IV054 Coding, Cryptography and Cryptographic Protocols

2014 - Exercises IX.

1. Give an example of an orthogonal array $\mathrm{OA}(3,4,1)$.
2. Suppose we use Shamir's (n, t)-threshold with $n=4$ and $t=3$. Suppose $p=1234567890133, x_{i}$ and $y_{i}=a\left(x_{i}\right)$ are as follows:

$$
\begin{aligned}
& (1,645627947891), \\
& (2,1045116192326), \\
& (3,154400023692), \\
& (7,973441680328)
\end{aligned}
$$

Find the secret S and the polynomial $a(x)$.
3. We have the following access structure for the players $\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$:

$$
\left\{\left\{P_{1}, P_{3}\right\},\left\{P_{2}, P_{4}\right\},\left\{P_{1}, P_{2}, P_{5}\right\},\left\{P_{3}, P_{4}, P_{5}\right\}\right\}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}
$$

and all their supersets.
Consider the following secret sharing scheme for this access structure: The sets B_{i} and their ordering is known. Let S be the secret. For every $B_{i}=\left\{P_{i_{1}}, \ldots P_{i_{k}}\right\}$ choose k random values $a_{i_{j}}$ such that

$$
a_{i_{1}}+a_{i_{2}}+\ldots a_{i_{k}}=S \bmod 29
$$

and give every player $P_{i_{j}}$ his share $a_{i, j}$. The order of shares given to each player is given by the ordering of B_{i}.
Suppose the players $\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ were given the following shares:

$$
\begin{aligned}
& P_{1}: \quad a_{1,1}=10, \quad a_{3,1}=5 \\
& P_{2}: \quad a_{2,1}=17, \quad a_{3,2}=4 \\
& P_{3}: \quad a_{1,2}=30, \quad a_{4,1}=25 \\
& P_{4}: \quad a_{2,2}=23, \quad a_{4,2}=18 \\
& P_{5}: \quad a_{3,3}=2, \quad a_{4,3}=26
\end{aligned}
$$

(a) Show how every group B_{i} constructs the secret.
(b) Show that the group $\left\{P_{1}, P_{4}, P_{5}\right\}$ cannot construct the secret.
4. Consider the following authentication protocol with two parties A and B and a trusted authority T. The protocols provides authentication between A and B and distribution of a secret key generated by T. The protocol works as follows:

$$
\begin{array}{ll}
A \longrightarrow B: & M, A, B,\left\{N_{a}, M, A, B\right\}_{K_{a}} \\
B \longrightarrow T: & M, A, B,\left\{N_{a}, M, A, B\right\}_{K_{a}},\left\{N_{b}, M, A, B\right\}_{K_{b}} \\
T \longrightarrow B: & M,\left\{N_{a}, K_{a b}\right\}_{K_{a}},\left\{N_{b}, K_{a b}\right\}_{K_{b}} \\
B \longrightarrow A: & M,\left\{N_{a}, K_{a b}\right\}_{K_{a}}
\end{array}
$$

where A, B are the identifiers of the two parties. N_{a}, N_{b} are random nonces generated by their first senders. K_{a}, respectively K_{b}, is the secret key shared between A, respectively B, and T (distributed before the start of the protocol). $K_{a b}$ is the distributed secret key intended for securing subsequent communication between A and $B .\{M\}_{K}$ denotes the message M encrypted by secret key K.
Malicious user C can do a man in the middle attack on A by intercepting her messages to B and impersonating B by sending his own messages. Show that C can convince A he is B and that he can make A use key $K_{a b}$ known to C.
5. Secret sharing schemes for general access structures can be constructed by using several independent instances of (k, n) threshold scheme.
(a) Design a secret sharing scheme for five participants $\{A, B, C, D, E\}$ and access structure $\{\{A, B\},\{B, C, D\},\{A, D, E\}\}$ with the use of as few instances of a threshold scheme as possible.
(b) Which subset of participants can we add to the access structure given in (a) to make it implementable by a singe threshold scheme?
6. Authentication codes use a secret key (shared between Alice and Bob) $k \in K$ to choose function a_{k} and calculate a tag $t=a_{k}(m) \in T$ for a message $m \in M$. Then Alice sends message-tag pair (m, t) to Bob, who with the use of k can verify that $a_{k}(m)=t$.
Such code can thus also be seen as a set of randomly chosen functions $f_{k}: M \mapsto M \times T$ and their corresponding inverse verification partial functions (ie. not defined for all $(m, t) \in M \times T)$ $g_{k}: M \times T \mapsto M$, such that $g(f(m))=m$. Message (m, t) is accepted only if secret partial function $g_{k}(m, t)$ is defined for (m, t).
(a) Suppose $M=\{0,1\}, K=\{0,1\}^{2}$ and $T=\{0,1\}$. Does the set of functions f_{k} given by the following table provide authentication? Explain your reasoning.

$m \rightarrow$	0	1
f_{1}	$(0,0)$	$(1,0)$
f_{2}	$(0,0)$	$(1,1)$
f_{3}	$(0,1)$	$(1,0)$
f_{4}	$(0,1)$	$(1,1)$

(b) Suppose that the probability distribution on messages is uniform. Can you change the set of functions f_{k} in such a way that it would provide authentication as well as perfectly secure encryption? Explain your reasoning.
7. Suppose Alice is using the Schnorr identification scheme with $q=617, p=4937, t=9$ and $\alpha=1624$.
(a) Verify that α has order q in \mathbb{Z}_{p}^{*}.
(b) Let Alice's secret exponent be $a=55$. Compute v.
(c) Suppose that $k=29$. Compute γ.
(d) Suppose that Bob sends the challenge $r=105$. Compute Alice's response y.
(e) Perform Bob's calculations to verify y.

