IV054 Coding, Cryptography and Cryptographic Protocols **2014 - Exercises VI.**

- 1. Using Fermat's little theorem, determine an integer x such that $8^x \equiv 2 \pmod{23}$.
- 2. How many cars do you have to observe in order for the probability to be greater than 50% of observing at least two cars with the same first three symbols on their license plate? A car license plate consists of 7 symbols: there is a capital letter (A, ..., Z) in the second position, other positions are occupied with digits. Each symbol is equally probable.
- 3. Let p be an odd prime number and g be a primitive root modulo p. This means that the powers $1, g, g^2, \dots, g^{p-2}$ are all distinct modulo p. Suppose m is an odd number. Prove that g^m is a quadratic nonresidue modulo p.
- 4. Suppose we know how to factorize large numbers and we find out that the private keys of the Rabin cryptosystem are p = 163 and q = 307. Decrypt the cryptotext "15244 33337". The message is a meaningful English word.
- 5. Let f, g be negligible functions. Prove the following:
 - (a) f^k is negligible for any $k > 0, k \in \mathbb{R}$.
 - (b) f + g is negligible.

(You can use the alternative definition of negligible function: it is enough for the function to be smaller than n^{-c} (for every positive integer c) rather than $\frac{1}{p(n)}$.)

- 6. Show that you can factorize efficiently if you have an oracle for finding square roots. Demonstrate by factorizing n = 88416763 in case the oracle tells you that the square roots of 51733469 (mod 88416763) are 50224876, 38191887, 22222, 88394541.
- 7. Using the Shank's algorithm find x such that

$$88^x = 80 \pmod{107}$$

and show all steps of the algorithm.

- 8. Consider the Rabin cryptosystem with $n = p^k q^s$ where k, s > 1.
 - (a) How many possible plaintexts do we obtain after decryption?
 - (b) Find a decryption of cryptotext c = 14590 using private keys $11^27^3 = 41503$.

Hint: (Hensel's Lemma) If r_i is square root of $a \pmod{p^i}$ then

$$r_{i+1} = r_i + tp^i$$

is a square root of $a \pmod{p^{i+1}}$ where t is solution of

$$t2r_i \equiv -C \pmod{p}$$

and $C = \frac{r_i^2 - a}{p^i}$ (here always $p^i | r_i^2 - a$).