithm which transforms a plaintext into
a cryptotext using a secret key.

Decryption algorithm which transforms a cryptotext into
the original plaintext using the same secret key.

Secret key cryptosystems provide secure
transmission of messages along insecure channel
provided the secret keys are transmitted over an
extra secure channel.
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SECURITY of CRYPTOSYSTEMS

There are three fundamentally different ways a
cryptosystem/cipher can be seen as secure.

Unconditional security: is in the case it can be proven
that the cryptosystem cannot be broken no
matter how much power has the enemy
(eavesdropper).

Computational security is in the case it can be proven
that no eavesdropper can break the
cryptosystem in polynomial (reasonable) time..

Practical security is in the case no one was able to break
the cryptosystem so far after many years and
many attempts.
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WHO ARE CODEBREAKERS - DEVELOPMENTS

The vision of codebreakers has changed through the history, depending on the tools used
for encryption and cryptoanalysis.

Old times view:Cryptology is a black art and
crypanalysis communicate with dark spirits and even
are followers of the devil.

Pre-computers era view: Codebreakers or
cryptanalysts are linguistic alchemists - a mystical tribe
attempting to discover meaningful texts i n the
apparently meaningless sequences of symbols.

Current view Codebreakers and cryptanalysts are
artists that can superbly use modern mathematics,
informatics and computing supertechnology for
decrypting encrypted messages.
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CRYPTO VIEW of MODERN HISTORY

First World War was the war of chemists

(deadly gases).

Second World War was the war of physicists

(atomic bombs).

Third World War will be the war of

informaticians (cryptographers and

cryptanalysts).

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 14/99

BASIC TYPES of CLASSICAL SECRET-KEY
CIPHERS

Substitution ciphers: are ciphers where units of plaintext are replaced by parts of
cryptotext according a fixed rule.

Simple substitution ciphers operates on single letters.
Monoalphabethic (simple) substitution ciphers: are defined by a single

fixed permutation π with encoding

eπ(a1a2 . . . an) = π(a1)π(a2) . . . π(an)

Polyalphabetic (simple) substitutions systems may use different
permutations at different positions of the plaintext.

Polygraphic (digraphic) substitution ciphers operate on larger, for
instance o, the length two) substrings of the plaintext.

Transposition ciphers do not replace but only rearrange order of symbols in the
plaintext - sometimes in a complicated way.
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PARTICULAR CRYPTOSYSTEMS

PARTICULAR CRYPTOSYSTEMS
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CAESAR (100 - 42 B.C.) CRYPTOSYSTEM - SHIFT CIPHER I

SHIFT CIPHER is a simple monoalphabetic cipher
that can be used to encrypt words in any alphabet.

In order to encrypt words in English alphabet we use:

Key-space: K = {1, 2, . . . , 25}

For any key k ∈ K , the encryption algorithm ek for
SHIFT CIPHER SC (k) substitutes any letter by the letter
occurring k positions ahead (cyclically) in the alphabet.

The decryption algorithm dk for SC (k) substitutes any
letter by the one occurring k positions backward
(cyclically) in the alphabet.
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SHIFT CIPHER SC (k) - SC (3) is called CAESAR SHIFT

Example e2(EXAMPLE) = GZCORNG,
e3(EXAMPLE) = HADPSOH,
e1(HAL) = IBM,
e3(COLD) = FROG

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example Find the plaintext to the following cryptotext obtained by the encryption with
SHIFT CIPHER with k = ?.

Decrypt the
cryptotext:

VHFUHW GH GHXA, VHFUHW GH GLHX,
VHFUHW GH WURLV, VHFUHW GH WRXV.

Numerical version of SC(k) is defined, for English, on the set {0, 1, 2, . . . , 25} by the
encryption algorithm:

ek(i) = (i + k)(mod 26)

Numerical version of the cipher Atbash used in the Bible.

e(i) = 25− i
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EXAMPLE

Decrypt:

VHFUHW GH GHXA
VHFUHW GH GLHX,
VHFUHW GH WURLV
VHFUHW GH WRXV.

Solution:

Secret de deux
secret de Dieu,
secret de trois
secret de tous.
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VATSYAYANA CIPHER - SC (2)

Vatsyayana was a Hindu philosopher, believed to be the
author of Kamasutra and to live in the period 400 BCE -
200 CE.

According to his Kamasutra, a girl needs to learn certain
arts and certain tricks: to cook,to read and write, and how
to send her lover secret messages which no one else would
be able to decipher.

Vatsyayana even described such a cipher which is actually
SC (2).

This system is now believed, by some, to be the oldest
cipher used.
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POLYBIOUS CRYPTOSYSTEM - I

It is a digraphic cipher developed by Polybious in 2nd
century BC.
Polybious was a Greek soldier, historian and for 17 years a
slave in Rome.
Observation: Romans were able to created powerful
optical information communication networks that allowed
them to deliver information and orders very fast along long
distances and this way to control efficiently huge territory
and made their armies flexible because they could deliver
information and messages much faster than using horses.

It is expected that Romans already used Polybious
cryptosystem.
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POLYBIOUS CRYPTOSYSTEM - II

POLYBIOUS can be used to encrypt words of the English alphabet without J.

Key-space: Polybious checkerboards 5× 5 with 25 English letters and with rows +
columns labeled by symbols.

Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.

