

ROSETTA SPACECRAFT

ROSETTA spacecraft

- In 1993 in Europe Rosetta spacecraft project started.
- In 2004 Rosetta spacecraft was launched.
- In August 2015 Rosetta spacecraft got on the orbit of the comet 67P (one of 4000 known comets of the solar systems) and sent to earth a lot of photos of 67P.
- In spite of the fact that the comet 67P is 500 millions of kilometers from the earth and there is a lot of noise for signals on the way encoding of photos arrived in such a form that they could be decoded to get excellent photos of the comet.
- All that was, to large extent due to the enormous level coding theory has already had in 1993.
- Since that time coding theory has made another enormous progress that has allowed, among other things, almost perfect mobile communication and transmission of music in time and space.

CHAPTER 1: BASICS of CODING THEORY

ABSTRACT - September 23, 2015

Coding theory - theory of error correcting codes - is one of the most interesting and applied part of informatics.

Goals of coding theory are to develop systems and methods that allow to detect/correct errors caused when information is transmitted through noisy channels.

All real communication systems that work with digitally represented data, as CD players, TV, fax machines, internet, satellites, mobiles, require to use error correcting codes because all real channels are, to some extent, noisy - due to various interference/destruction caused by the environment

- Coding theory problems are therefore among the very basic and most frequent problems of storage and transmission of information.
- Coding theory results allow to create reliable systems out of unreliable systems to store and/or to transmit information.
- Coding theory methods are often elegant applications of very basic concepts and methods of (abstract) algebra.

This first chapter presents and illustrates the very basic problems, concepts, methods and results of coding theory. IV054 1. Basics of coding theor

5/1

7/1

CHANNEL

prof. Jozef Gruska

prof. Jozef Gruska

is any physical medium in which information is stored or through which information is transmitted.

(Telephone lines, optical fibres and also the atmosphere are examples of channels.)

NOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbance, poor typing, poor hearing,

TRANSMISSION GOALS

- Encoding of information should be very fast.
- **2** Very similar messages should be encoded very differently.
- Transmission of encoded messages should be very easy.
- Decoding of received messages should be very easy.
- **5** Correction of errors introduced in the channel should be reasonably easy.
- Maximal amount of information should be transfered per a time unit.

BASIC METHOD OF FIGHTING ERRORS: REDUNDANCY!!!

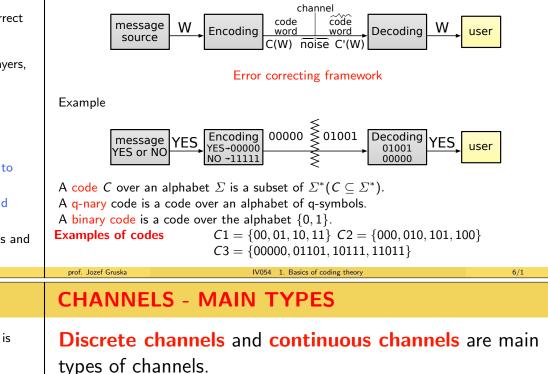
IV054 1. Basics of coding theory

Example: 0 is encoded as 00000 and 1 is encoded as 11111.

CODING - BASIC CONCEPTS

Without coding theory and error-correcting codes there would be no deep-space travel and pictures, no satellite TV, no compact disc, no ... no ... no

Error-correcting codes are used to correct messages when they are (erroneously) transmitted through noisy channels.



With an example of continuous channels we will deal in chapter 3. Two main models of noise in discrete channels are:

- Shannon stochastic (probabilistic) noise model: Pr(y|x) (probability of the output y if the input is x) is known and the probability of too many errors is low.
- Hamming adversarial (worst-case) noise model: Channel acts as an adversary that can arbitrarily corrupt the input codeword subject to a bound on the number of errors.

