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NOTATION

Logarithms.
logb a - logarithm of a at the base b.
log n - logarithm at the base 10 - decimal logarithm.
lg n - logarithm at the base 2 - binary logarithm
ln n - logarithm at the base e - natural logarithm

For complexity of algorithms depending on an integer n
the following shorthand is often used:

Ln(α, c) = e(c+o(1))(ln n)α(ln ln n)1−α

with 0 ≤ α ≤ 1 and c > o. The parameter α is the
more important one. Deepending on it, Ln(α, c)
interpolates between polynomial complexity for α = 0
and exponential complexity for α = 1. For α < 1 the
complexity is said to be subexponential.
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TWO CENTRAL CONCEPTS of MODERN
CRYPTOGRAPHY

Efficient computation is usually modelled by computations that are
polynomial-time in an input (security) parammeter

Efficient (computational) indistinguishability. We say that probability ensembles
X = {Xα}α∈S and Y = {Yα}α∈S are computationally indistinguishable if for every
family of polynomial-size circuits {Dn}, every polynomial p, all sufficiently large n
and every α ∈ {0, 1}n ∩ S ,

|Pr[Dn(Xα) = 1]− Pr[Dn(Yα) = 1]| < 1

p(n)

where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn).
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BASICS of ABSTRACT ALGEBRAS

BASICS of ABSTRACT ALGEBRAS
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GROUPS

A group G is a set of elements and an operation, call it *, with the following properties:

G is closed under *; that is if a, b ∈ G , so is a ∗ b.

The operation * is associative (a ∗ (b ∗ c) = (a ∗ b) ∗ c, for any a, b, c ∈ G .

G has an identity element e such that e ∗ a = a ∗ e = a for any a ∈ G .

Every element a ∈ G has an inverse a−1 ∈ G , so that a ∗ a−1 = a−1 ∗ a = e.

A group G is called Abelian group if the operation ∗ is commutative (a ∗ b = b ∗ a for
any a, b ∈ G). Example Which of the following sets is an (Abelian) group:

The set of real numbers with ∗ being: (a) addition; (b) multiplication.

The set of matrices of degree n and an operations (a) addition; (b) multiplication.

What happens if we consider only matrices with determinants not equal zero?
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Groups Zn and Z ∗
n

Two integers a, b are congruent modulo n if

a mod n = b mod n.

Notation: a ≡ b( mod n)
Let +n,×n denote addition and multiplication modulo n

a +n b = (a + b) mod n

a×n b = (ab) mod n

Zn = {0, 1, . . . , n − 1} is a group under the operation +n.

Z?n = {x |1 ≤ x ≤ n, gcd(x , n) = 1} is a group under the operation ×n

Z?n is a field under the operations +n,×n if n is a prime
Theorem For any n, the multiplicative inverse of any m ∈ Z?n can be computed in
polynomial time.
Comment: Computation can be done by the extended Euclid algorithm.
Theorem In the group (Z?n ,×n) the exponentiation can be performed in polynomial time.
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ORDER oF GROUPS

If a is an element of a finite group G , then its order is
the smallest integers k such that ak = 1.

Order of each element of a group G is a divisor of the
number of elements of G .

This implies that every element a ∈ Z∗p, where p is a
prime, has order p − 1 and it holds

ap−1 ≡ 1 (mod)p
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PROPERTIES of the GROUP Z?
n

Definition (1) For any group (G , ◦) and any x ∈ G

order of x = min{k > 0|xk = 1}
(2) The group (G , ◦) is called cyclic if it contains an element g , called generator, such
that the order of (g) = |G |.
Theorem If the multiplicative group (Z?n ,×n) is cyclic, then it is isomorphic to the
additive group (ZΦ(n),+Φ(n)). (However, no effective way is known, given n, to create
such an isomorphism!)
Theorem The mutliplicative group (Z?n ,×n) is cyclic iff n is either 1, 2, 4, pk or 2pk for
some k ∈ N+ and an odd prime p > 2.
Theorem Let p be a prime. Given the prime factorization of p − 1 a generator for group
(Z?p ,×p) can be found in polynomial time by a randomized algorithm.
Proof (1) Pick randomly x ∈ Z?p and checks whether its order is p − 1. If yes, it is a
generator. The probability to find a generator in a single trial is

Φ(p − 1)

p − 1
= Ω

„
1

p

«
.