Example:

F G H I J

A A B C D E
B F G H I K
C L M N O P
D Q R S T U
E V W X Y Z

KONIEC →BJCICHBIAJAH
Decryption algorithm: ???
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KERCKHOFF’s PRINCIPLE

The basic philosophy of modern cryptanalysis is embodied
in the following principle formulated in 1883 by Jean
Guillaume Hubert Victor Francois Alexandre
Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).

The security of a cryptosystem must not depend on
keeping secret the encryption algorithm. The security
should depend only on keeping secret the key.
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BASIC REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in
the key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1(ek2(w)).

7 The set of keys should be very large.
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FOUR DEVELOPMENTS THAT CHANGED METHODS and
IMPORTANCE of CRYPTOGRAPHY

Wide use of telegraph - 1844.

Wide use of radio transmission - 1895.

Wide use of encryption/decryption machines -

1930.

Wide use of internet.
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CRYPTANALYSIS ATTACKS I

The aim of cryptanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptanalytic attacks

1 Cryptotexts-only attack. The cryptanalysts get cryptotexts
c1 = ek(w1), . . . , cn = ek(wn) and try to infer the key k,or as many of the
plaintexts w1, . . . ,wn as possible.

2 Known-plaintexts attack (given are some pairs [plaintext, cryptotext])
The cryptanalysts know some pairs wi , ek(wi ), 1 ≤ i ≤ n, and try to infer k, or
at least wn+1 for a new cryptotext ek(wn+1).

3 Chosen-plaintexts attack (given are cryptotext for some chosen
plaintexts). The cryptanalysts choose plaintexts w1, . . . ,wn to get
cryptotexts ek(w1), . . . , ek(wn), and try to infer k or at least wn+1 for a new
cryptotext cn+1 = ek(wn+1). (For example, if they get temporary access to
the encryption machinery.)
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CRYPTANALYSIS ATTACKS - II.

4 Known-encryption-algorithm attack
The encryption algorithm ek is given and the cryptanalysts try to get the decryption
algorithm dk .

5 Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)
The cryptanalysts know some pairs

[ci , dk(ci )], 1 ≤ i ≤ n,

where the cryptotexts ci have been chosen by the cryptanalysts. The aim is to
determine the key. (For example, if cryptanalysts get a temporary access to
decryption machinery.)
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WHAT CAN BAD EVE DO?

Let us assume that a clever Alice sends an encrypted message to Bob.
What can a bad enemy, called usually Eve (eavesdropper), do?

Eve can read (and try to decrypt) the message.

Eve can try to get the key that was used and then decrypt all messages encrypted
with the same key.

Eve can change the message sent by Alice into another message, in such a way that
Bob will have the feeling, after he gets the changed message, that it was a message
from Alice.

Eve can pretend to be Alice and communicate with Bob, in such a way that Bob
thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.
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BASIC GOALS of BROADLY UNDERSTOOD CRYPTOGRAPHY

Confidentiality: Eve should not be able to decrypt the message Alice sends to Bob.

Data integrity: Bob wants to be sure that Alice’s message has not been altered by Eve.

Authentication: Bob wants to be sure that only Alice could have sent the message he
has received.

Non-repudiation: Alice should not be able to claim that she did not send messages that
she has sent.

Anonymity: Alice does not want Bob to find out who sent the message
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HILL CRYPTOSYSTEM I

The polygraphic cryptosystem presented in this slide was probably never used. In spite of
that this cryptosystem played an important role in the history of modern cryptography.

We describe Hill cryptosystem for a fixed n and the English alphabet.

Key-space: The set of all matrices M of degree n with elements from the set
{0, 1, . . . , 25} such that M−1mod 26 exists.

Plaintext + cryptotext space: English words of length n.

Encoding: For a word w let cw be the column vector of length n of the integer codes of
symbols of w . (A→ 0,B → 1,C → 2, . . .)

Encryption: cc = Mcw mod 26

Decryption: cw = M−1cc mod 26
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HILL CRYPTOSYSTEM - EXAMPLE

Example: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

M =

[
4 7
1 1

]
M−1 =

[
17 11
9 16

]

Plaintext: w = LONDON

Encodings: wLO =

[
11
14

]
, wND =

[
13
3

]
,wON =

[
14
13

]

Encryption : MwLO =

[
12
25

]
, MwND =

[
21
16

]
,MwON =

[
17
1

]

Cryptotext: MZVQRB

Theorem

If M =

[
a11 a12

a21 a22

]
, then M−1 = 1

det M

[
a22 −a12

−a21 a11

]

Proof: Exercise
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INVERTING INTEGER MATRICES modulo n

The basic idea to compute M−1 (mod n) is simple:

Use the usual method to invert M in terms of rational numbers, and then replace each
a/b by ab−1, where bb−1 ≡ 1 (mod n).

Example: Compute the inverse of the following matrix modulo 11:

M =




1 1 1
1 2 3
1 4 9


 (mod 11).

The standard inverse of M in rational numbers is

1

2




6 −5 1
−6 8 −2

2 −3 1




Since 2−1 ≡ 6 (mod 11), the resulting matrix has the form

M−1 =




3 3 6
8 4 10
1 4 6


 (mod 11).
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SESTER S. HILL

Hill published his cryptosystem, based on the ideas of
Giovani Bathista Porta (1535-1615), in the paper

Cryptography in an algebraic alphabet

in the journal American Mathematical Monthly in
1929.

Hill even tried to design a machine to use his cipher, but
without a success.
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS

A cryptosystem is called secret-key cryptosystem if some secret piece of
information – the key – has to be agreed first between any two parties that have,
or want, to communicate through the cryptosystem. Example: CAESAR, HILL.
Another name is symmetric cryptosystem (cryptography).