ef	Gruska	

prof. Joz

DISCRETE CHANNELS - MATHEMATICAL VIEWS	BASIC CHANNEL CODING PROBLEMS		
 Formally, a discrete Shannon stochastic channel is described by a triple C = (Σ, Ω, p), where Σ is an input alphabet Ω is an output alphabet p is a probability distribution on Σ × Ω and for i ∈ Σ, o ∈ Ω, p(i, o) is the probability that the output of the channel is o if the input is i. 	Summary: The task of a communication channel coding is to encode the information sent over the channel in such a way that even in the presence of some channel noise, several errors can be detected and/or corrected. There are two basic coding methods		
IMPORTANT CHANNELS Binary symmetric channel maps, with fixed probability p_0 , each binary input into opposite one. Hence, $Pr(0, 1) = Pr(1, 0) = p_0$ and $Pr(0, 0) = Pr(1, 1) = 1 - p_0$. Binary erasure channel maps, with fixed probability p_0 , binary inputs into $\{0, 1, e\}$, where e is so called the erasure symbol, and $Pr(0, 0) = Pr(1, 1) = p_0$, $Pr(0, e) = Pr(1, e) = 1 - p_0$.	 BEC (Backward Error Correction) Coding allows the receiver only to detect errors. If an error is detected, then the sender is requested to retransmit the message. FEC (Forward Error Correction) Coding allows the receiver to correct a certain amount of errors. 		
WHY WE NEED TO IMPROVE ERROR-CORRECTING CODES	prof. Jozef Gruska IV054 1. Basics of coding theory 10/1 BASIC IDEA of ERROR CORRECTION		
 When error correcting capabilities of some code are improved - that is a better code is found - this has the following impacts: For the same quality of the received information, it is possible to achieve that the transmission system operates in more severe conditions; For example; It is possible to reduce the size of antennas or solar panels and the weight of batteries; In the space travel systems such savings can be measured in hundred of thousands of dollars; In mobile telephone systems, improving the code enables the operators to increase the potential number of users in each cell. Another field of applications of error-correcting codes is that of mass memories: computer hard drives, CD-ROMs, DVDs and so on. 	Details of the techniques used to protect information against noise in practice are sometimes rather complicated, but basic principles are mostly easily understood. The key idea is that in order to protect a message against a noise, we should encode the message by adding some redundant information to the message. In such a case, even if the message is corrupted by a noise, there will be enough redundancy in the encoded message to recover – to decode the message completely.		

11/1

prof. Jozef Gruska

IV054 1. Basics of coding theory

12/1

IV054 1. Basics of coding theory

prof. Jozef Gruska

	EXAMPLE
The basic idea of so called majority voting decoding/principle or of maximal likelihood decoding/principle is	In case: (a) the encoding $0 \rightarrow 000 1 \rightarrow 111$, is used, (b) the probability of the bit error is $p < \frac{1}{2}$, and (c) the following majority voting decoding
to decode a received message w'	$000,001,010,100 \rightarrow 000 \text{and} 111,110,101,011 \rightarrow 111$ is used, then the probability of an erroneous decoding (for the case of 2 or 3 errors) is
by a codeword w that is the closest one to w'	$3p^2(1-p) + p^3 = 3p^2 - 2p^3 < p$
in the whole set of the potential codewords of a given code C .	
prof. Jozef Gruska IV054 1. Basics of coding theory 13/1	prof. Jozef Gruska IV054 1. Basics of coding theory 14/1
EXAMPLE: Coding of a path avoiding an enemy territory	BASIC TERMINOLOGY
	Datawords - words of a message
Story Alice and Bob share an identical map (Fig. 1) gridded as shown in Fig.1. Only Alice knows the route through which Bob can reach her avoiding the enemy territory. Alice wants to send Bob the following information about the safe route he should take.NNWNNWWSSWWNNNNWWNThree ways to encode the safe route from Bob to Alice are:Im C1 = { $N = 00, W = 01, S = 11, E = 10$ }In such a case any error in the code word 000001000001011111010000000010100N	 Codewords - words of some code. Block code - a code with all codewords of the same length. Basic assumptions about channels Code length preservation. Each output word of a channel has the same length as the input codeword. Independence of errors. The probability of any one symbol being affected by an error in transmissions is the same. Basic strategy for decoding For decoding we use the so-called maximal likelihood principle, or nearest neighbor
Alice knows the route through which Bob can reach her avoiding the enemy territory. Alice wants to send Bob the following information about the safe route he should take. NNWNNWWSSWWNNNWWN Three ways to encode the safe route from Bob to Alice are: $\square C1 = \{N = 00, W = 01, S = 11, E = 10\}$ In such a case any error in the code word 000001000001011111010000000010100 would be a disaster. $\square C2 = \{000, 011, 101, 110\}$ Fig. 1	 Codewords - words of some code. Block code - a code with all codewords of the same length. Basic assumptions about channels Code length preservation. Each output word of a channel has the same length as the input codeword. Independence of errors. The probability of any one symbol being affected by an error in transmissions is the same. Basic strategy for decoding For decoding we use the so-called maximal likelihood principle, or nearest neighbor decoding strategy, or majority voting decoding strategy which says that
Alice knows the route through which Bob can reach her avoiding the enemy territory. Alice wants to send Bob the following information about the safe route he should take. NNWNNWWSSWWNNNWWN Three ways to encode the safe route from Bob to Alice are: $\square C1 = \{N = 00, W = 01, S = 11, E = 10\}$ In such a case any error in the code word 000001000001011111010000000010100 would be a disaster. $\square C2 = \{000, 011, 101, 110\}$ A single error in encoding each of symbols N, W, S, E can be detected.	 Codewords - words of some code. Block code - a code with all codewords of the same length. Basic assumptions about channels Code length preservation. Each output word of a channel has the same length as the input codeword. Independence of errors. The probability of any one symbol being affected by an error in transmissions is the same. Basic strategy for decoding For decoding we use the so-called maximal likelihood principle, or nearest neighbor
Alice knows the route through which Bob can reach her avoiding the enemy territory. Alice wants to send Bob the following information about the safe route he should take. NNWNNWWSSWWNNNWWN Three ways to encode the safe route from Bob to Alice are: $\square C1 = \{N = 00, W = 01, S = 11, E = 10\}$ In such a case any error in the code word 000001000001011111010000000010100 would be a disaster. $\square C2 = \{000, 011, 101, 110\}$ Fig. 1	 Codewords - words of some code. Block code - a code with all codewords of the same length. Basic assumptions about channels Code length preservation. Each output word of a channel has the same length as the input codeword. Independence of errors. The probability of any one symbol being affected by an error in transmissions is the same. Basic strategy for decoding For decoding we use the so-called maximal likelihood principle, or nearest neighbor decoding strategy, or majority voting decoding strategy which says that

