2014 - Exercises VIII.

1. Using the Rabin-Miller primality test with $a=2$, decide whether $n=294409$ is a prime.
2. Let n, x be integers and $n \geq 2, x \geq 1$. Show that the number $n^{10 x}+1$ is composite.
3. Let elliptic curve be $E: y^{2}=x^{3}-x(\bmod 7)$. Let $P_{1}=(4,2)$ and $P_{2}=(5,1)$, find $P_{1}+P_{2}, 2 P_{1}$ and $3 P_{1}$. List all the points on the elliptic curve.
4. Find a point P on the elliptic curve $E: y^{2}=x^{3}+3 x+2(\bmod 5)$, such that $P+P=(2,4)$. Show details of your computation.
5. Design an elliptic curve counterpart of the Shanks' algorithm.
(a) In classical Shanks' algorithm with modulus p, both parameters i, j run in interval $0 \leq i, j<$ $\lceil\sqrt{p-1}\rceil=m$. Why?
(b) What value of m should we set for its elliptic curve counterpart, with an elliptic curve E (mod $p)$ and its number of points N ?
(c) Using the designed algorithm solve $(7,9)=x(2,7)$ for x, given $E: y^{2}=x^{3}+x+6(\bmod 11)$, and show the computed table.
6. Bob uses an elliptic curve version of the ElGamal cryptosystem with public key $p=7, E: y^{2}=$ $x^{3}+3 x+5(\bmod 7), P=(1,3), Q=(6,6)$.
(a) Encrypt the message $m=(1,4)$ with $r=3$. Show computation steps.
(b) Decrypt the ciphertext computed in (a) with Bob's secret key $x=2$. Show computation steps.
7. (a) $P=(x, 0)$ is a point on an elliptic curve. Find $n P, n \in \mathbb{N}$.
(b) Show that three different points on an elliptic curve add to ∞ if and only if they lie in a straight line.