Two basic types of secret-key cryptosystems

substitution based cryptosystems

transposition based cryptosystems

Two basic types of substitution cryptosystems

monoalphabetic cryptosystems – they use a fixed substitution – CAESAR,
POLYBIOUS

polyalphabetic cryptosystems – substitution keeps changing during the encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely
specified by a permutation of letters, (number of permutations (keys) is 26!)
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AFFINE CRYPTOSYSTEMS

Example: Each AFFINE cryptosystem is given by two integers

0 ≤ a, b ≤ 25, gcd(a, 26) = 1.

Encryption: ea,b(x) = (ax + b) mod 26

Example

a = 3, b = 5, e3,5(x) = (3x + 5) mod 26,
e3,5(3) = 14, e3,5(15) = 24, e3,5(D) = O, e3,5(P) = Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Decryption: da,b(y) = a−1(y − b) mod 26
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CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a so called frequency count: the number of each letter in the cryptotext is counted.
The distributions of letters in the cryptotext is then compared with some official
distribution of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be the substitute for
the letter with highest frequency in the plaintext language . . . . The likelihood grows with
the length of cryptotext.

Frequency counts in English:
%

E 12.31

T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

70.02

%

L 4.03

D 3.65
C 3.20
U 3.10
P 2.29
F 2.28
M 2.25
W 2.03
Y 1.88

24.71

%

B 1.62

G 1.61
V 0.93
K 0.52
Q 0.20
X 0.20
J 0.10
Z 0.09

5.27

and for other languages:
English %

E 12.31
T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

German %

E 18.46
N 11.42
I 8.02
R 7.14
S 7.04
A 5.38
T 5.22
U 5.01
D 4.94

Finnish %

A 12.06
I 10.59
T 9.76
N 8.64
E 8.11
S 7.83
L 5.86
O 5.54
K 5.20

French %

E 15.87
A 9.42
I 8.41
S 7.90
T 7.29
N 7.15
R 6.46
U 6.24
L 5.34

Italian %

E 11.79
A 11.74
I 11.28
O 9.83
N 6.88
L 6.51
R 6.37
T 5.62
S 4.98

Spanish %

E 13.15
A 12.69
O 9.49
S 7.60
N 6.95
R 6.25
I 6.25
L 5.94
D 5.58

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, ED,
ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most common
trigrams are: THE, ING, AND, HER, ERE, ENT.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 36/99



FREQUENCY ANALYSIS for SEVERAL LANGUAGES
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Discovery of FREQUENCY ANALYSIS - I.

It was discovered, in 1987, that this technique was already
described in 9th century in

a manuscript on deciphering cryptographic messages

written by the” philosopher of the Arabs”,called

Abú Yúsúf Ya’qúb ibn Is-háq ibn as-Sabbáh ibn ’omrán ibn
Ismail a-Kindi

He wrote 290 books on medicine, astronomy,
mathematics, music,...

Frequency analysis was originally used to study Koran, to
establish chronology of revelations by Muhammad in
Koran.
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Discovery of FREQUENCY ANALYSIS - II.
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CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLE

Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an
encryption algorithm

ea,b(x) = (ax + b) mod 26 = (xa + b) mod 26

where 0 ≤ a, b ≤ 25, gcd(a, 26) = 1. (Number of keys: 12× 26 = 312.)

Example: Assume that an English plaintext is divided into blocks of 5 letters and
encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows:

How to find the
plaintext?

B H J U H N B U L S V U L R U S L Y X H
O N U U N B W N U A X U S N L U Y J S S
W X R L K G N B O N U U N B W S W X K X
H K X D H U Z D L K X B H J U H B N U O
N U M H U G S W H U X M B X R W X K X L
U X B H J U H C X K X A X K Z S W K X X
L K O L J K C X L C M X O N U U B V U L
R R W H S H B H J U H N B X M B X R W X
K X N O Z L J B X X H B N F U B H J U H
L U S W X G L L K Z L J P H U U L S Y X
B J K X S W H S S W X K X N B H B H J U
H Y X W N U G S W X G L L K
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CRYPTANALYSIS - CONTINUATION I

Frequency analysis of plaintext and
frequency table for English:

X - 32 J - 11 D - 2
U - 30 O - 6 V - 2
H - 23 R - 6 F - 1
B - 19 G - 5 P - 1
L - 19 M - 4 E - 0
N - 16 Y - 4 I - 0
K - 15 Z - 4 Q - 0
S - 15 C - 3 T - 0
W - 14 A - 2

%

E 12.31

T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

70.02

%

L 4.03

D 3.65
C 3.20
U 3.10
P 2.29
F 2.28
M 2.25
W 2.03
Y 1.88

24.71

%

B 1.62

G 1.61
V 0.93
K 0.52
Q 0.20
X 0.20
J 0.10
Z 0.09

5.27
First guess: E = X ,T = U

Encodings:
xa + b = y

4a + b = 23 (mod 26)

19a + b = 20 (mod 26)