HAMMING DISTANCE

The intuitive concept of "closeness" of two words is well formalized through Hamming distance h(x, y) of words x, y. For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.

Example:

h(10101, 01100) = 3, h(fourth, eighth) = 4

Properties of Hamming distance

■ $h(x, y) = 0 \Leftrightarrow x = y$ ≥ h(x, y) = h(y, x)■ $h(x, z) \le h(x, y) + h(y, z)$ triangle inequality An important parameter of codes *C* is their minimal distance.

 $h(C) = \min\{h(x, y) \mid x, y \in C, x \neq y\},\$

Therefore, h(C) is the smallest number of errors that can change one codeword into another.

Basic error correcting theorem

I A code C can detect up to s errors if $h(C) \ge s + 1$.

A code C can correct up to t errors if $h(C) \ge 2t + 1$.

Proof (1) Trivial. (2) Suppose $h(C) \ge 2t + 1$. Let a codeword x is transmitted and a word y is received with $h(x, y) \le t$. If $x' \ne x$ is any codeword, then $h(y, x') \ge t + 1$ because otherwise h(y, x') < t + 1 and therefore $h(x, x') \le h(x, y) + h(y, x') < 2t + 1$ what contradicts the assumption $h(C) \ge 2t + 1$.

POWER of PARITY BITS

Example Let all 2^{11} of binary words of length 11 be codewords and let the probability of a bit error be $p = 10^{-8}$. Let bits be transmitted at the rate 10^7 bits per second. The probability that a word is transmitted incorrectly is approximately

$$11p(1-p)^{10} pprox rac{11}{10^8}.$$

Therefore $\frac{11}{10^8} \cdot \frac{10^7}{11} = 0.1$ of words per second are transmitted incorrectly. Therefore, one wrong word is transmitted every 10 seconds, 360 erroneous words every hour and 8640 words every day without being detected!

Let now one parity bit be added.

Any single error can be detected!!!

The probability of at least two errors is:

 $1-(1ho)^{12}-12(1ho)^{11}
hopprox inom{12}{2}(1ho)^{10}
ho^2pprox rac{66}{10^{16}}$

Therefore, approximately $\frac{66}{10^{16}}\cdot\frac{10^7}{12}\approx 5.5\cdot 10^{-9}$ words per second are transmitted with an undetectable error.

Corollary One undetected error occurs only once every 2000 days! $(2000 \approx \frac{10^9}{5.5 \times 86400})$.

BINARY SYMMETRIC CHANNEL

Consider a transition of binary symbols such that each symbol has probability of error $p < \frac{1}{2}$.

Binary symmetric channel

If n symbols are transmitted, then the probability of t errors is

 $p^t(1-p)^{n-t}\binom{n}{t}$

In the case of binary symmetric channels, the "nearest neighbour decoding strategy" is also "maximum likelihood decoding strategy".

