2014 - Exercises VI.

1. Using Fermat's little theorem, determine an integer x such that $8^{x} \equiv 2(\bmod 23)$.
2. How many cars do you have to observe in order for the probability to be greater than 50% of observing at least two cars with the same first three symbols on their license plate? A car license plate consists of 7 symbols: there is a capital letter ($\mathrm{A}, \ldots, \mathrm{Z}$) in the second position, other positions are occupied with digits. Each symbol is equally probable.
3. Let p be an odd prime number and g be a primitive root modulo p. This means that the powers $1, g, g^{2}, \cdots, g^{p-2}$ are all distinct modulo p. Suppose m is an odd number. Prove that g^{m} is a quadratic nonresidue modulo p.
4. Suppose we know how to factorize large numbers and we find out that the private keys of the Rabin cryptosystem are $p=163$ and $q=307$. Decrypt the cryptotext "15244 33337". The message is a meaningful English word.
5. Let f, g be negligible functions. Prove the following:
(a) f^{k} is negligible for any $k>0, k \in \mathbb{R}$.
(b) $f+g$ is negligible.
(You can use the alternative definition of negligible function: it is enough for the function to be smaller than n^{-c} (for every positive integer c) rather than $\frac{1}{p(n)}$.)
6. Show that you can factorize efficiently if you have an oracle for finding square roots. Demonstrate by factorizing $n=88416763$ in case the oracle tells you that the square roots of $51733469(\bmod 88416763)$ are 50224876, 38191887, 22222, 88394541.
7. Using the Shank's algorithm find x such that

$$
88^{x}=80(\bmod 107)
$$

and show all steps of the algorithm.
8. Consider the Rabin cryptosystem with $n=p^{k} q^{s}$ where $k, s>1$.
(a) How many possible plaintexts do we obtain after decryption?
(b) Find a decryption of cryptotext $c=14590$ using private keys $11^{2} 7^{3}=41503$.

Hint: (Hensel's Lemma)
If r_{i} is square root of $a\left(\bmod p^{i}\right)$ then

$$
r_{i+1}=r_{i}+t p^{i}
$$

is a square root of $a\left(\bmod p^{i+1}\right)$ where t is solution of

$$
t 2 r_{i} \equiv-C(\bmod p)
$$

and $C=\frac{r_{i}^{2}-a}{p^{i}}\left(\right.$ here always $\left.p^{i} \mid r_{i}^{2}-a\right)$.

