## Part XII

From theory to practice in cryptography

## I. SHIFT-REGISTERS

## I. SHIFT REGISTERS

The first practical approach to ONE-TIME PAD cryptosystem
Basic idea: to use a short key, called "seed", and a pseudorandom generator to generate long pseudorandom key.



Theorem For every $n>0$ there is a linear shift register of maximal period $2^{n}-1$.
Shift registers as pseudorandom generators
prof. Jozef Gruska IV054 12. From theory to practice in cryptography

3/59

FROM CRYPTO-THEORY to CRYPTO-PRACTICE

In this chapter we deal with several applied cryptography methods, systems and problems that have played very important role in applications.

## CRYPTANALYSIS of linear feedback shift registers

Sequences generated by linear shift registers have excellent statistical properties, but they are not resistant to a known plaintext attack.
Example Let us have a 4-bit shift register and let us assume we know 8 bits of a plaintext and of the corresponding cryptotext. By XOR-ing these two bit sequences we get 8 bits of the output of the register (of the key), say 00011110
The task is to determine $c_{4}, c_{3}, c_{2}, c_{1}$ such that the above sequence is outputted by the shift register

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| states of cell 4 | states of cell 3 states of cell 2 |  | states of cell 1 |
| $C_{4}$ | 1 | 0 | 0 |
| $c_{4} \oplus c_{3}$ | $C_{4}$ | 1 | 0 |
| $c_{2} \oplus c_{4}$ | $c_{4} \oplus c_{3}$ | $C_{4}$ | 1 |
| $c_{1} \oplus c_{3}\left(c_{4} \oplus c_{3}\right) \oplus c_{4}$ | $c_{2} \oplus c_{4}$ | $c_{4} \oplus c_{3}$ | $C_{4}$ |
| $c_{4}=1 \quad c_{4}=$ |  |  | $c_{4}=1$ |
|  | $c_{4} \oplus c_{3}=$ | $c_{3}=0$ |  |
|  | $c_{2} \oplus c_{4}=$ | $c_{2}=0$ |  |
| $c_{1} \oplus c^{\prime}$ | $\oplus c_{4} \oplus c_{3} \cdot c_{4}=$ | $c_{1}=1$ |  |

## COMPUTATIONS

## LINEAR RECURRENCES


states of cell 4
$C_{4}$
$c_{4} \oplus c_{3}$
$c_{2} \oplus c_{4}$
$c_{1} \oplus c_{3}\left(c_{4} \oplus c_{3}\right) \oplus c_{4}$

states of cell 2
states of cell 1

| 1 | 0 | 0 |
| :---: | :---: | :---: |
| $c_{4}$ | 1 | 0 |
| $c_{4} \oplus c_{3}$ | $c_{4}$ | 1 |
| $c_{2} \oplus c_{4}$ | $c_{4} \oplus c_{3}$ | $c_{4}$ |

$C_{4} \oplus c_{3}$

After the second step new value of the first register is

$$
N=\left(c_{4} \cdot c_{4}\right) \oplus c_{3}=c_{4} \oplus c_{3}
$$

After the third step new value of the first register is

$$
N=\left(\left(c_{4} \oplus c_{3}\right) \cdot c_{4}\right) \oplus\left(c_{4} \cdot c_{3}\right) \oplus c_{2}
$$

If $c_{4}=1$, then

$$
N=\overline{c_{3}} \oplus c_{3} \oplus c_{2}=\overline{c_{2}}
$$

and therefore $N=c_{4} \oplus c_{2}$
If $c_{4}=0$, then

$$
N=c_{2}
$$

Linear feedback shift registers are an efficient way to realize recurrence relations of the type

$$
x_{n+m}=c_{0} x_{n}+c_{1} x_{n+1}+\cdots+c_{m-1} x_{n+m-1}(\bmod n)
$$

that can be specified by $2 m$ bits: $c_{0}, \ldots, c_{m-1}$ and $x_{1}, \ldots, x_{m}$.

Recurrences realized by shift registers on previous slides are:

$$
x_{n+4}=x_{n} ; \quad x_{n+4}=x_{n+2}+x_{n} ; \quad x_{n+4}=x_{n+3}+x_{n} .
$$

The main advantage of such recurrences is that a pseudo-random key of a very large period can be generated using a few initial bits.

