2014 - Exercises II.

1. Let A, B be codes over \mathbb{F}_{q}^{n}. Consider the code $A \mid B=\{a|a+b| a \in A \wedge b \in B\}$. Show that $h(A \mid B)=\min \{2 h(A), h(B)\}$.
2. A code C is called weakly self dual if $C \subset C^{\perp}$. Prove the following.
(a) If C is a binary weakly self dual code, every codeword is of even weight.
(b) If each row of the generator matrix of a weakly self dual code C has weight divisible by 4 then so does every codeword.

3 . Let C be the linear $[n, k]$-code with parity-check matrix

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

(a) What is the generator matrix of C ? Find out the value n and k ? How many codewords are there in C ?
(b) Does the codeword 101010 belong to C ?
(c) Suppose the codeword $x=001111$ is sent and $y=000010$ is received. What is the syndrome $S(y)$? According to the syndrome, determine the position of an error? Why the coding system does not work in this case?
4. Consider a linear code C over \mathbb{F}_{q} with a generator matrix G.
(a) Show that in a binary code C every codeword has even weight if and only if every row of G has even weight.
(b) Is the claim in (a) true for $q>2$?
5. Consider linear codes C_{1}, C_{2} of the same length. Prove the following:
(a) $\left(C_{1}^{\perp}\right)^{\perp}=C_{1}$,
(b) $C_{1} \subseteq C_{2} \Longleftrightarrow C_{2}^{\perp} \subseteq C_{1}^{\perp}$.
6. Let G_{24} be the extended Golay code with the following generator matrix (with zeroes at blank positions):

More on next page \ggg

Show that
(a) $G_{24}=G_{24}^{\perp}$.
(b) Every codeword of G_{24} code has weight divisible by 4 .
(c) G_{24} contains the all-ones codeword 1.
(d) If G_{24} contains codeword $|L| R \mid$ with

$$
L=a_{\infty} a_{0} a_{1} \ldots a_{10}, R=b_{\infty} b_{0} b_{1} \ldots b_{10}
$$

it also contains codeword $\left|L^{\prime}\right| R^{\prime} \mid$ with

$$
L^{\prime}=b_{\infty} b_{0} b_{10} b_{9} \ldots b_{1}, R^{\prime}=a_{\infty} a_{0} a_{10} a_{9} \ldots a_{1}
$$