How to check whether the order of x is p− 1? Let p1, . . . , pt be different prime factors of
p − 1. If order of x < p − 1, then the order of x has to be proper divisor of p − 1, that is
for some pi ,

order ofx

˛̨̨̨
p − 1

pi

To verify that order of x = p − 1, it suffices to check for each pi , that

x
p−1
pi 6≡ 1 ( mod p).
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RINGS and FIELDS

A ring R is a set with two operations + (addition) and · (multiplication) , with the
following properties:

R is closed under + and ·.
R is an Abelian group under + (with the unity element for addition called zero).

The associative law for multiplication holds.

R has an identity element 1 for multiplication

The distributive law holds (a · (b + c) = a · b + a · c for all a, b, c ∈ R.

A ring is called commutative ring if multiplication is commutative

A field F is a set with two operations + (addition) and · (multiplication) , with the
following properties:

F is a commutative ring.

Non-zero elements of F form an Abelian group with respect to multiplication.

A non-zero element g is a primitive element of a field F if all non-zero elements of F
are powers of g .
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FINITE FIELDS

Finite field are very well understood.

Theorem If p is a prime, then the integers modp, GF (p), constitute a field. Every finite
field F contains a subfield that is GF (p), up to relaabeling, for some prime p and
p · α = 0 for every α ∈ F .

If a field F contains the prime field GF (p), then p is called the characteristic of F .

Theorem (1) Every finite field F has pm elements for some prime p and some m.
(2) For any prime p and any integer m there is a unique (up to isomorphism) field of pm

elements GF (pm).
(3) If f (x) is an irreducible polynomial of degree m in Fp[x ], then the set of polynomials
in Fp[x ] with additions and multiplications modulo f (x) is a field with pm elements.
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FINITE FIELDS GF(pn)

There are two important ways GF(4), the Galois field of four elements, is realized.
1. It is easy to verify that such a field is the set

GF(4) = {0, 1, ω, ω2}

with operations + and · satisfying laws

0 + x = x for all x ;

x + x = 0 for all x ;

1 · x = x for all x ;

ω + 1 = ω2

2. Let Z2[x ] be the set of polynomials whose coefficients are integers mod 2. GF(4) is
also Z2[x ] (mod x2 + x + 1) therefore the set of polynomials

0, 1, x , x + 1

where addition and multiplication are (mod x2 + x + 1).

3. Let p be a prime and Zp[x ] be the set of polynomials with coefficients mod p. If p(x)
is a irreducible polynomial modp of degree n, then Zp[x ] (mod p(x)) is a GF(pn) with
pn elements.
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BASICS of NUMBER THEORY

BASICS of NUMBER THEORY

The number theory concepts, methods and results
introduced in the following play an important role in
modern considerations concerning cryptography,
cryptographic protocols and randomness.

The key concept is that of primality. The key methods are
based on randomized algorithms.
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CEILING and FLOOR FUNCTIONS

Flour bxc – the largest integer ≤ x
Ceiling dxe – the smallest integer ≥ x

Example
b3.14c = 3 = b3.75c b−3.14c = −4 = b−3.75c
d3.14e = 4 = d3.75e d−3.14e = −3 = d−3.75e
Example dxe − bxc =?
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MODULO OPERATIONS

The remainder of n when divided by m is defined by

n mod m =

(
n −m

¨
n
m

˝
m 6= 0

0 m = 0

Example
7 mod 5 = 2 122 mod 11 = 1

Identities

• (a + b) mod n = ((a mod n) + (b mod n)) mod n
• (a · b) mod n = ((a mod n) · (b mod n)) mod n
• ab mod n = ((a mod n)b) mod n.

Example 3123456789 mod 26 =?
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EUCLID ALGORITHM for GCD - I.

This is algorithm to compute greatest common divisor (gcd) of two integers, in short

to compute gcd(m, n), 0 ≤ m < n

EUCLID ALGORITHM

gcd(0, n) = n (1)

gcd(m, n) = gcd(n mod m,m) for m > 0 (2)

Example

gcd(296, 555) = gcd(259, 296) = gcd(37, 259) = gcd(0, 37) = 37

because

555 = 1× 296 + 259

296 = 1× 259 + 37

259 = 7× 37 + 0
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EUCLID ALGORITHM for GCD - II.

