ELLIPTIC CURVES CRYPTOGRAPHY and FACTORIZATION

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of points of elliptic curves over finite fields.

Elliptic curves belong to very important and deep mathematical concepts with a very broad use.

The use of elliptic curves for cryptography was suggested, independently, by Neal Koblitz and Victor Miller in 1985. ECC started to be widely used after 2005.

Elliptic curves are also the basis of a very important Lenstra's integer factorization algorithm.
Both of these uses of elliptic curves are dealt with in this chapter.

HISTORICAL COMMENTS

ELLIPTIC CURVES CRYPTOGRAPHY

- Elliptic are also seen by some mathematicians as the simplest non-trivial mathematical object.
- Historically, computing the integral of an arc-length of an ellipse lead to the idea of elliptic functions and curves.
- Niels Henrik Abel (1802-1829) and K. W. T. Weierstrass (1815-1897) are considered as pioneers in the area of elliptic functions.
- Abel has been considered, by his contemporaries, as mathematical genius that left enough for mathematicians to study for next 500 years.

[^0]
ELLIPTIC CURVES

MORE PRECISE DEFINITION

An elliptic curve E is the graph of points of the plane curve defined by the Weierstrass equation

$$
E: y^{2}=x^{3}+a x+b
$$

(where a, b are either rational numbers or integers (and computation is then done modulo some integer n)) extended by a "point at infinity", denoted usually as ∞ (or 0) that can be regarded as being, at the same time, at the very top and very bottom of the y-axis. We will consider only those elliptic curves that have no multiple roots - which is equivalent to the condition $4 a^{3}+27 b^{2} \neq 0$.
In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has one of the forms shown in the following figure. The graph depends on whether the polynomial $x^{3}+a x+b$ has three or only one real root.

$y^{2}=x(x+1)(x-1)$

$y^{2}=x^{3}+73$

A more precise definition of elliptic curves requires that it is the curve of points of the equation

$$
E: y^{2}=x^{3}+a x+b
$$

in the case the curve is non-singular.

Geometrically, this means that the graph has no cusps, self-interactions, or isolated points.

Algebraically a curve is non-singular if and only if the discriminant

$$
\Delta=-16\left(4 a^{3}+27 b^{3}\right) \neq 0
$$

The graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative.

IMPORTANCE of ELLIPTIC CURVES

Elliptic curves are currently an important area of mathematical research with importance for many other areas.

- Recently, in 1995, elliptic curves played an important role in proving, by Andrew Wiles, Fermat's Last Theorem (formulated in 1635), what could be considered as one of the most important mathematical achievements of the last 50 years
- Elliptic curves have also close relation to BSD Conjecture (Birch and Swinnerton-Dyer Conjecture), one of the Millennium problems of the Clay Mathematics institute.
- Elliptic curves are currently behind practically most preferred methods of cryptographic security
- Elliptic curves are also a basis of very important factorization method.

Geometry

On any elliptic curve we can define addition of points in such a way that points of the corresponding curve with such an operation of addition form an Abelian group in which the point in infinite, denoted by ∞, is plying the role of the identity group element.

If the line through two different points P_{1} and P_{2} of an elliptic curve E intersects E in a point $Q=(x, y)$, then we define $P_{1}+P_{2}=P_{3}=(x,-y)$.(This also implies that for any point P on E it holds $P+\infty=P$.) ∞ therefore indeed play a role of the null/identity element of the group.
If the line through two different points P_{1} and P_{2} is parallel with y -axis, then we define $P_{1}+P_{2}=\infty$.
In case $P_{1}=P_{2}$, and the tangent to E in P_{1} intersects E in a point $Q=(x, y)$, then we define $P_{1}+P_{1}=(x,-y)$.
It should now be obvious how to define subtraction of two points of an elliptic curve.
It is now easy to verify that the above addition of points forms Abelian group with ∞ as the identity (null) element.