Example Consider $C = \{000, 111\}$ and the nearest neighbour decoding strategy. Probability that the received word is decoded correctly

as 000 is
$$(1-p)^3 + 3p(1-p)^2$$
,
as 111 is $(1-p)^3 + 3p(1-p)^2$,

Therefore $P_{err}(C) = 1 - ((1-p)^3 + 3p(1-p)^2)$ is the probability of an erroneous decoding.

Example If p = 0.01, then $P_{err}(C) = 0.000298$ and only one word in 3356 will reach the user with an error.

TWO-DIMENSIONAL PARITY CODE

The **two-dimensional parity code** arranges the data into a two-dimensional array and then to each row (column) parity bit is attached. **Example** Binary string

10001011000100101111

is represented and encoded as follows

1	0	0	0	1	1	0	0	0	1	0
				T	0	1	1 0 1	0	0	0
0	1	1	0	0	 0	1	Ο	0	1	0
0	1	0 1	0	1	0	1	1	1	1	0
0	1	1	1	1						
U	-	-	-	-	1	1	0	1	1	0

Question How much better is two-dimensional encoding than one-dimensional encoding?

prof.	Jozef	Gruska	

19/1

IV054 1. Basics of coding theory

NOTATIONS and EXAMPLES	EXAMPL	ES from DEEP SPACE TRAVELS	
Notation: An (n, M, d) -code C is a code such that = n - is the length of codewords. = M - is the number of codewords. = d - is the minimum distance in C . Example: $C1 = \{00, 01, 10, 11\}$ is a $(2,4,1)$ -code. $C2 = \{000, 011, 101, 110\}$ is a $(3,4,2)$ -code. $C3 = \{00000, 01101, 10110, 11011\}$ is a $(5,4,3)$ -code. Comment: A good (n, M, d) -code has small n , large M and also large d .	 In 1965 photos. pixel wa Hadama Transm In 1970 700 × 8 	Fransmission of photographs from the deep space) -69 Mariner 4-5 probes took the first photographs of another plane Each photo was divided into 200 × 200 elementary squares - pixel is assigned 6 bits representing 64 levels of brightness. and so called ard code was used. -72 Mariners 6-8 took such photographs that each picture was bro 332 squares. So called Reed-Muller (32,64,16) code was used. 	s. Each ken into
prof. Jozef Gruska IV054 1. Basics of coding theory	21/1 prof. Jozef Gruska	IV054 1. Basics of coding theory	22/1
HADAMARD CODE	CODES R	ATES	
In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code the correct up to 7 errors. Hadamard code has 64 codewords. 32 of them are represented by the 32 × $H = \{h_{IJ}\}$, where $0 \le i, j \le 31$ and $h_{ij} = (-1)^{a_0b_0+a_1b_1++a_4b_4}$ where i and j have binary representations $i = a_4a_3a_2a_1a_0, j = b_4b_3b_2b_1b_0$ The remaining 32 codewords are represented by the matrix $-H$. Decoding was quite simple.	The code rate of the co	n, M, d)-code we define the code rate, or information rate, R, by $R = \frac{lg_q M}{n}$. The represents the ratio of the number of needed input data symbols ransmitted code symbols. The bas code rate R , then we say that it transmits R q-symbols per a number of bits per a channel use (bpc) - in the case of binary all $R/32$ for Hadamard code), is an important parameter for real ions, because it shows what fraction of the communication bandwide transmit actual data.	a channel phabet.

The ISBN-code I	The ISBN-code II
Each book till 1.1.2007 had International Standard Book Number which was a 10-digit codeword produced by the publisher with the following structure: $I \qquad p \qquad m \qquad w \qquad = x_1 \dots x_{10}$ language publisher number weighted check sum 0 07 709503 0 such that $\sum_{i=1}^{10} (11 - i)x_i \equiv 0 \pmod{11}$ The publisher has to put $x_{10} = X$ if x_{10} is to be 10. The ISBN code was designed to detect: (a) any single error (b) any double error created by a transposition Let $X = x_1 \dots x_{10}$ be a correct code and let $Y = x_1 \dots x_{j-1}y_j x_{j+1} \dots x_{10}$ with $y_j = x_j + a, a \neq 0$ In such a case: $\sum_{i=1}^{10} (11 - i)y_i = \sum_{i=1}^{10} (11 - i)x_i + (11 - j)a \neq 0 \pmod{11}$	Transposition detection Let x_j and x_k be exchanged. $\sum_{i=1}^{10} (11-i)y_i = \sum_{i=1}^{10} (11-i)x_i + (k-j)x_j + (j-k)x_k = (k-j)(x_j - x_k) \neq 0 \pmod{11}$ if $k \neq j$ and $x_j \neq x_k$.
prof. Jozef Gruska IV054 1. Basics of coding theory 25/1	prof. Jozef Gruska IV054 1. Basics of coding theory 26/1
New ISBN code	EQUIVALENCE of CODES
<pre>Starting 1.1.2007 instead of 10-digit ISBN code a 13-digit ISBN code is being used. New ISBN number can be obtained from the old one by preceding the old code with three digits 978. For details about 13-digit ISBN see http://www.en.wikipedia.org/Wiki/International_Standard_Book_Number</pre>	Definition Two q-ary codes are called equivalent if one can be obtained from the other by a combination of operations of the following type: (a) a permutation of the positions of the code. (b) a permutation of symbols appearing in a fixed position. Question: Let a code be displayed as an M × n matrix. To what correspond operations (a) and (b)? Claim: Distances between codewords are unchanged by operations (a), (b). Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same number of errors). Examples of equivalent codes (1) $\begin{cases} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{cases} \begin{cases} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{cases}$ (2) $\begin{cases} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 2 & 2 & 2 \end{cases} \begin{cases} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{cases}$ Lemma Any q-ary (n, M, d)-code over an alphabet $\{0, 1, \ldots, q - 1\}$ is equivalent to an (n, M, d)-code which contains the all-zero codeword $00 \ldots 0$. Proof Trivial.