Theorem T (n) = O(log n) for the number of steps of Euclid’s algoritm.
Example Aftrer the first step arguments are (n1,m), where

n1 = n mod m.

After the second step arguments are (m1, n1), where

m1 = m mod n1.

Since a mod b < a
2

if 0 < b < a, we have:

n1 ≤
n

2
,m1 ≤

m

2
.

This analysis was made more precisse by E. Lucas (1884) and Lamé (1884), in perhaps
the first deeper analysis of algorithms.
Theorem (1) If n > m ≥ 0, and an application of Euclid’s algorithm to arguments m, n
results in k recursive steps, then n ≥ Fk+2,m ≥ Fk+1.
(2) If n > m ≥ 0,m < Fk+1, then the application of Euclid’s algorithm to arguments n,m
requires less than k steps.
Corollary T (n) = Θ(log n) for the number of steps of Euclid’s algoritm.
Problem: Is there an asymptotycally faster algorithm to compute
gcd(m, n)?
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EXTENDED EUCLID ALGORITHM

Theorem For all 0 < m < n there exist integers x and y such that

gcd(m, n) = xm + yn.

Moreover, x and y can be computed in polynomial time.
Example: If m = 0, then x = 0, y = 1.
If m > 0, take r = n mod m and compute recursively x ′, y ′ such that

x ′m + y ′r = gcd(r ,m).

Since r = n −
¨

n
m

˝
m we have:

gcd(m, n) = x ′m + y ′
“
n −

j n

m

k
m
”

=
“
x ′ − y ′

j n

m

k”
m + y ′n.

An extention of Euclid’s algorithm, which computes x and y together with gcd(m, n) is
sometimes referred to as extended Euclid’s algorithm.
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EXPONENTIATION

Exponentiation (modular) plays the key role in many cryptosystems. If

n =
k−1X
i=0

bi 2
i , bi ∈ {0, 1}

then

e = an = a
Pk−1

i=0 bi 2
i

=
k−1Y
i=0

abi 2
i

=
k−1Y
i=0

(a2i

)bi

Algorithm for exponentiation

begin e ← 1; p ← a;
for i ← 0 to k − 1

do if bi = 1 then e ← e · p;
p ← p · p

od
end

Modular exponentiation: an mod m = ((a mod m)n) mod m
Modular multiplication: ab mod n = ((a mod n)(b mod n) mod n)
Example 31000 mod 19 = 16
310000 mod 13 = 3
3340 mod 11 = 1
3100 mod 79 = 51
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PRIMES

Primes play key role in modern cryptography.
A positive integer p > 1 is called prime if it has just two divisors: 1 and p.
Fundamental theorem of arithmetic: Each integer n has a unique decomposition

n =
kY

i=1

pei
i

where pi < pi+1 are primes and ei are integers.
How many primes Π(n) are there among the first n integers?
Estimations Π(n)=̇ n

ln n
(due to Gauss)

Prime number theorem.

Π(n) =
n

ln n
+

n

(ln n)2
+

2!n

(ln n)3
+

3!n

(ln n)4
+ Θ

„
n

(ln n)6

«
The largest known prime: 1994: 2859433 − 1; (258716 digits)
1996: 21257787 − 1; (378632 digits)
1997: 22976221 − 1;
The largest computed value of Π(x): Π(1018) = 24739954287860

How difficult is to determine whether a given integer is a prime?

Only in 2002 it has been shown that there is a (O(m12)) deterministic algorithm to
recognize whether an m bit integer is a prime.
There are (very) simple randomized algorithm to decide fast and with large
probability correctly whether a given integer is a prime.
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CHINESE REMAINDER THEOREM

Theorem Let m1, . . . ,mt be integers, gcd(mi ,mj) = 1 if i 6= j and a1, . . . , at be integers,
0 < ai < mi , 1 ≤ i ≤ t.
Then the system of congruences

x ≡ ai ( mod mi ), 1 ≤ i ≤ t

has the solution

x =
tX

i=1

aiMiNi (?)

