IV054 Coding, Cryptography and Cryptographic Protocols

2014 - Exercises IV.

1. Decrypt the following ciphertexts:
(a) CHICKEN'S FLIPPER FORK
(b) DLCCC QDIKW YQDFC ZVYMX GMEJV CGPRM DQYDL CWERS GYVPW SRBOG GZLCB EZVI

SXKEW RXSRL IPOUS SVCNX MLIQO GPOXY XHGDQ SCXZO EZVIR YJYVP GXXMD LCREL NWMPX FOILO
QWGMR RSSDM LMSLF ILSIL MI
SXQUI WWYQD FCMSK WYLSG YLPCK RBBIR KMLKF JOAGD LMEXR RIFOP NYJUB MRDIL XSROW YXHAR
ELQIY LPCYV KYHGP MYLPC KXRRI USPJY JRRIA YVPOW NYRBO RRC SXKEW RLIYZ TJSGY LPCDS
ROPCQ VYZLG MGMBV CCTMX HCXGC
SXKEW RLINY VRKFJ OELNM RCYQK KCKRB PYLMX GYRKE WRXSR BIOEM POXFO GMXGM EVQOS DCITO
VYVTC YTJO
PMLKP JIMRS WLOGC CWYBC ESZCX XFOGG BGSWW RKRAO WRRER MSKWE LNMRC ENZPG MERSS LDLYD XFOWW CXCWF COEQI XMEWC BIOEM PSREX IGDLC BQCXX YVWRB EGXRM BXFOO LYAJO HEOSD KPMXK QOVGO WMPVS VIQDS MLWCB ZC
(c) YLJHQHUH
2. Consider the following variation of the one time-pad cryptosystem. Let $P=K=\{00,01,10\}^{\ell}$. Encryption and decryption work the same way as in the one time pad.
(a) Is this cryptosystem perfectly secure?
(b) Is it secure if $P=K=\{00,01,10,11\}^{\ell}$?
3. Consider using a double encryption in order to increase security of a cryptosystem. The double encryption works as follows:
(i) Generate and share two secret keys $k e y_{1}$ and $k e y_{2}$.
(ii) Encrypt message m with $k e y_{1}$ and obtain ciphertext c_{1}.
(iii) Encrypt c_{1} with $k e y_{2}$ and obtain ciphertext c_{2}.
(iv) Send c_{2}.
(v) Receiver decrypts c_{2} with $k e y_{2}$ to obtain c_{1}.
(vi) Receiver decrypts c_{1} with $k e y_{1}$ to obtain m.

For the following cryptosystems, show that the proposed encryption has actually the same effect as a single encryption with a different key $k e y_{3}$ ans describe how to obtain $k e y_{3}$ from $k e y_{1}$ and $k e y_{2}$.
(a) the Caesar cryptosystem,
(b) the Hill cryptosystem,
(c) the Vigenère cryptosystem.
4. Consider a binary one time pad encryption with a key of length five. You have intercepted the following cryptotexts:

$$
1010010001001011110110111
$$

You have the following information: the same key was used for all five words and the plaintexts are cyclic shifts of each other. Find the plaintexts and the key.
5. Consider the following modified Hill cryptosystem: $c_{c}=M c_{w}+v \bmod 26$, where v is a column vector of length n. You are leading a known-plaintexts attack against such system. The known pairs [plaintext, cryptotext] are

$$
\left[\binom{4}{20},\binom{0}{16}\right],\left[\binom{13}{6},\binom{14}{11}\right],\left[\binom{6}{23},\binom{9}{19}\right] .
$$

Find M and v.
6. Consider the Affine cryptosystem. Explain why one can not use a such that $\operatorname{gcd}(a, 26)>1$.