ADDITION of POINTS - EXAMPLES 1 and 2

The following pictures show some cases of points additions

ADDITION of POINTS - EXAMPLES 3 and 4

The following pictures show some cases of double and triple points additions

Point Iteration:
$P^{k}=P * P * \ldots * P$

IV054 8. Elliptic curves cryptography and factorization

ADDITION of POINTS - EXAMPLES 5 and 6

The following pictures show some more complex cases of double and triple points additions

$P+Q+R=0$
$P+Q+Q=0$

$$
P+Q+0=0
$$

$$
P+P+a=0
$$

ADDITION of POINTS - EXAMPLES 7 and 8

The following pictures show some more complex cases of double and triple points additions

$$
P+Q+0=0
$$

$$
P+P+0=0
$$

ADDITION of POINTS on ELLIPTIC CURVES - FORMULAS)

Formulas

Addition of points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ of an elliptic curve
$E: y^{2}=x^{3}+a x+b$ can be easily computed using the following formulas:

$$
P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)
$$

where

$$
\begin{gathered}
x_{3}=\lambda^{2}-x_{1}-x_{2} \\
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

and

$$
\lambda= \begin{cases}\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} & \text { if } P_{1} \neq P_{2} \\ \frac{\left(3 x_{1}^{2}+a\right)}{\left(2 y_{1}\right)} & \text { if } P_{1}=P_{2}\end{cases}
$$

All that holds for the case that $\lambda \neq \infty$; otherwise $P_{3}=\infty$.
Example For curve $y^{2}=x^{3}+73$ and $P_{1}=(2,9), P_{2}=(3,10)$ we have $\lambda=1$,
$P_{1}+P_{2}=P_{3}=(-4,-3)$ and $P_{3}+P_{3}=(72,611) .-\{\lambda=-8\}$

DERIVATION of FORMULAS for ADDITION of DIFFERENT POINTS

If $P_{1} \neq P_{2}$, then the line that goes through points P_{1} and P_{2} has the equation

$$
y=y_{1}+\lambda\left(x-x_{1}\right)=y_{1}+\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

To get the x-coordinate of the third, intersection, point, of the curve $y^{2}=x^{3}+a x+b$ we have to find the third root of the equation:

$$
y^{2}=\left(y_{1}+\lambda\left(x-x_{1}\right)\right)^{2}=x^{3}+a x+b
$$

that can be rewritten in the form

$$
x^{3}-\lambda^{2} x^{2}+\left(a-2 \lambda\left(y_{1}-\lambda x_{1}\right)\right) x+\left(b-\left(y_{1}-\lambda x_{1}\right)^{2}\right)=0
$$

Since its two roots have coordinates x_{1} and x_{2} for the third, x_{3}, it has to hold

$$
x_{3}=\lambda^{2}-\left(x_{1}+x_{2}\right)=\lambda^{2}-x_{1}-x_{2}
$$

because $-\lambda^{2}$ is the coefficient at x^{2} and therefore $x_{1}+x_{2}+x_{3}=-\left(-\lambda^{2}\right)=\lambda^{2}$.

ELLIPTIC CURVES mod n

The points on an elliptic curve

$$
E: y^{2}=x^{3}+a x+b(\bmod n)
$$

notation $E_{n}(a, b)$ are such pairs $(x, y) \bmod n$ that satisfy the above equation, along with the point ∞ at infinity.
Example: Elliptic curve $E: y^{2}=x^{3}+2 x+3(\bmod 5)$ has points

$$
(1,1),(1,4),(2,0),(3,1),(3,4),(4,0), \infty
$$

Example For elliptic curve $E: y^{2}=x^{3}+x+6(\bmod 11)$ and its point $P=(2,7)$ it holds $2 P=(5,2) ; 3 P=(8,3)$. Number of points on an elliptic curve $(\bmod p)$ can be easily estimated.
The addition of points on an elliptic curve mod n is done by the same formulas as given previously, except that instead of rational numbers c / d we deal with $c d^{-1} \bmod n$
Example: For the curve $E: y^{2}=x^{3}+2 x+3 \bmod 5$, it holds
$(1,4)+(3,1)=(2,0) ;(1,4)+(2,0)=(?, ?)$.