where

M =
tY

i=1

mi ,Mi =
M

Mi
,Ni = M−1

i mod mi

and the solution (?) is unique up to the congruence modulo M.
Each integer 0 < x < M is uniquelly represented by t-tuple: x mod m1, . . . , x
mod mt .
Example If m1 = 2,m2 = 3,m3 = 5, then (1, 0, 2) represents 27.
Advantage: With such a modular representation addition, substraction and
multiplication can be done componentwise in parallel time.
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EULER TOTIENT FUNCTION

Φ(n) = |Z?n | = |{m|1 ≤ m ≤ n, gcd(m, n) = 1}|
Basic properties: • Φ(1) = 1
• Φ(p) = p − 1, if p is a prime;
• Φ(pk) = pk−1(p − 1), if p is prime, k > 0;
• Φ(nm) = Φ(n)Φ(m), if gcd(m, n) = 1;
Theorem Computation of Φ(n) and factorization of n are computationally polynomially
related problems.
(1) If factorization of n =

Qk
i=1 pei

i is known, then

Φ(n) =
kY

i=1

pei−1
i (pi − 1) = n

kY
i=1

pi − 1

pi

(2) The opposite assertion will be shown only for the case n = p1p2. In such a case

Φ(n) = (p1 − 1)(p2 − 1)

and
p1 + p2 = p1p2 + 1− Φ(n) = n + 1− Φ(n)

Given p1 + p2 and p1p2 it is easy to determine p1 and p2.
In addition, it holds

Φ(n)

n
= Ω

„
1

log n

«
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EULER and FERMAT THEOREMS

Theorem (Lagrange) If ((H, ◦) is a subgroup of a group (G , ◦), then |H| divides |G |.
Theorem (Euler’s Totient Theorem)

nΦ(m) ≡ 1 ( mod m)

if n < m, gcd(m, n) = 1
Corollary n−1 ≡ nΦ(m)−1 ( mod m) if n < m, gcd(m, n) = 1
Theorem (Fermat’s Little Theorem)

ap ≡ a ( mod p)

if p is prime.
Proof: Theorem is true for a = 1. Assume it is true for some a.
By induction

(a + 1)p ≡ ap + 1 ≡ a + 1 mod p.

Example If x ≡ y mod p − 1, where p is a prime, then x − y = k(p − 1) and therefore
for any a < p, ax−y = ak(p−1) ≡ 1 mod p
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SPECIAL NUMBERS

Carmichel numbers They are composite integers n
that satisfy the the congruence

bn ≡ b( mod n)

for all 1 < b < n.
They are also called Fermat’s pseudoprimes, because
they are not primes, but they pass fermat primality
test.

The first 7 Carmichel numbers
561, 1105, 1729, 2465, 2821, 6601, 8911 were discoved
by a Czech mathematician in 1985.

There are 20, 138. 200 Carmichel numbers between firs
1021 integers.
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DISCRETE LOGARITHMS and SQUARE ROOTS

Three problems are related with the equation

y = xa ( mod n).

Exponentiation problem Given x , a, n, compute y
Easy: it can be done in polynomial time, even its modular version
Discrete logarithm problem Given x , y , n, compute a
Very hard. It is believed that the discrete logarithm problem is NP-hard even in the
average case. (A formal proof of it would imply that exponentiation is a one-way
function.)
Root finding problem Given y , a, n, compute x
Hard.
Square root finding problem Given y , a = 2, n, compute x
This problem is in general as hard as factorization.

Square root finding can be done by a randomized polynomial time algorithm if
• n is a prime;
or
• the prime decomposition of n is know.

Examples
{x |
√

x (mod 15) = 1} = {1, 4, 11, 14}
{x |
√

x (mod 15) = 2} = ∅
{x |
√

x (mod 15) = 3} = ∅
{x |
√

x (mod 15) = 4} = {2, 7, 8, 13}
{x |
√

x (mod 15) = 9} = {3, 12}
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QUADRATIC RESIDUES and NONRESIDUES

An integer x ∈ Z?m is called a quadratic residue modulo m if

x ≡ y 2( mod m)

for some y ∈ Z?m, otherwise x is a quadratic nonresidue.
Notation: QRm – the set of all quadratic residues modulo m. QRm is therefore subgroup
of squares in Zm.
QNRm – the set of all quadratic nonresidues modulo m.
How to decide whether an x is a quadratic residue?
Theorem If p > 2 is a prime and g ∈ Z?p a generator, then g k is a quadratic residue iff k
is even.
If k is even, then g

k
2 is the square root of g k .