For example, the recurrence $x_{n+31}=x_{n}+x_{n+3}$, and any non-zero initial vector, produces sequences with period $2^{31}-1$, what is more than two billions.
Encryption using one-time pad and a key generated by a linear feedback shift register succumbs easily to a known plaintext attack. As our main example illustrated, if we know few bits of the plaintext and of the corresponding cryptotext, one can easily determine the initial part of the key and then the corresponding linear recurrence, as already shown.
and therefore $N=c_{4} \oplus c_{2}$

## FINDING LINEAR RECURRENCES - A METHOD - I.

To test whether a given portion of a bit sequence was generated by a recurrence of a length $m$, if we know the sequence prefix $x_{1}, \ldots, x_{2 m}$, we need to solve the matrix equation

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{m} \\
x_{2} & x_{3} & \ldots & x_{m+1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} & x_{m+1} & \cdots & x_{2 m-1}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{m-1}
\end{array}\right)=\left(\begin{array}{c}
x_{m+1} \\
x_{m+2} \\
\vdots \\
x_{2 m}
\end{array}\right)
$$

and then to verify whether the remaining available bits of the sequence, $x_{2 m+1}, \ldots$, are really generated by the recurrence just obtained.

## III. How to make cryptanalyst's task harder?

Two general methods to achieve the above goal are called diffusion and confusion.
Diffusion: dissipate the source language redundancy found in the plaintext by spreading it out over the whole cryptotext.
Example 1: A permutation of the plaintext rules out possibility to use frequency tables for digrams, trigrams,....
Example 2: Make each letter of cryptotext to depend on so many letters of the plaintext as possible
Illustration: Let letters of English be encoded by integers from $\{0, \ldots, 25\}$. Let the key $k=k_{1}, \ldots, k_{s}$ be a sequence of such integers.
Let
be a plaintext
Define, for $0 \leq i<s, p_{-i}=k_{s-i}$, and construct the cryptotext by

$$
c_{i}=\left(\sum_{j=0}^{s} p_{i-j}\right) \quad \bmod 26,1 \leq i \leq n
$$

Confusion makes the relation between the cryptotext and plaintext as complex as possible.
Example: polyalphabetic substitutions.

As already mentioned, two fundamental cryptographic techniques, introduced already by Shannon, are confusion and diffusion.
Confusion obscures much the relationship between the plaintext and the cryptotext, to make much more difficult cryptanalyst's attempts to study cryptotext by looking for redundancies and statistical patterns. (The best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over cryptotext - that again makes much more difficult a cryptanalyst's attempts to search for redundancy in the plaintext through observation of cryptotext. (The best way to achieve it is through transformations that cause that bits from different positions in plaintext contribute to the same bit of cryptotext.)
Mono-alphabetic cryptosystems use no confusion and no diffusion. Polyalphabetic cryptosystems use only confusion. In permutation cryptosystems only diffusion step is used. DES cryptosyste, introduced later, uses essentially a sequence of confusion and diffusion steps.

| prof. Jozef Gruska | IV054 | 12. From theory to practice in cryptography |
| :--- | :--- | :--- |

## PREHISTORY of DES - LUCIFER

During the years 1966-1972 a need grew up to develop an encryption standard so that many users can easily communicate among themselves using encrypted messages.

The idea was that people should be able to communicate secretly using identical encryption and decryption machines and/or software systems.

On May 15, 1973 American National Bureau of Standards formally requested to make proposals for a standard encryption system.

The main candidate was the cryptosystem LUCIFER developed in IBM by Horst Feistel.
After 3 years of arguing of experts, a 56 -bit key version of Lucifer was accepted (supposedly only for the next 5 years) as the standard called DES (Data Encryption Standard) on November 23, 1976.

## IV. DES CRYPTOSYSTEM and its FOLLOWERS

## DES was a revolutionary step in the secret-key

 cryptography history because:
## 1. Both encryption and decryption algorithms were made public!!!!!!

The same algorithms, software systems or hardware could be used for both encyption and decryption.

