IV054 Coding, Cryptography and Cryptographic Protocols **2014 - Exercises XI.**

1. Decrypt the following cryptotext.

2. Read carefully the following comics. The image can be downloaded here.

3. Consider the following generalized Dining Cryptographers protocol for n players P_1, P_2, \ldots, P_n and messages of length n:

Suppose that each pair of players (P_i, P_j) shares a set of keys $k_{i,j}(\omega)$ for $i, j, w \in \{1, 2, ..., n\}$, where $k_{i,j}(\omega) = k_{j,i}(\omega)$ and $k_{i,i}(\omega) = 0$. Each player P_i computes a vector of values:

$$W_i = \{W_i(1) = \bigoplus_{j=1}^n k_{i,j}(1), W_i(2) = \bigoplus_{j=1}^n k_{i,j}(2), \dots, W_i(n) = \bigoplus_{j=1}^n k_{i,j}(n)\}.$$

When broadcasting the messages, every player P_i chooses a random position c_i , applies XOR to her message m_i and $W_i(c_i)$ to obtain a new vector

$$V_i = \{W_i(1), W_i(2), \dots, m_i \oplus W_i(c_i), \dots, W_i(n)\}$$

and makes this vector public.

- (a) Show that if every c_i is unique then the vector $V = \bigoplus_{i=1}^{n} V_i$ contains all the messages posted by all players.
- (b) What happens if two players choose the same position, *ie.* $c_j = c_i$ for two players P_i and P_j .
- (c) What happens when a dishonest player sets the vector V_i to a random vector.
- 4. Think hard, each exercise needs deliberation.