THE MAIN CODING THEORY PROBLEM	EXAMPLE			
A good (n, M, d) -code should have a small n , large M and large d . The main coding theory problem is to optimize one of the parameters n , M , d for given values of the other two. Notation: $A_q(n, d)$ is the largest M such that there is an q -nary (n, M, d) -code. Theorem (a) $A_q(n, 1) = q^n$; (b) $A_q(n, n) = q$. Proof a) First claim is obvious; b) Let C be an q -nary (n, M, n) -code. Any two distinct codewords of C have to differ in all n positions. Hence symbols in any fixed position of M codewords have to be different. Therefore $\Rightarrow A_q(n, n) \le q$. Since the q -nary repetition code is (n, q, n) -code, we get $A_q(n, n) \ge q$.	 Example Proof that A₂(5, 3) = 4. (a) Code C₃, page (??), is a (5, 4, 3)-code, hence A₂(5, 3) ≥ 4. (b) Let C be a (5, M, 3)-code with M = 5. By previous lemma we can assume that 00000 ∈ C. C has to contain at most one codeword with at least four 1's. (otherwise d(x, y) ≤ 2 for two such codewords x, y) Since 00000 ∈ C, there can be no codeword in C with at most one or two 1. Since d = 3, C cannot contain three codewords with three 1's. Since M ≥ 4, there have to be in C two codewords with three 1's. (say 11100, 00111), the only possible codeword with four or five 1's is then 11011. 			
prof. Jozef Gruska IV054 1. Basics of coding theory 29/1 DESIGN of ONE CODE from ANOTHER ONE	prof. Jozef Gruska IV054 1. Basics of coding theory 30/1 A COROLLARY			
Theorem Suppose <i>d</i> is odd. Then a binary (n, M, d) -code exists iff a binary $(n + 1, M, d + 1)$ -code exists. Proof Only if case: Let <i>C</i> be a binary (n, M, d) code. Let $C' = \{x_1 \dots x_n x_{n+1} x_1 \dots x_n \in C, x_{n+1} = (\sum_{i=1}^n x_i) \mod 2\}$ Since parity of all codewords in <i>C'</i> is even, $d(x', y')$ is even for all $x', y' \in C'$. Hence $d(C')$ is even. Since $d \le d(C') \le d + 1$ and <i>d</i> is odd, d(C') = d + 1. Hence <i>C'</i> is an $(n + 1, M, d + 1)$ -code. If case: Let <i>D</i> be an $(n + 1, M, d + 1)$ -code. Choose code words x, y of <i>D</i> such that d(x, y) = d + 1. Find a position in which x, y differ and delete this position from all codewords of <i>D</i> .	Corollary: If d is odd, then $A_2(n, d) = A_2(n + 1, d + 1)$. If d is even, then $A_2(n, d) = A_2(n - 1, d - 1)$. Example $A_2(5,3) = 4 \Rightarrow A_2(6,4) = 4$ $(5,4,3)$ -code $\Rightarrow (6,4,4)$ -code 0 0 0 0 0 1 1 0 1 1 0 1 1 0			
Resulting code is an (n, M, d) -code.				