Preprocessing: A secret 56-bit key $k_{56}$ is chosen.
A fixed+public permutation $\phi_{56}$ is applied to get $\phi_{56}\left(k_{56}\right)$. The first (second) part of the resulting string is taken to get a 28 -bit block $C_{0}\left(D_{0}\right)$. Using a fixed+public sequence $s_{1}, \ldots, s_{16}$ of integers, 16 pairs of 28 -bit blocks $\left(C_{i}, D_{i}\right), \mathrm{i}=1, \ldots, 16$ are obtained as follows:

- $C_{i}\left(D_{i}\right)$ is obtained from $C_{i-1}\left(D_{i-1}\right)$ by $s_{i}$ left shifts.
- Using a fixed and public order, a 48-bit block $K_{i}$ is created from each pair $C_{i}$ and $D_{i}$.

Encryption A fixed+public permutation $\phi_{64}$ is applied to a 64 -bits long plaintext $w$ to get $w^{\prime}=L_{0} R_{0}$, where each of the strings $L_{0}$ and $R_{0}$ has 32 bits. 16 pairs of 32 -bit blocks
$L_{i}, R_{i}, 1 \leq i \leq 16$, are designed using the recurrence:

$$
\begin{gathered}
L_{i}=R_{i-1} \\
R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{gathered}
$$

where f is a fixed+public and easy-to-implement function.
The cryptotext $c=\phi_{64}^{-1}\left(L_{16}, R_{16}\right)$

Encryption A fixed+public permutation $\phi_{64}$ is applied to a 64 -bits long plaintext $w$ to get $w^{\prime}=L_{0} R_{0}$, where each of the strings $L_{0}$ and $R_{0}$ has 32 bits.

16 pairs of 32 -bit blocks $L_{i}, R_{i}, 1 \leq i \leq 16$, are designed using the recurrence:

$$
\begin{gathered}
L_{i}=R_{i-1} \\
R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{gathered}
$$

where f is a fixed+public and easy-to-implement function.
The cryptotext $c=\phi_{64}^{-1}\left(L_{16}, R_{16}\right)$
Decryption $\phi_{64}(c)=L_{16} R_{16}$ is computed and then the recurrence

$$
\begin{gathered}
R_{i-1}=L_{i} \\
L_{i-1}=R_{i} \oplus f\left(L_{i}, K_{i}\right),
\end{gathered}
$$

is used to get $L_{i}, R_{i} \mathrm{i}=15, \ldots, 1,0, \mathrm{w}=\phi_{64}^{-1}\left(L_{0}, R_{0}\right)$.

## DES ALGORITHM - DETAILS - PREPROCESSING

A secret 56-bit key $k_{56}$ is chosen.
Eight bits in (new) positions 8, 16, ..., 64 are added to the key, to make each byte of odd parity.
This step is useful for errors detection in the key distribution and in storage. 56 bits of the key are now subject to the following fixed+public permutation $\phi_{56}$ :

| 57 | 49 | 41 | 33 | 25 | 17 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 58 | 50 | 42 | 34 | 26 | 18 |
| 10 | 2 | 59 | 51 | 43 | 35 | 27 |
| 19 | 11 | 3 | 60 | 52 | 44 | 36 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 |
| 7 | 62 | 54 | 46 | 38 | 30 | 22 |
| 14 | 6 | 61 | 53 | 45 | 37 | 29 |
| 21 | 13 | 5 | 28 | 20 | 12 | 4 |

The first (second) part of the resulting string is taken to get a 28 -bit block $C_{0}\left(D_{0}\right)$.

