IV054 Coding, Cryptography and Cryptographic Protocols **2014 - Exercises II.**

- 1. Let A, B be codes over \mathbb{F}_q^n . Consider the code $A|B = \{a|a+b \mid a \in A \land b \in B\}$. Show that $h(A|B) = \min\{2h(A), h(B)\}$.
- 2. A code C is called weakly self dual if $C \subset C^{\perp}$. Prove the following.
 - (a) If C is a binary weakly self dual code, every codeword is of even weight.
 - (b) If each row of the generator matrix of a weakly self dual code C has weight divisible by 4 then so does every codeword.
- 3. Let C be the linear [n, k]-code with parity-check matrix

- (a) What is the generator matrix of C? Find out the value n and k? How many codewords are there in C?
- (b) Does the codeword 101010 belong to C?
- (c) Suppose the codeword x = 001111 is sent and y = 000010 is received. What is the syndrome S(y)? According to the syndrome, determine the position of an error? Why the coding system does not work in this case?
- 4. Consider a linear code C over \mathbb{F}_q with a generator matrix G.
 - (a) Show that in a binary code C every codeword has even weight if and only if every row of G has even weight.
 - (b) Is the claim in (a) true for q > 2?
- 5. Consider linear codes C_1, C_2 of the same length. Prove the following:
 - (a) $(C_1^{\perp})^{\perp} = C_1,$
 - (b) $C_1 \subseteq C_2 \iff C_2^{\perp} \subseteq C_1^{\perp}$.
- 6. Let G_{24} be the extended Golay code with the following generator matrix (with zeroes at blank positions):

	∞	0	1	2	3	4	5	6	7	8	9	10	∞	0	1	2	3	4	5	6	7	8	9	10	row
G =	1	1												1	1		1	1	1				1		0
	1		1												1	1		1	1	1				1	1
	1			1										1		1	1		1	1	1				2
	1				1										1		1	1		1	1	1			3
	1					1										1		1	1		1	1	1		4
	1						1										1		1	1		1	1	1	5
	1							1						1				1		1	1		1	1	6
	1								1					1	1				1		1	1		1	7
	1									1				1	1	1				1		1	1		8
	1										1				1	1	1				1		1	1	9
	1											1		1		1	1	1				1		1	10
													1	1	1	1	1	1	1	1	1	1	1	1	11

More on next page >>>

Show that

- (a) $G_{24} = G_{24}^{\perp}$.
- (b) Every codeword of G_{24} code has weight divisible by 4.
- (c) G_{24} contains the all-ones codeword **1**.
- (d) If G_{24} contains codeword |L|R| with

$$L = a_{\infty}a_0a_1\dots a_{10}, R = b_{\infty}b_0b_1\dots b_{10},$$

it also contains codeword |L'|R'| with

$$L' = b_{\infty}b_0b_{10}b_9\dots b_1, R' = a_{\infty}a_0a_{10}a_9\dots a_1.$$