Let k = 2l + 1 and x ∈ Z?p be such that x2 = g 2k+1( mod p).
If x = gm, then g 2m ≡ g 2k+1( mod p) and therefore in the additive group modulo Φ(p)
it holds

2m = 2l + 1( mod Φ(p))

Since Φ(p) = p − 1, this is impossible.
Theorem If p is a prime, then a ∈ Z?p is a quadratic residue iff

a
p−1

2 ≡ 1( mod p).

(1) If a ∈ QRp, a = q2k( mod p) for some generator q,

a
p−1

2 ≡p qk(p−1) ≡p (qp−1)k ≡p 1k ≡ 1.
(2) If a ∈ QNRp, a = q2k+1( mod p) for some generator q, then

a
p−1

2 ≡p qk(p−1)q
p−1

2 ≡p q
p−1

2 ≡p −1.
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QUADRATIC RESIDUA and NONRESIDUA I

Let +n,×n denote addition and multiplication modulo n

a +n b = (a + b) mod n, a×n b = (ab) mod n

Zn = {0, 1, . . . , n − 1} is a group under the operation +n

Z?n = {x |1 ≤ x ≤ n, gcd(x , n) = 1} is a group under the operation ×n

Z?n is a field under the operations +n,×n if n is a prime. Theorem For any n, the

multiplicative inverse of any z ∈ Z?n and exponentiation in Z?n can be computed in
polynomial time.
Definition An integer x ∈ Z?n is called a quadratic residue modulo n if

x ≡ y 2( mod n)

for some y ∈ Z?n , otherwise x is a quadratic nonresidue.
Notation: QR(m) – the set of all quadratic residues modulo n. QR(n) is therefore
subgroup of squares in Z?n .
QNR(n) – the set of all quadratic nonresidues modulo n.
For any prime p the set QR(p) has p−1

2
elements.

So called Euler criterion says that if c is a quadratic residue modulo p, then
c (p−1)/2 ≡ 1 (mod p),
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EXAMPLE

If n = 8 then Z?8 = {1, 3, 5, 7}
12 ≡ 1( mod 8), 32 ≡ 1( mod 8),
52 ≡ 1( mod 8), 72 ≡ 1( mod 8)

QR(8) = {1}

If n = 9 then Z?9 = {1, 2, 4, 5, 7, 8}
12 ≡ 1( mod 9), 22 ≡ 4( mod 9), 42 ≡ 7( mod 9),
52 ≡ 7( mod 9), 72 ≡ 4( mod 9), 82 ≡ 1( mod 9)

QR9 = {1, 4, 7}

12 ≡ 1( mod 15), 22 ≡ 4( mod 15), 42 ≡ 1( mod 15),
72 ≡ 4( mod 15), 82 ≡ 4 mod 15,

112 ≡ 1( mod 15), 132 ≡ 4( mod 15), 142 ≡ 1( mod 15)

QR15 = {1, 4}
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QUADRATIC RESIDUES and NONRESIDUES II

An integer x ∈ Z?m is called a quadratic residue modulo m if

x ≡ y 2( mod m)

for some y ∈ Z?m, otherwise x is a quadratic nonresidue.
Notation: QRm – the set of all quadratic residues modulo m. QRm is therefore subgroup
of squares in Zm.
QNRm – the set of all quadratic nonresidues modulo m.
How to decide whether an x is a quadratic residue?
Theorem If p > 2 is a prime and g ∈ Z?p a generator, then g k is a quadratic residue iff k
is even.
If k is even, then g

k
2 is the square root of g k .

Let k = 2l + 1 and x ∈ Z?p be such that x2 = g 2k+1( mod p).
If x = gm, then g 2m ≡ g 2k+1( mod p) and therefore in the additive group modulo Φ(p)
it holds

2m = 2l + 1( mod Φ(p))

Since Φ(p) = p − 1, this is impossible.
Theorem If p is a prime, then a ∈ Z?p is a quadratic residue iff

a
p−1

2 ≡ 1( mod p).