## NEXT STEP II

Using a fixed and publicly known order,

| 14 | 17 | 11 | 24 | 1 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 28 | 15 | 6 | 21 | 10 |
| 23 | 19 | 12 | 4 | 26 | 8 |
| 16 | 7 | 27 | 20 | 13 | 2 |
| 41 | 52 | 31 | 37 | 47 | 55 |
| 30 | 40 | 51 | 45 | 33 | 48 |
| 44 | 49 | 39 | 56 | 34 | 53 |
| 46 | 42 | 50 | 36 | 29 | 32 |

16 subkeys $k_{i}$, each of 48 bits, are then created, each $k_{i}$ from blocks $C_{i}, D_{i}$

## FUNCTION $f$

The function $f$ produces from a 32 -bit block $R_{i-1}$ and a 48 -bit subkey $K_{i}$ a 32 -bit block as follows:
At first, the 32-bit block is expanded into 48-bits according the following table:

| 32 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 5 | 6 | 7 | 8 | 9 |
| 8 | 9 | 10 | 11 | 12 | 13 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 16 | 17 | 18 | 19 | 20 | 21 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 28 | 29 | 30 | 31 | 32 | 1 |

After this expansion two 48 -bits blocks are XOR-ed - bit by bit

- A cryptosystem is called linear if each bit of cryptotext is a linear combination of bits of plaintext.
- For linear cryptosystems there is a powerful decryption method - so-called linear cryptanalysis.
- The only components of DES that are non-linear are S-boxes.
- Some of original requirements for S-boxes:
- Each row of an S-box should include all possible output bit combinations;
- It two inputs to an S-box differ in precisely one bit, then the output must differ in a minimum of two bits;
- If two inputs to an S-box differ in their first two bits, but have identical last two bits, the two outputs have to be distinct.
- There have been many other very technical requirements.

How fast is DES?

200 megabits can be encrypted per second using a special hardware.
How safe is DES?

Pretty good.
How to increase security when using DES?
11 DOUBLE DES: Use two keys, for a double encryption.
2 TRIPLE-DES: Use three keys, $k_{1}, k_{2}$ and $k_{3}$ to compute

$$
c=D E S_{k_{1}}\left(D E S_{k_{2}}^{-1}\left(D E S_{k_{3}}(w)\right)\right)
$$

How to increase security when encrypting long plaintexts?

$$
w=m_{1} m_{2} \ldots m_{n}
$$

where each $m_{i}$ has 64-bits.
Choose a 56-bit key k and a 64-bit block $c_{0}$ and compute

$$
c_{i}=D E S\left(m_{i} \oplus c_{i-1}\right)
$$

for $i=1, \ldots, n$.

## The DES CONTROVERSY

$\llbracket$ There have been suspicions that the design of DES might contain hidden "trapdoors'" what allows NSA to decrypt messages.
■ The main criticism has been that the size of the key-space, $2^{56}$, is too small for DES to be really secure.
© In 1977 Diffie+Hellamn suggested that for \$ 20 millions one could build a VLSI chip that could search the entire key space within 1 day.

- In 1993 M . Wiener suggested a machine of the cost \$ 100.000 that could find the key in 1.5 days.

Complexity of attacks
Brute force: $2^{56} \times 2^{56}=2^{2 \times 56}=2^{112}$;
MITM: $2 \times 2^{56}=2^{1+56}=2^{57}$.
MITM attack has been generalized for the case on $n$-multiple encodings are used for DES and some other cryptosystems.
prof. Jozef Gruska

- Existence of weak keys: they are such keys $k$ that for any plaintext $p$,

$$
E_{k}\left(E_{k}(p)\right)=p
$$

There are four such keys:
$k \in\left\{\left(0^{28}, 0^{28}\right),\left(1^{28}, 1^{28}\right),\left(0^{28}, 1^{28}\right),\left(1^{28}, 0^{28}\right)\right\}$

- The existence of semi-weak key pairs $\left(k_{1}, k_{2}\right)$ such that for any plaintext

$$
E_{k_{1}}\left(E_{k_{2}}(p)\right)=p .
$$

- The existence of complementation property

$$
E_{c(k)}(c(p))=c\left(E_{k}(p)\right)
$$

where $\mathrm{c}(\mathrm{x})$ is binary complement of binary string x .

| prof. Jozef Grusta ${ }^{\text {a }}$ |
| :---: |
|  |  |

## DES MODES of OPERATION

ECB (Electronic Code Book) mode: to encode a sequence

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

of 64-bit plaintext blocks, each $x_{i}$ is encrypted with the same key.
CBC (Cipher Block Chaining) mode: to encode a sequence