EXAMPLE OF AN ELIPTIC CURVE OVER A PRIME

Points of the eliptic curve $y^{2}=x^{3}+x+6$ over Z_{11}

x	$x_{3}+x+6(\bmod 11)$	in $Q R_{11}$	y
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

The number of points of an eliptic curve over Z_{p} is in the interval

$$
(p+1-2 \sqrt{p}, p+1+2 \sqrt{p})
$$

ADDITION of POINTS on ELLIPTIC CURVES - REPETITIONS)

Formulas

Addition of points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ of an elliptic curve
$E: y^{2}=x^{3}+a x+b$ can be easily computed using the following formulas:

$$
P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)
$$

where

$$
\begin{gathered}
x_{3}=\lambda^{2}-x_{1}-x_{2} \\
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

and

$$
\lambda= \begin{cases}\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} & \text { if } P_{1} \neq P_{2} \\ \frac{\left(3 x_{1}^{2}+a\right)}{\left(2 y_{1}\right)} & \text { if } P_{1}=P_{2}\end{cases}
$$

All that holds for the case that $\lambda \neq \infty$; otherwise $P_{3}=\infty$.
Example For curve $y^{2}=x^{3}+73$ and $P_{1}=(2,9), P_{2}=(3,10)$ we have $\lambda=1$,
$P_{1}+P_{2}=P_{3}=(-4,-3)$ and $P_{3}+P_{3}=(72,611) .-\{\lambda=-8\}$

In case of modular computation of coordinates of the sum of two points of an elliptic curve $E_{n}(a, b)$ one needs, in order to determine value of λ to compute $u^{-1}(\bmod n)$ for various u.

This can be done in case $\operatorname{gcd}(u, n)=1$ and therefore we need to compute $\operatorname{gcd}(u, n)$ first.

Observe that if this gcd-value is between 1 and n we have a factor of n.

x	y^{2}	$\mathrm{y}_{1,2}$	$\mathrm{P}(\mathrm{x}, \mathrm{y})$	$\mathrm{P}^{\prime}(\mathrm{x}, \mathrm{y})$	

On the elliptic curve

$$
y^{2} \equiv x^{3}+x+6(\bmod 11)
$$

lies the point $P=(2,7)=\left(x_{1}, y_{1}\right)$
Indeed, $49 \equiv 16 \bmod 11$.
To compute $2 P=\left(x_{3}, y_{3}\right)$ we have

$$
\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}} \equiv\left(3 \cdot 2^{2}+1\right) /(14) \equiv 13 / 14 \equiv 2 / 3 \equiv 2 \cdot 4 \equiv 8 \equiv \bmod 11
$$

Therefore

$$
x_{3}=\lambda^{2}-x_{1}-x_{2} \equiv 8^{2}-2-2 \equiv 60 \equiv 5 \bmod 11
$$

and

$$
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1} \equiv 8(2-5)-7 \equiv-31 \equiv-9 \equiv 2 \bmod 11
$$

ADDITION Of a POINT to ITSELF - FORMULAS+EXAMPLES
In the following $P=\left(x_{1}, y_{1}\right), P+P=\left(x_{R}, y_{R}\right), \lambda=s$

- Iterate the point $P(2,4)$ lying on $y^{2}=x^{3}+x+6 \bmod 11$:
- Compute $\mathrm{P}^{2}=\mathrm{P} * \mathrm{P}$ by doubling the point P

- Compute $\mathrm{P}^{3}=\mathrm{P} * \mathrm{P} * \mathrm{P}=\mathrm{P}^{2} * \mathrm{P}$ by point addition

All operations are computed in GF_{11}

- Compute $\mathrm{P}^{2}=\mathrm{P} * \mathrm{P}$ by doubling the point $\mathrm{P}(2,4)$

- Compute $\mathrm{P}^{3}=\mathrm{P} * \mathrm{P} * \mathrm{P}=\mathrm{P}^{2} * \mathrm{P}$ by point addition

PROPERTIES of ELLIPTIC CURVES MODULO p

- Elliptic curves modulo an integer p have finitely many points and are finitely generated - all points can be obtained from few given points using the operation of addition.
- Hasse's theorem If an elliptic curve E_{p} has $\left|E_{p}\right|$ points then $\left|\left|E_{p}\right|-p-1\right|<2 \sqrt{p}$

In other words, the number of points of a curve grows roughly as the number of elements in the field. The exact number of such points is, however, rather difficult to calculate.