(1) If a ∈ QR(p), a = q2k( mod p) for some generator q,

a
p−1

2 ≡p qk(p−1) ≡p (qp−1)k ≡p 1k ≡ 1.
(2) If a ∈ QNR(p), a = q2k+1( mod p) for some generator q, then

a
p−1

2 ≡p qk(p−1)q
p−1

2 ≡p q
p−1

2 ≡p −1.
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FINDING of QUADRATIC (NON)RESIDUES

Let p be a prime.
How to find (1) a quadratic residue in QRp?
(2) How to find a quadratic nonresidue in QNRn?
(1) Very easy: choose a, compute a2

(2) Very easy using a randomized algorithm because exactly half of elements are
quadratic nonresidues.
If the generalized Riemann Hypothesis holds, then Z?p has to contain a quadratic
nonresidue among its O(log2 p) the smallest elements.
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BLUM INTEGERS

If p, q are primes such that p ≡ 3 (mod 4), q ≡ 3 (mod 4) then the integer n = pq is
called Blum integer
Blum integers n have the following important properties.

If x ∈ QR(n), then x has exactly four square roots and exactly one of them is in
QR(n) – this square root is called primitive square root of x modulo n.

Function f : QR(n)→ QR(n) defined by f (x) = x2 is a permutation on QR(n).

The inverse function is f −1(x) = x ((p−1)(q−1)+4)/8 mod n
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RABIN’S ALGORITHM

Theorem (Rabin) The following statements are equivalent:
(1) There is a polynomial time randomized algorithm to factor Blum integers.
(2) There is a polynomial time randomized algorithm to compute the principal square
root for x ∈ QRn, if n is a Blum integer.
(1) Assume, that a polynomial time randomized algorithm A to compute the principal
square root modulo Blum integers is given.
A Blum integer n can be factorized as follows:
1. Choose randomly a y such that (y |n) = −1.
2. Compute x ≡ y 2 mod n
3. Find, using A, z ∈ QRn such that x = z2 mod n.
We show that gcd(y + z , n) is a prime factor of n = pq.
Clearly pq divides (y − z)(y + z). Since

(−z |n) = (−1|n)(z |n) = (−1)
p−1

2 (−1)
q−1

2 (z |n) =??

we have y 6≡ −z mod n and therefore gcd (y + z , n) has to be one of the prime factor
of n.
(2) Assume we can effeciently factor n = pq.
We show how to compute effeciently principal square roots modulo n.
Let x ∈ QRn. Using Adleman-Manders-Miller’s algorithm compute

u ∈ QRp, v ∈ QRq such that x = u2 mod p, y = v 2 mod q.

Using extended Euclid’s algorithm compute a, b such that ap + bq = 1.
Compute c = bq, d = ap.
We show that w = cu + dv ∈ QRn and it is a square root of x . Since

c ≡ 1 mod p, d ≡ 1 mod q

and
w 2 ≡ u2 ≡ x mod p,w 2 ≡ v 2 ≡ x mod q

we have
w 2 ≡ x mod n.

To show w ∈ QRn : (w |pq) = (w |p)(w |q) = (u|p)(v |q) = 1.
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EULER’s CRITERION

Theorem Let p > 2 be a prime. Then x is a quadratic residue modulo p if and only if

x (p−1)/2 ≡ 1 (mod p).

Proof First suppose that x ≡ y 2 (mod p). From Fermat theorem it follows that
xp−1 ≡ 1 (mod p) if x 6≡ 0 (mod p). Therefore

x (p−1)/2 ≡ (y 2)(p−1)/2 (mod p) (3)

≡ yp−1 (mod p) (4)

≡ 1 (5)

Secondly, let x (p−1)/2 ≡ 1 (mod p). Then x ≡ bi (mod p) for some primitive element
modulo p and some i . Therefore

x (p−1)/2 ≡ (bi )(p−1)/2 (mod p) (6)

≡ bi(p−1)/2 (mod p) (7)

Since b has order p − 1, it must be the case that p − 1 divides i(p − 1)/2 and therefore i
has to be even. Therefore the square roots of x are ±bi/2.
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LEGENDRE amd LEGENDRE-JACOBI SYMBOLS

The following notation is useful to deal with quadratic residues and

nonresidues: (x |m) =

8><>:
1 ifx ∈ QRmandmis prime

−1 if x ∈ QNRmandmis primeQn
i=1(x |pi ) ifm =

Qn
i=1 pi , pi are primes, gcd(x ,m) = 1

(x |m) is called the Legendre symbol if m is prime and the Legendre-Jacobi (or Jacobi)
symbol otherwise. There are efficient algorithms to compute Jacobi symbols.
Some useful rules to compute (x |m)

1. Euler’s criterion: x |p ≡ x
p−1

2 ( mod p) if p > 2 is prime, x ∈ Z?p
2. If x ≡ y( mod m), then (x |m) = (y |m).
3. (x |m) · (y |m) = (xy |m).

