2014 - Exercises III.

1. Find a cyclic code equivalent to the non-cyclic code $C=\{0000,1100,0011,1111\}$.
2. Suppose a linear $[8,5]$ code C has the following generator matrix:

$$
G=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Prove that C is a cyclic code.
(b) Find a generator polynomial of C.
3. Show that the $[7,4,3]$ binary code with $g(x)=x^{3}+x+1$ and the $[7,3,4]$ binary code with $g(x)=$ $x^{4}+x^{3}+x^{2}+1$ are duals.
4. Consider the linear code C over \mathbb{F}_{q} with the generator matrix G

$$
G=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Show that for all q, C is not cyclic.
5. Consider the polynomial $g(x)=x^{5}+x^{2}+1$ over \mathbb{F}_{2}.
(a) Show that $g(x)$ is the generating polynomial of a binary cyclic code of length 31 .
(b) Find the dimension of this code.
(c) Find its parity check polynomial.
6. Find a generator matrix and a parity check matrix of a cyclic code equivalent to Hamming code $\operatorname{Ham}(4,2)$.
7. Let C be a binary cyclic code of odd length n. Prove that exactly one of the following holds:
(i) Every codeword in C has even weight.
(ii) The word $1 \ldots 1$ is a codeword.
8. Let C be a binary cyclic code of length 15 and dimension 11 such that $000111111111100 \in C$ and no word of its dual code has odd weight. Find the generator polynomial of C.

