2014-Exercises I.

1. (a) Prove that for any binary Huffman code, if the most probable message symbol has the probability $p>2 / 5$, then that symbol must be assigned a codeword of length 1 .
(b) Prove that for any binary Huffman code, if the most probable message symbol has probability $p<1 / 3$, then that symbol must be assigned a codeword of length ≥ 2.
2. The Universal Product Code (UPC) is widely used by supermarkets and mass market retailers for cash register checkout.

The UPC is a 12 digit code. The last digit of the UPC code is a check sum calculated as:

$$
3 a_{1}+a_{2}+3 a_{3}+a_{4}+3 a_{5}+\cdots+3 a_{11}+a_{12} \equiv 0(\bmod 10)
$$

where $a_{1} a_{2} a_{3}, \ldots, a_{11}, a_{12}$ is the UPC.
(a) Does the UPC code detect all single digit errors?
(b) Does the UPC code detect all adjacent transposition errors?

Give a proof for your answers.
3. (a) Prove that $A_{q}(n, d) \leq q A_{q}(n-1, d)$.
(b) Prove that $A_{q}(q n,(q-1) n) \leq q^{2} n$.

Hint: Plotkin Bound:

$$
A_{q}(n, d) \leq\left\lfloor\frac{q d}{q d-(q-1) n}\right\rfloor
$$

4. Compare the upper bounds obtained from the Sphere Packing Bound and the Plotkin Bound (see previous exercise) for $A_{2}(18,10)$.
5. Let C be the binary code of blocklength 12 consisting of all sequences in which there are at least three 0 s between any two 1s. Find the code rate of C.
6. Prove the following two important properties of the entropy function

$$
H\left(p_{1}, \ldots, p_{n}\right)=-\sum_{i=1}^{n} p_{i} \log p_{i}:
$$

(a) $H\left(p_{1}, \ldots, p_{n}\right)=H\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)+\left(p_{1}+p_{2}\right) H\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)$
(b) $H\left(p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{n}\right)=H(p, q)+p H\left(\frac{p_{1}}{p}, \ldots, \frac{p_{m}}{p}\right)+q H\left(\frac{q_{1}}{q}, \ldots, \frac{q_{n}}{q}\right)$, where $p=\sum_{i=1}^{m} p_{i}$ and $q=\sum_{i=1}^{n} q_{i}$.
7. Consider the q-ary Huffman code for the source with the following relative frequencies of n symbols: $1, q, q^{2}, q^{3}, \ldots, q^{n-1}$, where $n=1+k(q-1)$ for some positive integer k.
Find the number of symbols required to encode the most and the least frequent symbol.

