IV054 Coding, Cryptography and Cryptographic Protocols **2014 - Exercises VIII.**

- 1. Using the Rabin-Miller primality test with a = 2, decide whether n = 294409 is a prime.
- 2. Let n, x be integers and $n \ge 2$, $x \ge 1$. Show that the number $n^{10x} + 1$ is composite.
- 3. Let elliptic curve be $E: y^2 = x^3 x \pmod{7}$. Let $P_1 = (4, 2)$ and $P_2 = (5, 1)$, find $P_1 + P_2$, $2P_1$ and $3P_1$. List all the points on the elliptic curve.
- 4. Find a point P on the elliptic curve $E: y^2 = x^3 + 3x + 2 \pmod{5}$, such that P + P = (2, 4). Show details of your computation.
- 5. Design an elliptic curve counterpart of the Shanks' algorithm.
 - (a) In classical Shanks' algorithm with modulus p, both parameters i, j run in interval $0 \le i, j < \sqrt{\sqrt{p-1}} = m$. Why?
 - (b) What value of m should we set for its elliptic curve counterpart, with an elliptic curve $E \pmod{p}$ and its number of points N?
 - (c) Using the designed algorithm solve (7,9) = x(2,7) for x, given $E: y^2 = x^3 + x + 6 \pmod{11}$, and show the computed table.
- 6. Bob uses an elliptic curve version of the ElGamal cryptosystem with public key p = 7, $E : y^2 = x^3 + 3x + 5 \pmod{7}$, P = (1,3), Q = (6,6).
 - (a) Encrypt the message m = (1, 4) with r = 3. Show computation steps.
 - (b) Decrypt the ciphertext computed in (a) with Bob's secret key x = 2. Show computation steps.
- 7. (a) P = (x, 0) is a point on an elliptic curve. Find $nP, n \in \mathbb{N}$.
 - (b) Show that three different points on an elliptic curve add to ∞ if and only if they lie in a straight line.