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

of 64-bit plaintext blocks, a $c_{0}$ is chosen and each $x_{i}$ is encrypted to get cryptotext

$$
c_{i}=e_{k}\left(c_{i-1} \oplus x_{i}\right)
$$

OFB (Output Feedback) mode: to encode a sequence

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

of 64-bit plaintext blocks, a $z_{0}$ is chosen, $z_{i}=e_{k}\left(z_{i-1}\right)$ are computed and each $x_{i}$ is encrypted to get cryptotext $c_{i}=x_{i} \oplus z_{i}$.
CFB (Cipher Feedback) mode: to encode a sequence

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

of 64-bit plaintext blocks a $c_{0}$ is chosen and each $x_{i}$ is encrypted to get cryptotext

$$
c_{i}=x_{i} \oplus z_{i}, \text { where } z_{i}=e_{k}\left(c_{i-1}\right)
$$

prof. Jozef Gruska

- In 1993 M. J. Weiner suggested that one could design, using one million dollars, a computer capable to decrypt, using brute force, DES in 3.5 hours.
- In 1998 group of P. Kocher designed, using a quarter million of dolars, a computer capable to decrypt DES in 56 hours.
- In 1999 they did that in 24 hours.
- It started to be clear that a new cryptosystem with larger keys is badly needed.

Design of several important practical cryptosystems used the following three general design principles for cryptosystems.
A product cryptosystem combines two or more crypto-transformations in such a way that resulting cryptosystem is more secure than component transformations.

An iterated block cryptosystem iteratively uses a round function (and it has as parameters number of rounds $r$, block bit-size $n$, subkeys bit-size $k$ ) of the input key K from which r subkeys $K_{i}$ are derived.
A Feistel cryptosystem is an iterated cryptosystem mapping 2t-bit plaintext ( $L_{0}, R_{0}$ ) of t-bit blocks $L_{0}$ and $R_{0}$ to a 2t-bit cryptotext ( $L_{r}, R_{r}$ ), through an $r$-round process, where $r>0$.

For $0<I<r+1$, the round i maps ( $L_{i-1}, R_{i-1}$ ) to ( $L_{i}, R_{i}$ ) using a subkey $K_{i}$ as follows

$$
L_{i}=R_{i-1}, R_{i}=K_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
$$

where each subkey $K_{i}$ is derived from the main key $K$.

## FEISTEL ENCRYPTION/DECRYPTION SCHEME

This is a general scheme for design of cryptosystems that was used at the design of several important cryptosystems, such as Lucifer and DES.
Its main advantage is that encryption and decryption are very similar, and even identical in some cases, and then the same hardware can be used for both encryption and decryption.
Let $F$ a be a so-called round function and $K_{0}, K_{1}, \ldots, K_{n}$ be sub-keys for rounds $0,1,2, \ldots, n$.
Encryption is as follows:

- Split the plaintext into two equal size parts $L_{0}, R_{0}$.
- For rounds $i \in\{0,1, \ldots, n\}$ compute

$$
L_{i+1}=R_{i} ; R_{i+1}=L_{i} \oplus F\left(R_{i}, K_{i}\right)
$$

776,13 36The ciphertext is then: $\left(R_{n+1}, L_{n+1}\right)$
Decryption of $\left(R_{n+1}, L_{n+1}\right)$ is done by computing, for $i=n, n-1, \ldots, 0$

$$
R_{i}=L_{i+1}, L_{i}=R_{i+1} \oplus F\left(L_{i+1}, K_{i}\right)
$$


and $\left(L_{0}, R_{0}\right)$ is the plaintext
and $\left(L_{0}, R_{0}\right)$ is the plaintext $\quad$ IV054
prof. Jozef Gruska . From theory to practice in cryptography

## SUBSTITUTION-PERMUTATION ENCRYPTION/DECRYPTION

V. AES CRYPTOSYSTEM

This scheme, known also as substitution-permutation network, is an encryption/decryption method/network that performs a series of
substitution-permutation layers of operations composed of S-boxes (substitution boxes) and P -boxes (permutation boxes) as shown in the picture - $K_{i}$ are keys.


Encryption/decryption system AES discussed next is the most known example of such a system.