4. (−1|m) = (−1)
m−1

2 , if m is odd.

5. (2|m) = (−1)
m2−1

8 , if m is odd
6. Law of quadratic reciprocity: If gcd(m, n) = 1,m, n are odd, then

(n|m)(m|n) = (−1)
(m−1)(n−1)

4

Example

(28|97) = (2|97)(2|97)(7|97) = (7|97)

= (97|7)(−1)
(97−1)(7−1)

4 = (6|7)

= (2|7)(3|7) = (−1)6(3|7) = (7|3)(−1)3 = −(1|3) = −1
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SOLOVAY-STRASSEN PRIME RECOGNITION ALGORITHM

It follows from the Lagrange theorem that if the following fast Monte Carlo algorithm —
based on the fact that computation of Legendre-Jacobi
symbols can be done fast — reports that a given number n is composite, then this is
100%, true and if it reports that it is a prime, then the error is at most 1

2
.

begin choose randomly an integer a ∈ {1, . . . , n}
if gcd(a, n) 6= 1 then return “composite”

else if (a|n) 6≡ a
n−1

2 ( mod n)
then return “composite”;

return “prime”
end

Indeed, if n is composite, then all integers a ∈ Z?n such that

(a|n) ≡ a
n−1

2 ( mod n)

form a proper subgroup of the group Z?n . This implies that most of the elements a ∈ Z?n
are such that

(a|n) 6≡ a
n−1

2 ( mod n)

and therefore they can “witness” compositness of n, if n is composite.
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HOW MANY SQUARE ROOTS EXIST?

Theorem
(1) If p > 2 is a prime, k ≥ 1, then any quadratic residue modulo pk has exactly two
distinct square roots x ,−x = pk − x
(2) If p = 2, k ≥ 1, then any quadratic residue modulo 2k has
• 1 square root if k = 1;
• 2 square root if k = 2;
• 4 square root if k > 2.
Theorem If an odd number n has exactly t distinct factors, then any quadratic residue a
modulo n has exactly 2t distinct square roots.
We show the theorem only for the case n = p · q where p > 2, q > 2 are primes.
Let a ∈ QRn, a ≡ a2

1( mod n).
By the Chinese Remainder Theorem there are integers u, v such that

u ≡ a1 mod p u ≡ −a1 mod q

v ≡ a1 mod q v ≡ −a1 mod p

Since p, q are odd, u, v have to be distinct. Moreover,

u2 ≡ v 2 ≡ a2
1 mod pq

and therefore a1,−a1, u, v are 4 different square roots.
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COMPUTATION of DISCRETE SQUARE ROOTS

Theorem (Adleman-Manders-Miller)
There exists a randomized polynomial time algorithm to compute the square root of
modulo n where a ∈ QRp, and p is a prime.
Theorem There is a polynomial algorithm which computes, given
x , u, v , p, q such that

x ≡ u2 mod p, x ≡ v 2 mod q, p, q-primes

a w such that x ≡ w 2 mod pq.
Example Let x , u, v , p, q satisfy the above conditions.
Using Euclid’s algorithm we can compute a, b such that

ap + bq = 1

If we denote
c = bq = 1− ap, d = ap = 1− bq,

then
c ≡ 0 mod q, d ≡ 0 mod p, c ≡ 1 mod p, d ≡ 1 mod q.

We show now that for w = cu + dv we have

x ≡ w 2 mod p, x ≡ w 2 mod q

and therefore
x ∈ QRp, x ∈ QRq ⇒ x ∈ QRpq.

Case 1. w 2 = (cu + dv)2 = c2u2 + 2cduv + d2v 2 ≡ u2 ≡ x( mod p) Case 2.
w 2 = (cu + dv)2 = c2u2 + 2cduv + d2v 2 ≡ v 2 ≡ x( mod q)
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