SECURITY of ECC

- The entire security of ECC depends on our ability to compute addition of two points and on inability to compute one summon given the sum and the second summon.
- However, no proof of security of ECC has been published so far.

USE OF ELLIPTIC CURVES IN CRYPTOGRAPHY

ELLIPTIC CURVES DISCRETE LOGARITHM

Let E be an elliptic curve and A, B be its points such that $B=k A=(A+A+\ldots A+A)$ - k times - for some k. The task to find (given A and B) such a k is called the discrete logarithm problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is known and also no good general attacks. Elliptic curves based cryptography is based on these facts.
There is the following general procedure for changing a discrete logarithm based cryptographic protocols to a cryptographic protocols based on elliptic curves:

- Assign given message (plaintext) to a point on a given elliptic curve E.
- Change, in the cryptographic protocol, modular multiplication to addition of points on E.
- Change, in the cryptographic protocol, exponentiation to multiplication of points of the elliptic curve E by integers.
- To the point of the elliptic curve E that results from such a protocol assigns a message (cryptotext).

POWERS of POINTS
The following table shows powers of various points of the curve

$$
y^{2}=x^{3}+x+6 \bmod 11
$$

k	p^{k}	s	y_{0}
1	$(2,4)$	3	9
2	$(5,9)$	9	8
3	$(8,8)$	8	10
4	$(10,9)$	2	0
5	$(3,5)$	1	2
6	$(7,2)$	4	7
7	$(7,9)$	1	2
8	$(3,6)$	2	0
9	$(10,2)$	8	10
10	$(8,3)$	9	8
11	$(5,2)$	3	9
12	$(2,7)$	∞	-

Given an elliptic curve

$$
y^{2}=x^{3}+a x+b \bmod p
$$

$$
\text { and a basis point } \mathrm{P} \text {, we can compute }
$$

$$
\mathrm{Q}=\mathrm{p}^{\mathrm{k}}
$$

through k -1 iterative point additions. Fast algorithms for this task exist. Unfortunately most of them are patented by Certicom and others.

Question: Is it possible to compute k when the point Q is known?
Answer: This is a hard problem known as the Elliptic Curve Discrete Logarithm.
where instead of λ an s is writen.

MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (I.)

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.
Fortunately, there is a fast randomized algorithm, to assign points of any elliptic curve to messages, that can fail with probability that can be made arbitrarily small.
Basic idea: Given an elliptic curve $E(\bmod p)$, the problem is that not to every x there is an y such that (x, y) is a point of E.
Given a message (number) m we therefore adjoin to m few bits at the end of m and adjust them until we get a number x such that $x^{3}+a x+b$ is a square $\bmod p$.

Technicalities

Let K be a large integer such that a failure rate of $\frac{1}{2^{K}}$ is acceptable when trying to encode a message by a point.
For $j \in\{0, \ldots, K-1\}$ verify whether for $x=m K+j, x^{3}+a x+b(\bmod p)$ is a square $(\bmod p)$ of an integer y.
If such an j is found, encoding is done; if not the algorithm fails (with probability $\frac{1}{2^{K}}$ because $x^{3}+a x+b$ is a square approximately half of the time).

In order to recover the message m from the point (x, y), we compute:
$\left\lfloor\frac{x}{K}\right\rfloor$

EFFICIENCY of various CRYPTOGRAPHIC SYSTEMS

The following pictures show how many bits needed keys of different cryptographic systems to achieve the same security.