## AES CRYPTOSYSTEM - PREHISTORY

- NIST in USA decided in 1997 to create a new standard for encryption and decryption called AES.
- Anyone could make a proposal and 15 candidates were accepted in 1998.
- Based on public comments 5 candidates got into second round.
- High security as well as fast speed and low memory requirements on a variety of computing systems were main criteria.


## AES CRYPTOSYSTEM - HISTORY

On October 2, 2000, NIST selected, as new Advanced Encryption Standard, the cryptosystem Rijndael, designed in 1998 by Joan Daemen and Vincent Rijmen.
The main goal has been to develop a new cryptographic standard that could be used to encrypt sensitive governmental information securely, well into the next century.

AES was expected to be used obligatory by U.S. governmental institution and, naturally, voluntarily, but as a necessity, also by the private sector.
AES is dedicated to 8 -bit microprocessors to encrypt 128 -bit messages using a key with 128, 192 or 256 bits. In addition, AES is to be used as a standard for authentication (MAC), hashing and pseudorandom numbers generation.

Motivations and advantages of AES:

- Short code and fast and low memory implementations
- Simplicity and transparency of the design.
- Variable key length
- Resistance against all known attacks.


## AES MATHEMATICS - I

## OPERATIONS in THE FIELD $G F\left(2^{8}\right)$

$\square$ Some operations in AES are define on bytes.

- Bytes will be seen as elements of the finite field $G F\left(2^{8}\right)$.
- Bytes will be represented either by binary 8 -bit strings $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ or by polynomials
$b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$
- Some operations in AES will be defined in terms of 4-bytes words .


## POLYNOMIALS WITH COEFFICIENTS in $G F\left(2^{8}\right)$

In polynomial representation, addition of two polynomials is given by xor-ng corresponding coefficients.

In polynomial representation multiplication of two polynomilas is done performing usual multiplicaion and then taking modulus a special polynomial in such a way that multiplication has inverse elements.

Addition
In polynomial representation, the sum of two bytes is the polynomial whose coeficiants are given by xor-ing coefficients of both bytes-polynomials.

$$
\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x_{4}+x^{2}
$$

## Multiplication

In polynomial representation of bytes, multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

Example

$$
\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{7}+x+1\right)=x^{13}+x^{11}+x^{9}+x^{8}+x^{5}+x^{5}+x^{4}+x^{3}+1
$$

and

$$
\left(x^{13}+x^{11}+x^{9}+x^{8}+x^{5}+x^{5}+x^{4}+x^{3}+1\right) \bmod m(x)=x^{7}+x_{6}+1
$$

The set of 256 possible byte values with operations of addition and multiplication as defined above has the structure of the finite field $\operatorname{GF}\left(2^{8}\right)$.

## AES - BASIC IDEA

- AES is a substitution-permutation network.
- Basic AES implementations operate on $4 \times 4$ matrices of bytes called states. A 128 -bit message is also written as a $4 \times 4$ matrix of bytes.
- Some AES implementations work with states with additional columns in the state matrices.
- Encryption is performed through 10, 12 or 14 rounds depending on whether the key size is 128,196 or 256 .
- Each round (but the final one) consists of four simple transformations:
$\square$ SubBytes - byte-wise substitution defined by a special table of 256 bytes.
${ }^{0}$ Shift Rows - a circular shift of $i$-th row of the matrix by $i$ positions to the left.
- MixColumns - a linear transformation on each column defined by a $4 \times 4$ matrix of bytes.
- AddRoundKey - bit-wise XOR with a round key defined by another matrix.


In the subBytes step, each byte in the state is replaced with its entry in a fixed 8-bit lookup table, $S ; b_{i ;}=S\left(a_{i j}\right)$.

- In this step, each byte in the state is replaced with its entry in a fixed 8 -bit lookup table.
- The operation introduces non-linearity into encryption.
- At decryption, an Inverse SubBytes step is used.


In the ShiftRows step, bytes in each row of the state are shifted cyclically to the left. The number of places each byte is shifted differs for each row.

- At this step each row of the state is cyclically shifted by a certain offset.
- This step is done to avoid that columns of states are linearlv dependent.

