2014 - Exercises XI.

1. Decrypt the following cryptotext.

2. Read carefully the following comics. The image can be downloaded here

3. Consider the following generalized Dining Cryptographers protocol for n players $P_{1}, P_{2}, \ldots, P_{n}$ and messages of length n :
Suppose that each pair of players $\left(P_{i}, P_{j}\right)$ shares a set of keys $k_{i, j}(\omega)$ for $i, j, w \in\{1,2, \ldots, n\}$, where $k_{i, j}(\omega)=k_{j, i}(\omega)$ and $k_{i, i}(\omega)=0$. Each player P_{i} computes a vector of values:

$$
W_{i}=\left\{W_{i}(1)=\oplus_{j=1}^{n} k_{i, j}(1), W_{i}(2)=\oplus_{j=1}^{n} k_{i, j}(2), \ldots, W_{i}(n)=\oplus_{j=1}^{n} k_{i, j}(n)\right\}
$$

When broadcasting the messages, every player P_{i} chooses a random position c_{i}, applies XOR to her message m_{i} and $W_{i}\left(c_{i}\right)$ to obtain a new vector

$$
V_{i}=\left\{W_{i}(1), W_{i}(2), \ldots, m_{i} \oplus W_{i}\left(c_{i}\right), \ldots, W_{i}(n)\right\}
$$

and makes this vector public.
(a) Show that if every c_{i} is unique then the vector $V=\oplus_{i=1}^{n} V_{i}$ contains all the messages posted by all players.
(b) What happens if two players choose the same position, $i e . c_{j}=c_{i}$ for two players P_{i} and P_{j}.
(c) What happens when a dishonest player sets the vector V_{i} to a random vector.
4. Think hard, each exercise needs deliberation.