Equivalent Cryptographic Strength $\quad Z_{E}=\mathbf{M}^{\text {in }}$

Symmetric	56	80	112	128	192	256
RSA n	512	1024	2048	3072	7680	15360
ECC p	112	161	224	256	384	512
Key size ratio	$5: 1$	$6: 1$	$9: 1$	$12: 1$	$20: 1$	$30: 1$

Standard version of EIGamal: Bob chooses a prime p, a generator $q<p$, an integer x, computes $y=q^{x}(\bmod p)$, makes public p, q, y and keeps \times secret.
To send a message m Alice chooses a random r, computes:

$$
a=q^{r} ; b=m y^{r}
$$

and sends it to Bob who decrypts by calculating $m=b a^{-x}(\bmod p)$
Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve E_{p}, a point P on E, an integer \times, computes $Q=\times P$, makes E_{p}, and Q public and keeps \times secret.
To send a message m ALice expresses m as a point X on E_{p}, chooses a random number r, computes

$$
A=r P ; B=X+r Q
$$

and sends the pair (A, B) to Bob who decrypts by calculating $X=B-x A$.

ELLIPTIC CURVES VERSION of EIGamal CRYPTOSYSTEM

ELLIPTIC CURVES KEY EXCHANGE

Elliptic curve version of the Diffie-Hellman key generation protocol goes as follows:

Let Alice and Bob agree on a prime p, on an elliptic curve $E_{p}(a, b)$ and on a point P on $E_{p}(a, b)$.

- Alice chooses an integer n_{a}, computes $n_{a} P$ and sends it to Bob.
■ Bob chooses an integer n_{b}, computes $n_{b} P$ and sends it to Alice.
- Alice computes $n_{a}\left(n_{b} P\right)$ and Bob computes $n_{b}\left(n_{a} P\right)$. This way they have the same key.
\square
prof. Jozef Gruska

ELLIPTIC CURVES DIGITAL SIGNATURES

Elliptic curves version of ElGamal digital signatures has the following form for signing (a message) m, an integer, by Alice and to have the signature verified by Bob:
Alice chooses a prime p, an elliptic curve $E_{p}(a, b)$, a point P on E_{p} and calculates the number of points n on E_{p} - what can be done, and we assume that $0<m<n$.
Alice then chooses a random integer a and computes $Q=a P$. She makes public p, E, P, Q and keeps secret a.
To sign a message m Alice does the following:

- Alice chooses a random integer $r, 1 \leq r<n$ such that $\operatorname{gcd}(r, n)=1$ and computes R $=r \mathrm{P}=(\mathrm{x}, \mathrm{y})$.
- Alice computes $s=r^{-1}(m-a x)(\bmod n)$
- Alice sends the signed message (m, R, s) to Bob.

Bob verifies the signature as follows:

- Bob declares the signature as valid if $x Q+s R=m P$

The verification procedure works because

$$
x Q+s R=x a P+r^{-1}(m-a x)(r P)=x a P+(m-a x) P=m P
$$

Warning Observe that actually $r r^{-1}=1+t n$ for some t. For the above verification
procedure to work we then have to use the fact that $n P=\infty$ and therefore $P+t \cdot \infty=P$

Federal (USA) elliptic curve digital signature standard (ECDSA) was introduced in 2005.
Elliptic curve method was used to factor Fermat numbers F_{10} (308 digits) and F_{11} (610 digits).

DOMAIN PARAMETERS for ELLIPTIC CURVES

To use ECC, all parties involved have to agree on all basic elements concerning the elliptic curve E being used:

- A prime p.
- Constants a and b in the equation $y^{2}=x^{3}+a x+b$.
- Generator G of the underlying cyclic subgroup such that its order is a prime.
\square The order n of G is the smallest integer n such that $n G=0$
- Co-factor $h=\frac{|E|}{n}$ should be small $(h \leq 4)$ and, preferably $h=1$.
To determine domain parameters (especially n and h) may be much time consuming task. That is why mostly so called "standard or "named' elliptic curves are used that have been published bv some standardization bodies.
- In order to be able to avoid brute force attacks on elliptic curve cryptosystem the underlying elliptic curve must be considered in a large field. This means, when an implementation is considered, that much larger integers have to be considered as is the size of the computer words and on these integers a special arithmetic has to be implemented. An efficient implementation is offered by so called Montgomery representation of field elements.
- Every implementation of an elliptic curve cryptosystem has to cope with the problem of selecting/generating a good elliptic curve. (One way is to use www.kurvenfabrik.de to get such a curve.)