Solutions: a = 5, b = 3→ a−1 = 21

Translation table crypto A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

plain P K F A V Q L G B W R M H C X S N I D Y T O J E Z U

B H J U H N B U L S V U L R U S L Y X H
O N U U N B W N U A X U S N L U Y J S S
W X R L K G N B O N U U N B W S W X K X
H K X D H U Z D L K X B H J U H B N U O
N U M H U G S W H U X M B X R W X K X L
U X B H J U H C X K X A X K Z S W K X X
L K O L J K C X L C M X O N U U B V U L
R R W H S H B H J U H N B X M B X R W X
K X N O Z L J B X X H B N F U B H J U H
L U S W X G L L K Z L J P H U U L S Y X
B J K X S W H S S W X K X N B H B H J U
H Y X W N U G S W X G L L K

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO
OTMIT DMZEG, which does not make sense.
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CRYPTANALYSIS - CONTINUATION II

Second guess: E = X ,A = H

Equations 4a + b = 23 (mod 26)

b = 7 (mod 26)
Solutions: a = 4 or a = 17 and therefore a = 17
This gives the translation table

crypto A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
plain V S P M J G D A X U R O L I F C Z W T Q N K H E B Y

and the following
plaintext from the
above cryptotext

S A U N A I S N O T K N O W N T O B E A
F I N N I S H I N V E N T I O N B U T T
H E W O R D I S F I N N I S H T H E R E
A R E M A N Y M O R E S A U N A S I N F
I N L A N D T H A N E L S E W H E R E O
N E S A U N A P E R E V E R Y T H R E E
O R F O U R P E O P L E F I N N S K N O
W W H A T A S A U N A I S E L S E W H E
R E I F Y O U S E E A S I G N S A U N A
O N T H E D O O R Y O U C A N N O T B E
S U R E T H A T T H E R E I S A S A U N
A B E H I N D T H E D O O R
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OTHER EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS

Symbols of the English alphabet will be replaced by squares with or without points and
with or without surrounding lines using the following rule:

A: B: C:
D: E: F:
G: H: I:

J· K· L·
M· N· O·
P· Q· R·

S T U
V W X
Y Z

For example the plaintext:

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

results in the cryptotext:

: : : : : :

:::::

: : : : .

. ..

.

..

..

. .

Garbage in between method: the message (plaintext or cryptotext) is supplemented by
“garbage letters”.

Richelieu
cryptosystem used
sheets of card board
with holes.

I L O V E Y O U
I H A V E Y O U
D E E P U N D E R
M Y S K I N M Y
L O V E L A S T S
F O R E V E R I N
H Y P E R S P A C E

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
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EXTREME CASES for FREQUENCY ANALYSIS

In 1969 Georges Perec published, in France,

La Disparition

a 200 pages novel in which there is no occurence

of the letter ”e”.

British translation, due to Gilbert Adair, has

appeared in 1994 under the title

A void
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INTRODUCTION TO ”A VOID”
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HOMOPHONIC CRYPTOSYSTEMS

Homophonic cryptosystems are natural generalization of monoalphabetic cryptosystems.

They are substitution cryptosystems in which each letter is replaced by arbitrarily
chosen substitutes from fixed and disjoint sets of substitutes.

The number of substitutes of a letter is usually proportional to the frequency of the
letter.

Though homophonic cryptosystems are not unbreakable, they are much more secure than
ordinary monoalphabetic substitution cryptosystems.

The first known homophonic substitution cipher is from 1401.
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EXAMPLES of HOMOPHONIC CRYPTOSYTEMS - I.
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EXAMPLES of HOMOPHONIC CRYPTOSYTEMS - I.
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key – a Playfair square is defined by a word w of length at most 25. In w repeated letters
are then removed, remaining letters of alphabets (except j) are then added and resulting
word is divided to form an 5 x 5 array (a Playfair square).

Encryption: of a pair of letters x , y

1 If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.

2 If x and y are in different rows and columns they are replaced by symbols in the
opposite corners of rectangle created by x and y - the order is important and needs
to be agreed on.

Example: PLAYFAIR is encrypted as LCNMNFSC
Playfair was used in World War I by British army.

Playfair square:

S D Z I U
H A F N G
B M V Y W
R P L C X
T O E K Q
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

Design of cryptosystem: First step: A 26×26 table is first designed with the first row
containing a permutation of all symbols of alphabet and all columns represent CAESAR
shifts starting with the symbol of the first row.

Second step: For a plaintext w a key k should be a word of the same length as w .

Encryption: the i -th letter of the plaintext - wi - is encrypted by the letter from the
wi -row and ki -column of the table.

VIGENERE cryptosystem is actually a cyclic, key driven, version of the CAESAR
cryptosystem.

IMPORTANT EXAMPLES

VIGENERE-key cryptosystem: a short keyword p is chosen and periodically repeated to
form the key to be used

k = Prefix|w|p
oo

AUTOCLAVE-key cryptosystem: a short keyword is chosen and appended by plaintext

k = Prefix|w|pw
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS III

VIGENERE and AUTOCLAVE cryptosystems

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Keyword:
Plaintext:
Vigenere-key:
Autoclave-key:
Vigenere-encrypt..:
Autoclave-encrypt.:

H A M B U R G
I N J E D E M M E N S C H E N G E S I C H T E S T E H T S E I N E G
H A M B U R G H A M B U R G H A M B U R G H A M B U R G H A M B U R
H A M B U R G I N J E D E M M E N S C H E N G E S I C H T E S T E H
P N V F X V S T E Z T W Y K U G Q T C T N A E E U Y Y Z Z E U O Y X
P N V F X V S U R W W F L Q Z K R K K J L G K W L M J A L I A G I N
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COMMENT

Autoclave-key cipher is also called autokey cipher.