A SPHERE and its VOLUME

GENERAL UPPER BOUNDS on CODE PARAMETERS

Notation F_q^n - is a set of all words of length n over the alphabet $\{0, 1, 2, \dots, q-1\}$

Definition For any codeword $u \in F_q^n$ and any integer $r \ge 0$ the sphere of radius r and centre u is denoted by

$$S(u,r) = \{v \in F_q^n \mid h(u,v) \leq r\}.$$

Theorem A sphere of radius r in F_q^n , $0 \le r \le n$ contains

$$\binom{n}{0} + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \ldots + \binom{n}{r}(q-1)^r$$

words.

Proof Let u be a fixed word in F_q^n . The number of words that differ from u in m positions is

 $\binom{n}{m}(q-1)^m$.

Theorem (The sphere-packing (or Hamming) bound) If C is a q-nary (n, M, 2t + 1)-code, then

$$M\left\{\binom{n}{0}+\binom{n}{1}(q-1)+\ldots+\binom{n}{t}(q-1)^t
ight\}\leq q^n$$

Proof Since minimal distance of the code C is 2t + 1, any two spheres of radius t centred on distinct codewords have no codeword in common. Hence the total number of words in M spheres of radius t centred on M codewords is given by the left side in (1). This number has to be less or equal to q^n .

A code which achieves the sphere-packing bound from (1), i.e. such a code that equality holds in (1), is called a **perfect code**.

Singleton bound: If C is an q-ary (n, M, d) code, then

$$M \leq q^{n-d+1}$$

prof. Jozef Gruska IV054 1. Basics of coding theory 33/1 prof. Jozef Gruska IV054 1. Basics of coding theory 34/1 A GENERAL UPPER BOUND on $A_a(n, d)$ **LOWER BOUND for** $A_a(n, d)$ Example An (7, M, 3)-code is perfect if $M\left(\binom{7}{0}+\binom{7}{1}\right)=2^{7}$ i.e. *M* = 16 An example of such a code: The following lower bound for $A_q(n, d)$ is known as Gilbert-Varshamov bound: 0010110,0001011,0111010,0011101,1001110,0100111,1010011,1101001,1110100} Theorem Given $d \leq n$, there exists a *q*-ary (n, M, d)-code with Table of $A_2(n, d)$ from 1981 $M \geq rac{q^n}{\sum_{i=0}^{d-1} {n \choose i} (q-1)^j}$ d = 3d = 5d = 7 n 2 5 4 and therefore 6 2 8 $A_q(n,d) \geq rac{q^n}{\sum_{i=0}^{d-1} {n \choose i} (q-1)^j}$ 7 2 2 16 2 8 20 4 9 40 6 2 10 2 72-79 12 11 144-158 24 4 12 256 32 4 13 512 64 8 14 16 1024 128 15 2048 256 32 16 2560-3276 256-340 36-37 For current best results see http://www.codetables.de prof. Jozef Gruska IV054 1. Basics of coding theory 35/1 prof. Jozef Gruska IV054 1. Basics of coding theory 36/1

ERROR DETECTION	PICTURES of SATURN TAKEN by VOYAGER
 Error detection is much more modest aim than error correction. Error detection is suitable in the cases that channel is so good that probability of an error is small and if an error is detected, the receiver can ask the sender to renew the transmission. For example, two main requirements for many telegraphy codes used to be: Any two codewords had to have distance at least 2; No codeword could be obtained from another codeword by transposition of two adjacent letters. 	Since pictures were in color, each picture was transmitted three times; each time through different color filter. The full color picture was represented by $3 \times 800 \times 800 \times 8 = 13360000$ bits. To transmit pictures Voyager used the so called Golay code G_{24} .
prof. Jozef Gruska IV054 1. Basics of coding theory 37/1 GENERAL CODING PROBLEM	prof. Jozef Gruska IV054 1. Basics of coding theory 38/1 Samuel Moorse
Important problems of information theory are how to define formally such concepts as information and how to store or transmit information efficiently. Let X be a random variable (source) which takes any value x with probability $p(x)$. The entropy of X is defined by $S(X) = -\sum_{x} p(x) lg \ p(x)$ and it is considered to be the information content of X. In a special case, of a binary variable X which takes on the value 1 with probability p at the value 0 with probability $1 - p$, then the information content of X is: $S(X) = H(p) = -p \ lg \ p - (1 - p) lg (1 - p)^1$ Problem: What is the minimal number of bits needed to transmit n values of X? Basic idea: Encode more (less) probable outputs of X by shorter (longer) binary words Example (Moorse code - 1838) a - b c d e f g h i j k l m - n o - p q r s t - u v w x y z	nd
prof. Jozef Gruska IV054 I. Basics of coding theory 39/1	prof. Jozef Gruska IV054 1. Basics of coding theory 40/1