THE AddRoundKey STEP


In the AddRoundKey step, each byte of the state is combined with a byte of the round subkey using the XOR operation ( $\oplus$ ).

AES performs well on a variety of hardware - from 8-bit smart cards to supercomputers.

On a Pentium Pro throughput is about $11 \mathrm{MB} / \mathrm{s}$ for a 200 MHz processor. On a 1.7 GHz Pentium M , throughput is about $60 \mathrm{MB} / \mathrm{s}$.

On Intel Core i3/i5/i7 CPUs supporting AES-NI instruction set extensions, throughput can be over $700 \mathrm{MB} / \mathrm{s}$.

Byte-wise substitution $b=\operatorname{SubByte}(a)$ is defined by the following matrix operations

$$
\left(\begin{array}{l}
b_{7} \\
b_{6} \\
b_{5} \\
b_{4} \\
b_{3} \\
b_{2} \\
b_{1} \\
b_{0}
\end{array}\right)=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
\left(a^{-1}\right)_{7} \\
\left(a^{-1}\right)_{6} \\
\left(a^{-1}\right)_{5} \\
\left(a^{-1}\right)_{4} \\
\left(a^{-1}\right)_{3} \\
\left(a^{-1}\right)_{2} \\
\left(a^{-1}\right)_{1} \\
\left(a^{-1}\right)_{0}
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

This operation is computationally heavy and it is assumed that it will be implemented by a pre-computed substitution table.

## ENCRYPTION in AES

Encryption and decryption are done using state matrices

| A | E | I | M |
| :---: | :---: | :---: | :---: |
| B | F | J | N |
| C | G | K | O |
| D | H | L | P |

elements of which are bytes.
A byte-matrix with 4 rows and $k=4,6$ or 8 columns is also used to write down a key with $D_{k}=128,192$ or 256 bits.

ENCRYPTION ALGORITHM
1 KeyExpansion
2 AddRoundKey
3 do $(k+5)$-times:
a) SubByte
b) ShiftRow
c) MixColumn
d) AddRoundKey

4 Final round
a SubByte
b ShiftRow
c AddRoundKey
The final round does not contain MixColumn procedure. The reason being is to be able to use the same hardware for encryption and decryption.

## KEY EXPANSION

The basic key is written into the state matrix with 4,6 or 8 columns.
The goal of the key expansion procedure is to extend the number of keys in such a way that each time a key is used actually a new key is used.
The key extension algorithm generates new columns $W_{i}$ of the state matrix from the columns $W_{i-1}$ and $W_{i-k}$ using the following rule

$$
W_{i}=W_{i-k} \oplus V
$$

where

$$
V= \begin{cases}F\left(W_{i-1}\right), & \text { if } i \bmod \mathrm{k}=0 \\ G\left(W_{i-1}\right), & \text { if } \mathrm{i} \bmod \mathrm{k}=4 \text { and } D_{k}=256 \text { bits, } \\ W_{i-1} & \text { otherwise }\end{cases}
$$

and where the function $G$ performs only the byte-substitution of the corresponding bytes. Function F is defined in a quite a complicated way.

DECRYPTION in AES

Steps of the encryption algorithm map an input state matrix into an output matrix. All encryption operations have inverse operations. Decryption algorithm applies, in the opposite order as at the encryption, the inverse versions of the encryption operations.

## DECRYPTION

1 Key Expansion
2. AddRoundKey

3 do $k+5$ - times:
a) InvSubByte
b) InvShiftRow
c) InvMixColumn
d) AddInvRoundKey

4 Final round
a) InvSubByte
b) InvShiftRow
c) AddInvRoundKey

SECURITY GOALS

The goal of the authors was that Rijndael (AES) is K-secure and hermetic in the following sense:

Definition A cryptosystem is K-secure if all possible attack strategies for it have the same expected work factor and storage requirements as for the majority of possible cryptosystems with the same security.

Definition A block cryptosystem is hermetic if it does not have weaknesses that are not present for the majority of cryptosystems with the same block and key length.

Pronunciation of the name Rijndael is as "Reign Dahl" or "rain Doll" or "Rhine Dahl".

## AES attacks

Best known is so called Biclique attack.