So called running-key cipher uses very long key that
is a passage from a book (for example from Bible).
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BLAISE de VIGENERE (1523-1596)
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HISTORICAL COMMENT

The encryption method that is commonly called as
Vigenere method was actually discovered in 1553
by Giovan Batista Belaso.
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VIGÉNERE CRYPTOSYSTEM

Vigenére work culminated in his Traicté des Chiffres -
“A treatise on secret writing” in 1586.

VIGENERE cryptosystem was practically not used for
the next 200 years, in spite of its perfection.

It seems that the reason for ignorance of the
VIGENERE cryptosystem was its apparent complexity.
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CRYPTANALYSIS of cryptotexts produced by VIGENERE-key
cryptosystems

1 Task 1 – to find the length of the keyword

Kasiski’s (Prussian officier) method (published in 1862) - invented also by Charles
Babbage (1853 - unpublished).

Basic observation: If a subword of a plaintext is repeated at a distance that is a
multiple of the length of the keyword, then the corresponding subwords of the
cryptotext are the same.

Example, cryptotext:

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring “CHR” occurs in positions 1, 21, 41, 66: expected keyword length is therefore
5.

Method. Determine the greatest common divisor of the distances between identical
subwords (of length 3 or more) of the cryptotext.
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BREAKING VIGENER CRYPTOSYSTEM

Kasiski method and the index of coincidence can be used in the following way to break a
VIGENERE cryptosystem - basic algorithm.

for all guesses of the length m of the key
(obtained using Kasiski method) do

write cryptotext in an array with m columns - row by row;
check if index of coincidence of each column is high;
if yes you have the length of key;

to decode columns use decoding method for Caesar
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Charles Babbage (1791-1871)
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FRIEDMAN METHOD to DETERMINE KEY LENGTH

Friedman method to determine the key length: Let ni be the number of
occurrences of the i-th letter in the cryptotext.

Let L be the length of the keyword.

Let n be the length of the cryptotext.

Then it holds, as shown on next slide:

L =
0.027n

(n − 1)I − 0.038n + 0.065
, I =

26∑

i=1

ni(ni − 1)

n(n − 1)

Once the length of the keyword is found it is easy to determine the
key using the statistical (frequency analysis) method of analyzing
monoalphabetic cryptosystems.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 59/99

DERIVATION of the FRIEDMAN METHOD I

1 Let ni be the number of occurrences of i-th alphabet symbol in a text of length n.
The probability that if one selects a pair of symbols from the text, then they are the
same is

I =
∑26

i=1 ni (ni−1)

n(n−1)
=
∑26

i=1

(ni2 )
(n2)

and it is called the index of coincidence.

2 Let pi be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same is

∑26
i=1 p2

i

For English text one has
∑26

i=1 p2
i = 0.065

For randomly chosen text:
∑26

i=1 p2
i =

∑26
i=1

1
262

= 0.038

Approximately

I =
∑26

i=1 p2
i
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DERIVATION of the FRIEDMAN METHOD Ii

Assume that a cryptotext is organized into l columns headed by the letters of the keyword

key letters S1 S2 S3 . . . SL

x1 x2 x3 . . . xL
xL+1 xL+2 xL+3 x2L
x2L+1 x2L+2 x2L+3 . . . x3L

. . . .

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

the same column is 0.065.

different columns is 0.038.

The number of pairs of letters in the same column: L
2
· n
L

( n
L
− 1) = n(n−L)

2L

The number of pairs of letters in different columns: L(L−1)
2
· n2
L2

= n2(L−1)
2L

The expected number A of pairs of equals letters is A = n(n−L)
2L
· 0.065 + n2(L−1)

2L
· 0.038

Since I = A
n(n−1)

2

= 1
L(n−1)

[0.027n + L(0.038n − 0.065)]

one gets the formula for L from one of the previous slides.
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ONE-TIME PAD CRYPTOSYSTEM – Vernam’s cipher

Binary case:
plaintext w
key k
cryptotext c



 are all binary words of the same length

Encryption: c = w ⊕ k
Decryption: w = c ⊕ k
Example:

w = 101101011

k = 011011010

c = 110110001

What happens if the same key is used twice or 3 times for encryption?

If c1 = w1 ⊕ k, c2 = w2 ⊕ k, c3 = w3 ⊕ k

then

c1 ⊕ c2 = w1 ⊕ w2

c1 ⊕ c3 = w1 ⊕ w3

c2 ⊕ c3 = w2 ⊕ w3

Therefore if plaintexts w1,w2,w3 are texts in a natural language, then the last three
equalities allow often, from the knowledge of cryptotexts, to recover plaintexts - by
exploiting a natural language redundancy.
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NEVER USE ONE-TIME PAD TWICE WITH THE SAME KEY

The reuse of keys by Soviet Union spies (due to the
maanufacturer’s accidental duplication of one-time-pad
pages) enabled US cryptanalysts to unmask the atomic spy
Klaus Fuchs in 1949.
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PERFECT SECRET-KEY CRYPTOSYSTEMS- I.

By Shannon a cryptosystem is secure if a posterior
distribution of the plaintext P after we know the
cryptotext C is equal to the a priory distribution of the
plaintext.

Formally, for all pairs plaintext p and cryptotext c such
that Prob[C = c] 6= 0 it holds that

Prob[P = p|C = c] = Prob[P = p].