SHANNON's NOISELESS CODING THEOREM	DESIGN of HUFFMAN CODE II		
Shannon's noiseless coding theorem says that in order to transmit n values of X, we need, and it is sufficient, to use $nS(X)$ bits.More exactly, we cannot do better than the bound $nS(X)$ says, and we can reach the bound $nS(X)$ as close as desirable. Example: Let a source X produce the value 1 with probability $p = \frac{1}{4}$ and the value 0 with probability $1 - p = \frac{3}{4}$ Assume we want to encode blocks of the outputs of X of length 4.By Shannon's theorem we need $4H(\frac{1}{4}) = 3.245$ bits per blocks (in average)A simple and practical method known as Huffman code requires in this case 3.273 bits per a 4-bit message.mess.codemess.code00001001001001010100111101011110101111010111101011110001111000111100011110001111000111111101111111011111110111111101111100011110000111110001111100	DESIGN of HUFFMAN CODE II Given a sequence of <i>n</i> objects, x_1, \ldots, x_n with probabilities $p_1 \ge \ldots \ge p_n$. Stage 1 - shrinking of the sequence. a Replace x_{n-1}, x_n with a new object y_{n-1} with probability $p_{n-1} + p_n$ and rearrange sequence so one has again non-increasing probabilities. b Keep doing the above step till the sequence shrinks to two objects. b Stage 2 - extending the code - Apply again and again the following method. If $C = \{c_1, \ldots, c_r\}$ is a prefix optimal code for a source S_r , then $C' = \{c'_1, \ldots, c'_{r+1}\}$ is an optimal code for S_{r+1} , where $c'_r = c_r $ $c'_{r+1} = c_r 0.$		
prof. Jozef Gruska IV054 1. Basics of coding theory 41/1	prof. Jozef Gruska IV054 1. Basics of coding theory 42/1		
DESIGN of HUFFMAN CODE II	A BIT OF HISTORY I		
Stage 2 Apply again and again the following method: If $C = \{c_1, \ldots, c_r\}$ is a prefix optimal code for a source S_r , then $C' = \{c'_1, \ldots, c'_{r+1}\}$ is a potimal code for S_{r+1} , where $f'_r = c_r + f_r + c_r + c_r + f_r + c_r + c_r + f_r + f_$	The subject of error-correcting codes arose originally as a response to practical problems in the reliable communication of digitally encoded information. The discipline was initiated in the paper Claude Shannon: A mathematical theory of communication , Bell Syst.Tech. Journal V27, 1948, 379-423, 623-656 Shannon's paper started the scientific discipline information theory and error-correcting codes are its part. Originally, information theory was a part of electrical engineering. Nowadays, it is an important part of mathematics and also of informatics.		

prof. Jozef Gruska

prof. Jozef Gruska

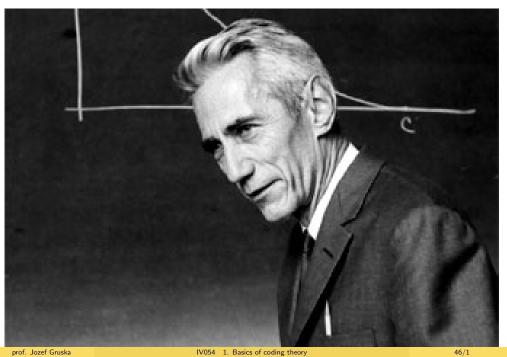
SHANNON's VIEW

In the introduction to his seminal paper "A mathematical theory of communication" Shannon wrote:

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.

IV054 1. Basics of coding theory

IV054 1. Basics of coding theory



IV054 1. Basics of coding theory

48/1

APPENDIX HARD VERSUS SOFT DECODING I At the beginning of this chapter the process encoding-channel transmission-decoding was illustrated as follows: channel code code message W Encoding Decoding user word word source C(W) noise C'(W) **APPENDIX** In that process a binary message is at first encoded into a binary codeword, then transmitted through a noisy channel, and, finally, the decoder receives, for decoding, a potentially erroneous binary message and makes an error correction. This is a simplified view of the whole process. In practice the whole process looks quite differently.

prof. Jozef Gruska

45/1

47/1

HARE

HARD versus SOFT DECODING II	HARD versus SOFT DECODING III
Here is a more realistic view of the whole encoding-transmission-decoding process:	

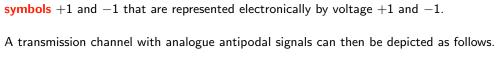


that is

- a binary message is at first transferred to a binary codeword;
- the binary codeword is then transferred to an analogue signal;
- the analogue signal is then transmitted through a noisy channel
- the received analogous signal is then transferred to a binary form that can be used for decoding and, finally
- decoding takes place.