## Complexity of the biclique attack

- AES-128-2 $2^{126.1}$ - brute force ( $2^{128}$ ).
$\square$ AES-192 - $2^{189.7}$ - brute force ( $2^{192}$ )
- AES-256 - $2^{254.4}-$ brute force $\left(2^{256}\right)$

Comment 1: Biclique is a complete bipartite graph - all nodes of which are connected to all potential neighbours.
Comment 2: For cryptographers, a cryptographic "break" is anything faster than a brute force.

## VI. PKC versus SKC - comparisons

DIGITAL ENVELOPES

Security: If PKC is used, only one party needs to keep secret its (single) key. If SKC is used, both party needs to keep secret one key. No PKC has been shown to be perfectly secure. Perfect secrecy has been shown for One-time Pad and for quantum generation of classical keys.

Longevity: With PKC, keys may need to be kept secure for (very) long time; with SKC a change of keys for each session is recommended.

Key management: If a multiuser network is used, then fewer private keys are required with PKC than with SKC.
Key exchange: With PKC no key exchange between communicating parties is needed; with SKC a hard-to-implement secret key exchange is needed.

Digital signatures: Only PKC are usable for digital signatures
Efficiency: PKC is much slower than SKC (10 times when software implementations of RSA and DES are compared).
Key sizes: Keys for PKC (2048 bits for RSA) are significantly larger than for SCK (128 bits for AES).

Non-repudiation: With PKC we can ensure, using digital signatures, non-repudiation but not with SKC the following steps have to be made:

Modern cryptography uses both SKC and PKC, in so-called hybrid cryptosystems or in digital envelopes. To send a message $m$, using a secret key $k$ chosen by the sender, using the public encryption exponent $\mathbf{e}$ of the receiver, and using the secret decryption exponent $d$ of the receiver,
${ }_{1}$ Key $\mathbf{k}$ is encrypted using $\mathbf{e}$ and sent as $E_{e}(k)$
2 Secret description exponent $\mathbf{d}$ is used to get $k=D_{d}\left(E_{e}(k)\right)$
${ }_{3}$ SKC with $k$ is then used to encrypt a message


## ATTACKS - BRUTE FORCE METHODS

We will discuss several types of brute force attacks that can be applied to any symmetric cryptosystem $C_{k}$ considered as an oracle that for each given key as input replies whether it is a correct key.

Exhaustive search

This method consists of trying all possible keys exhaustively until the correct key is found.

Exhaustive search can be made more efficient if a probability distribution on keys can be guessed or keys are known to satisfy some relations.

Dictionary attack

Creation of dictionary: For a fixed $x$ and many $k$, values $C_{k}(x)$ are computed and pairs $\left(C_{k}(x), k\right)$ are inserted into a dictionary that is ordered according to the first item of each pair.

Search If we obtain a $C_{k}(x)$ value (by a chosen plaintext attack), dictionary gives us a list of potential keys.

A generalization for searching for several keys having several values $C_{k}(x)$ is easy.

## SOPHISTICATED ATTACK METHODS

Two main attack methods for general cryptographic algorithms are differential cryptanalysis and linear cryptanalysis

Differential cryptanalysis: It is assumed that adversary can use the encryption devise as a black box, submitting chosen plaintexts and getting corresponding cryptotext.
The aim of the attack is to get the key.
The basic idea: pairs of random plaintexts are submitted the difference of which is a fixed value a until differences of corresponding cryptotext are at most a fixed value $b$.

Linear analysis: This is a dual method to differential cryptanalysis invented after discovering anomalies in S-boxes in DES. The idea is not to keep track of difference propagation by the chosen plaintext attack, but to keep track of Boolean information which is linearly obtained by a known plaintext attack: if one gets ( $x, c(x)$ ) pair a statistical analysis of the special Boolean information $L(x, c(x))$ is made and some information on the key is deduced.

So far there have appeared several attacks on AES that are faster than brute force, but only by a minor factor and none of them is feasible.
For AES-128 (AES-192) [AES-256] the key can be recovered with a computational complexity $2^{126.1}\left(2^{189.7}\right)$ [2254.4].