Example ONE-TIME PAD cryptosystem is perfectly secure
because for any pair c , p there exists a key k such that

c = k ⊕ p.
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PERFECT SECRECY of ONE-TIME PAD

One-time pad cryptosystem is perfectly secure because

For any cryptotext
c = c1c2 . . . cn

and any plaintext
p = p1p2 . . . pn

there exists a key (and all keys were chosen with the same probability)

k = k1k2 . . . kn

such that
c = p ⊕ k

Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.

Yes:
1 ONE-TIME PAD cryptosystem is used in critical applications

2 It suggests an idea how to construct practically secure cryptosystems.
IDEA: Find a simple way to generate almost perfectly random key shared by both
communicating parties and make them to use this key for one-time pad encoding
and decoding!!!!
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PERFECT SECRECY of ONE-TIME PAD ONCE MORE

For
every cryptotext c

every element p of the set of plaintexts has the same
probability

that p was the plaintext the encryption of which provided
c as the cryptotext.
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CURRENT ROLE of SUBSTITUTION SYSTEMS

Substitution ciphers alone are no longer of use.

They can be used in a combination with other ciphers
as product ciphers.

However, from a sufficiently abstract perspective,
modern bit-oriented block ciphers (DES, AES,...) can
be viewed as substitution ciphers on enormously large
binary alphabets.

Moreover, modern block ciphers often include smaller
substitution tables, called S-boxes.
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I N J E D E M M E N
S C H E N G E S I C
H T E S T E H T S E
I N E G E S C H I C
H T E T O J E O N O

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a7c2d2e14f 2i7l3m1n8o4q3r 2s4t8v 12x1

what stands for: “data aequatione quodcumque fluentes quantitates involvente, fluxiones
invenire et vice versa”

Example

Solution: ??

a2cdef 3g 2i2jkmn3o5prs2t2u3z
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KEYWORD CAESAR CRYPTOSYSTEM

This will be an example showing that cryptanalysis often require qualified guessing.

Keyword Caesar cryptosystem is given by choosing an integer 0 < k < 25 and a
string, called keyword, of length at most 25 with all letters different.

The keyword is then written bellow the English alphabet letters, beginning with
the k-symbol, and the remaining letters are written in the alphabetic order and
cyclically after the keyword.

Example: keyword: HOW MANY ELKS, k = 8

0 8
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
P Q R T U V X Z H O W M A N Y E L K S B C D F G I J
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KEYWORD CAESAR - Example I

Example Decrypt the following cryptotext encrypted using the KEYWORD CAESAR and
determine the keyword and k

T I V D Z C R T I C F Q N I Q T U T F
Q X A V F C Z F E Q X C P C Q U C Z W K
Q F U V B C F N R R T X T C I U A K W T Y
D T U P M C F E C X U U V U P C B V A N H C
V R U P C F E Q X C U P C F U V B C
X V I U Q T I F F U V I C F N F N Q A A K
V I U P C U V E U V U Q G C Q F Q N I Q
W Q U P T U T F Q A F V I C X C F F Q M K
U P Q U U P C F U V B C T F E M V E C M A K
P C Q U C Z Q I Z U P Q U K V N P Q B C
U P C R Q X T A T U K V R U P M V D T I Y
D Q U C M V I U P C F U V I C F
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KEYWORD CAESAR - Example II

Step 1. Make the
frequency counts:

Number

U 32
C 31
Q 23
F 22
V 20
P 15
T 15
I 14
A 8

180=74.69%

Number

X 8
K 7
N 7
E 6
M 6
R 6
B 5
Z 5
D 4

54=22.41%

Number

W 3
Y 2
G 1
H 1
J 0
L 0
O 0
S 0

7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q.They must be A and I. Since
T occurs once and Q three times it is likely that T is I and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only once.
Hence

UPC is likely to be THE.

Let us now decrypt the remaining letters in the high frequency group: F,V,I

From the words TU, TF ⇒ F=S
From UV ⇒ V=O
From VI ⇒ I=N
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CONTINUATION

So we have: T=I, Q=A, U=T, P=H, C=E, F=S, V=O, I=N and now in

T I V D Z C R T I C F Q N I Q T U T F
Q X A V F C Z F E Q X C P C Q U C Z W K
Q F U V B C F N R R T X T C I U A K W T Y
D T U P M C F E C X U U V U P C B V A N H C
V R U P C F E Q X C U P C F U V B C
X V I U Q T I F F U V I C F N F N Q A A K
V I U P C U V E U V U Q G C Q F Q N I Q
W Q U P T U T F Q A F V I C X C F F Q M K
U P Q U U P C F U V B C T F E M V E C M A K
P C Q U C Z Q I Z U P Q U K V N P Q B C
U P C R Q X T A T U K V R U P M V D T I Y
D Q U C M V I U P C F U V I C F

we have several words with only one unknown letter what leads to another guesses and
the table:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
L V E W P S K M N ? Y ? R U ? H A F ? I T O B C G D

This leads to the keyword CRYPTOGRAPHY GIVES ME FUN and k = 4 - find out
hpw
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SHANNON’s CONTRIBUTIONS to
UNDERSTANDING CIPHERS

Also for understanding quality of secret key ciphers of large importance was Clause
Shannon’s paper A Communication Theory of Secrecy systems.

Shannon introduced several advance mathematical technique to scientific
cryptography.

Shannon demonstrated several important features of the statical nature of natural
languages that makes solution to many problems of ciphers very straightforward.