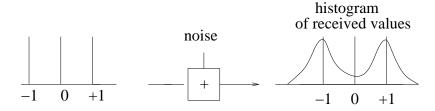
In case the analogous noisy signal is transferred before decoding to the binary signal we talk about a hard decoding;

In case the output of analogous-digital decoding is a pair (p_b, b) where p_b is the probability that the output is the bit b (or a weight of such a binary output (often given by a number from an interval $(-V_{max}, V_{max}))$, we talk about a soft decoding.



In order to deal with such a more general model of transmission and soft decoding, it is

common to use, instead of the binary symbols 0 and 1 so-called antipodal binary



A very important case in practise, especially for space communication, is so-called additive white Gaussian noise (AWGN) and the channel with such a noise is called Gaussian channel.

prof. Jozef Gruska	IV054 1. Basics of coding theory	49/1	prof. Jozef Gruska	IV054 1. Basics of coding theory	50/1
HARD versus SO	OFT DECODING - COMMENTS		BASIC FAMILI	ES of CODES	
estimations of an ana capability of the deco Since the decoder ha decoding on the basi have to be optimal a For example, in an in	eived by the decoder comes from a devise capable o alogue nature on the binary transmitted data the er oder can greatly be improved. Is in such a case an information about the reliability s of finding the codeword with minimal Hamming of nd the optimal decoding may depend on the type of anportant practical case of the Gaussian white noise ecoding for a codeword with minimal Euclidean dist	one search at the	date enco algo Stream codes calle flow stat usin and Hard decoding is us	of codes are ed also as algebraic codes that are appropriate t e of the same length and independent one from t oders have often a huge number of internal state orithms are based on techniques specific for each ed also as convolution codes that are used to pr <i>vs</i> of data. Their encoders often have only small n res and then decoders can use a complete represe ng so called <i>trellises</i> , iterative approaches via seve an exchange of information of probabilistic natu sed mainly for block codes and soft one for stream in these two families of codes are tending to blur.	the other. Their is and decoding code. rotect continuous number of internal entation of states eral simple decoders re.

51/1

NOTAT	IONAL	COMMENT	

prof. Jozef Gruska

The term code is often used also to denote a specific encoding algorithm that transfers any dataword, say of the size k, into a codeword, say of the size *n*. The set of all such codewords then forms the code in the original sense.

For the same code there can be many encoding

IV054 1. Basics of coding theory

SYSTEMATIC CODES I

 m_{0}

mз

m ` m^{1}

A code is called systematic if its encoder transmit a message (an input dataword) w into a codeword of the form wc_w , or (w, c_w) . That is if the codeword for the dataword w consists of two parts: dataword w (called also information part) and redundancy part c_w

Nowadays most of the stream codes that are used in practice are systematic.

An example of a systematic encoder, that produces so called extended Hamming (8, 4, 1)code is in the following figure.

IV054 1. Basics of coding theory

 m_2

m 3

56/1

algorithms that map the same set of datawords into different codewords.	prof. Jozef Gruska IV054 1. Basics of coding theory $54/1$
STORY of MORSE TELEGRAPH - I.	STORY of MORSE TELEGRAPH - II.
 In 1825 William Sturgeon discovered electromagnet and showed that using electricity one can make to ring a ring that was far away. The first telegraph designed Charles Wheate Stone and demonstrated it at the distance 2.4 km. Samuel Morse made a significant improvement by designing a telegraph that could not only send information, but using a magnet at other end it could also write the transmitted symbol on a paper. Morse was a portrait painter whose hobby were electrical machines. Morse and his assistant Alfred Vailem invented "Morse alphabet" around 1842. After US Congress approved 30,000 \$ on 3.3.1943 for building a telegraph connection between Washington and Baltimore, the line was built fast, and already on 24.3.1943 the first telegraph message was sent: "What hat God wrought" - "Čo Boh vykonal". The era of Morse telegraph ended on 26.1.2006 when the main telegraph company in US, Western Union, announced cancelation of all telegraph services. 	 In his telegraphs Moorse used the following two-character audio alphabet TIT or dot — a short tone lasting four hundredths of second; TAT or dash — a long tone lasting twelve hundredth of second. Morse could called these tones as 0 and 1 The binary elements 0 and 1 were first called bits by J. W. Tuckley in 1943.

prof. Jozef Gruska

55/1