One of the main contribution of the above Shannon’s paper was the development of
a measure of cryptohgraphic strength of ciphers encoded messages of natural
languages called unicity distance.
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UNICITY DISTANCE - MOTIVATION -
INFORMALLY

The unicity distance of a cipher encrypting natural language plaintexts is the minimum of
cryptotexts required for computationally unlimited adversaries to decrypt cryptotext
uniquely (to recover uniquely key used).

Example 1: Let WNAIW be cryptotext obtained by encoding an English word by
Vigenere key cipher with the key of the length 5. Can one determine uniquely the
plaintext?

One can find two fully satisfactory solutions: RIVER, WATER and many
nonsatisfactory as KHDOP, SXOOS, but not the unique plaintext.

Example 2: Let cryptotext FJKFPO was obtained by encrypting an English text
using a monoalphabetic substitution cipher. Can we find the unique plaintext?

Possible plaintexts are thatis, ofyour, season, oxford, thatof,.... but there is no
way to determine the plaintext uniquely.
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UNICITY DISTANCE - BASIC RESULT

The expected unicity distance UC ,K ,L of a cipher C and a
key set K for a plaintext language L can be shown to be:

UC ,K ,L =
HK

DL

where HK is the entropy of the key space (e.g 18 for 2128

equiprobably keys), DL is the plaintext redundancy in bits
per character.

Redundancy: Each character in English can convey
lg(26) = 4.7 bits of information.

However, the average amount of actual information carried
per character in meaningful English text is only about 1.5
bits per character.

So the plaintext redundancy redundancy is
4.7− 1.5 = 3.2.
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EXAMPLES

Simple monoalphabetic substitution cipher: Number of possible keys is 26! ≈ 288.4.
Assuming that all keys (permutations) are are equally probable we have
HK = lg(26!) = 88.4 bits.

Since for English text DL = 3.2, we have for the unicity distance

U =
88.4

3.2
= 28

Conclusion Given at least 28 characters of the cryptotext it should be
theoretically to find unique plaintext (and key).

Other ciphers: Atbash cipher: Number of keys: 1; unicity distance: 0 characters
Ceaser cipher: Number of keys: 25; unicity distance: 2 characters
Affine cipher: Number of keys: 311; unicity distance: 3
Playfair cipher: Number of keys: 25!; unicity distance: 27
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COMMENTS

Observe that Unicity distance is only a theoretical minimum.

In general one may need much more characters to reliably break a cipher - say 100
for simple monoalphabetic substitution cipher.

Unicity distance is a useful theoretical measure, but it does not say much about
security of a block cipher when attacked by an adversary with real-world (limited)
resources.

Unicity distance is not a measure of how much cryptotext is needed for
ctyptanalysis, but how much cryptotext is required for there to be only one
reasonable solution for cryptanalysis.
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ANAGRAMS – EXAMPLES

German:

IRI BRÄTER, GENF Briefträgerin
FRANK PEKL, REGEN . . .
PEER ASSSTIL, MELK . . .
INGO DILMR, PEINE . . .
EMIL REST, GERA . . .
KARL SORDORT, PEINE . . .

English:

algorithms logarithms
antagonist stagnation
compressed decompress
coordinate decoration
creativity reactivity
deductions discounted
descriptor predictors
impression permission
introduces reductions
procedures reproduces
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SOME SOLUTIONS

FRANK PEKL, REGEN Krankenpfleger

PEER ASTIL, MELK Kapellmeister

INGO DILMR, PEINE Diplomengineer

EMIL REST, GERA Lagermeister
KARL SORDORT, PEINE Personaldirector
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APPENDIX I

APPENDIX I
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FAMOUS CRYPTOGRAPHERS

Girolamo Cardano (1501-1576) - father of probability
theory
De la Bigotiere Viete (1540-1603) - father of modern
algebra.
Antoine Rosignol (father of Cryptology for France)
John Wallis (1616-1703) (father of Cryptology for
England)
Thomas Jefferson (1743-1826) - Father of American
Cryptography)
Charles Babbage (broke Vigenere cryptosystem - the
inventor of the first universal computer).
Allan Turing (broke ENIGMA, design BOMBS, basic
result on computer universality).
John Nash (Nobel price for game theory and
economics)
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CODEBOOKS CRYPTOGRAPHY

In the middle age, messages were mostly encrypted with ”code books” (codebooks).

In this set-up communicating parties, say Alice and Bob, shared some secret
information, called the codebook.

Such a code-book can be a simple letter-to-letter substitution or a more complex
word-by-word substitution.

Communication: A sender encrypts her message using secret codebook and the
receiver uses the same codebook to decrypt the encrypted message.

An eavesdropper cannot, in theory, decrypt the message because she does not posses
the secret codebook.

A more modern term for ”codebook” is the ”key”.

Codebooks were intensively used during the first World War. Some had up 1000 000
encoding rules. The fact that allies were able to obtained huge codebooks from
several destroyed war ships helped Allies much.

Till recently it was assumed that secret codebooks are necessary for secret
communication.
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NOMENCLATORS

Nomenclators were in use from the end of 14th century for 450 years.

Nomenclators combined a substitution cryptosystem (in which symbols were replaced
by numbers) with codebook ciphers in which words were replaced by numbers.

At the beginning codebook had codes only for names of people (therefore such a
name - nomenclators), later codes were used also for names of places and so on.

Some nomenclators had huge codebooks, up to 50 000 entries.

Famous was the nomenclator designed by very famous French cryptologist Rosignol,
for Ludvig XIV, that was not broken for several hundred of years.

It was the design of the telegraph and the need for field ciphers to be used in
combat that ended the massive use of nomenclators and started a new history of
cryptography dominated by polyalphabetic substitution cryptosystems.
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DEVELOPMENTS in CRYPTOGRAPHY

Cryptography has been practiced already for centuries.

Cryptography is needed in all situations involving long-distance (in time/space)
where secrecy and (mis)trust are key factors.

The advent of computers and development of computational complexity has
changed situation.

Achieving this progress has required formalization of some notions - such as
randomness, knowledge, in-distinguishibility and proof - whose mathematical
formalisation seems very elusive.
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STREAMS CRYPTOSYSTEMS

Two basic types of cryptosystems are:

Block cryptosystems (Hill cryptosystem,. . . ) – they are used to encrypt
simultaneously blocks of plaintext.

Stream cryptosystems (CAESAR, ONE-TIME PAD,. . . ) – they encrypt plaintext
letter by letter, or block by block, using an encryption that may vary during the
encryption process.

Stream cryptosystems are more appropriate in some applications (telecommunication),
usually are simpler to implement (also in hardware), usually are faster and usually have no
error propagation (what is of importance when transmission errors are highly probable).

Two basic types of stream cryptosystems: secret key cryptosystems (ONE-TIME PAD)
and public-key cryptosystems (Blum-Goldwasser)
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BLOCK versus STREAM CRYPTOSYSTEMS

In block cryptosystems the same key is used to encrypt arbitrarily long plaintext – block
by block - (after dividing each long plaintext w into a sequence of subplaintexts (blocks)
w1w2w3 ).

In stream cryptosystems different blocks may be encrypted using different keys

The fixed key k is used to encrypt all blocks. In such a case the
resulting cryptotext has the form

c = c1c2c3 . . . = ek(w1)ek(w2)ek(w3) . . .

A stream of keys is used to encrypt subplaintexts. The basic idea is to
generate a key-stream K = k1, k2, k3, . . . and then to compute the
cryptotext as follows

c = c1c2c3 . . . = ek1(w1)ek2(w2)ek3(w3).
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CRYPTOSYSTEMS WITH STREAMS OF KEYS

Various techniques are used to compute a sequence of keys. For example, given a key k

ki = fi (k, k1, k2, . . . , ki−1)

In such a case encryption and decryption processes generate the following sequences:

Encryption: To encrypt the plaintext w1w2w3 . . . the sequence

k1, c1, k2, c2, k3, c3, . . .

of keys and sub-cryptotexts is computed.

Decryption: To decrypt the cryptotext c1c2c3 . . . the sequence

k1,w1, k2,w2, k3,w3, . . .

of keys and subplaintexts is computed.
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EXAMPLES

A keystream is called synchronous if it is independent of the plaintext.

KEYWORD VIGENERE cryptosystem can be seen as an example of a synchronous
keystream cryptosystem.

Another type of the binary keystream cryptosystem is specified by an initial sequence of
keys k1, k2, k3 . . . km

and an initial sequence of binary constants b1, b2, b3 . . . bm−1.

The remaining keys are then computed using the rule

ki+m =
∑m−1

j=0 bjki+j mod 2

A keystream is called periodic with period p if ki+p = ki for all i .

Example Let the keystream be generated by the rule

ki+4 = ki ⊕ ki+1

If the initial sequence of keys is (1,0,0,0), then we get the following keystream:

1,0,0,0,1,0,0,1,1,0,1,0 1,1,1, . . .

of period 15.
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PRODUCT CRYPTOSYSTEMS

A cryptosystem S = (P,K ,C , e, d) with the sets of plaintexts P, keys K and cryptotexts
C and encryption (decryption) algorithms e(d) is called endomorphic if P = C .

If S1 = (P,K1,P, e
(1), d (1))andS2 = (P,K2,P, e

(2), d (2)) are endomorphic cryptosystems,
then the product cryptosystem is

S1 ⊗ S2 = (P,K1 ⊗ K2,P, e, d),

where encryption is performed by the procedure

e(k1,k2)(w) = ek2(ek1(w))

and decryption by the procedure

d(k1,k2)(c) = dk1(dk2(c)).

Example (Multiplicative cryptosystem):

Encryption: ea(w) = aw mod p; decryption: da(c) = a−1c mod 26.

If M denote the multiplicative cryptosystem, then clearly CAESAR × M is actually the
AFFINE cryptosystem.

Exercise Show that also M ⊗ CAESAR is actually the AFFINE cryptosystem.

Two cryptosystems S1 and S2 are called commutative if S1 ⊗ S2 = S2 ⊗ S1.

A cryptosystem S is called idempotent if S ⊗ S = S .
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APPENDIX III

APPENDIX III
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CAESAR UPDATED

It is common to assume that English alphabet has 26
letters when CAESAR cryptosystems is described.
This is misleading because at CAESAR time the
alphabet had only 21 symbols.

Letters ”X” and ”Z” were foreign characters, used in order to transcript Greek words;
Letters ”I” and ”J” were the same one – ”I”.
Letters ”U” and ”V” were also the same – ”V”
Letter ”W” did not exist.

CAESAR cryptosystem is a special case of the AFFINE
cryptosystem.
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CRYPTOGRAPHY as a WAR WEAPON

After great success of cryptography in second World
war, cryptography products were considered as war
weapons and regulated as such.

Import-export organisations, salesmen, developers,
researchers and publishers were controlled by
government agencies in many countries.

Switzerland was the only cryptographic paradise where
one could freely set up companies for cryptographic
products
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