■ Security of ECC depends on the difficulty of solving the discrete logarithm problem over elliptic curves.

- Two general methods of solving such discrete logarithm problems are known.
- The square root method and Silver-Pohling-Hellman (SPH) method.
$■$ SPH method factors the order of a curve into small primes and solves the discrete logarithm problem as a combination of discrete logarithms for small numbers.
- Computation time of the square root method is proportional to $O\left(\sqrt{e^{n}}\right)$ where n is the order of the based element of the curve.
- All known algorithms to solve elliptic curves discrete logarithm problem need at least $\theta(\sqrt{n})$ steps, where n is the order of the group.
- This implies that the size of the underlying field (number of points on the chosen elliptic curve) should be roughly twice the security parameter.
- For example, for 128 -bit security one needs a curve over \underline{F}_{q}, where $q \approx 2^{256}$.
- This can be contrasted with RSA cryptography that requires 3072-bit public and private keys to keep the same level of security.

BREAKING ECC

GOOD ELLIPTIC CURVES

- The hardest ECC scheme (publicly) broken to date had a 112-bit key for the prime field case and a 109-bit key for the binary field case.
- The prime field case was broken in July 2009 using 200 PlayStation 3 game consoles and - NIST recommended 5 elliptic curves for prime fields, one for prime sizes 192, 224, 256, 384 and 521 bits. - NIST also recommended five elliptic curves for binary could be finished in 3.5 months.
- The binary field case was broken in April 2004 using 2600 computers for 17 months. fields $\mathbf{F}_{2^{m}}$ one for m equal 163, 233, 283, 409 and 571.

Why to consider eliptic curves of the type

$$
y^{2}=x^{3}+a x+b
$$

and not a more general version of eliptic curves of the type

$$
y^{2}+c x y+d y=e x^{3}+a x+b ?
$$

Answer: More general form of the Weierstrass equation does not bring much new because general equation can be reduced to the shorter version as shown in the Appendix.

INTEGER FACTORIZATION METHODS

RABIN-MILLER's PRIME RECOGNITION - I.

The fastest known sequential deterministic algorithm to decide whether a given integer n is prime has complexity $O\left((\lg n)^{14}\right)$

A simple randomized Rabin-Miller's Monte Carlo algorithm for prime recognition is based on the following result from the number theory.

Lemma Let $n \in \mathbf{N}, n=2^{s} d+1, d$ is odd. Denote, for $1 \leq x<n$, by $C(x)$ the condition:

$$
x^{d} \not \equiv 1(\bmod n) \text { and } x^{2^{r} d} \not \equiv-1(\bmod n) \text { for all } 1<r<s
$$

Key fact: If $C(x)$ holds for some $1 \leq x<n$, then n is not prime (and x is a witness for compositness of n). If n is not prime, then $C(x)$ holds for at least half of x between 1 and n.

In other words most of the numbers between 1 and n are witnesses for composability of n if n is composite.
is unique when primes p_{i} are ordered. However, theorem provides no clue how to find such a factorization and till now no classical polynomial factorization algorithm is know.

RABIN-MILLER's PRIME RECOGNITION - II

INTEGER FACTORIZATION - PROBLEM II

Given: an odd integer n - decompose $n-1=2^{s} d$, where d is odd
an integer k - a parameter to specify accuracy of the test

Algorithm:
loop: repeat k times:
Choose randomly an inteere $a \in[n-2]$
compute $x \leftarrow a^{d} \bmod n$;
if $x \in\{1, n-1\}$ then go to loop
repeat $s-1$ times
$x \leftarrow x^{2} \bmod n$
if $x=1$ then return composite;
if $x=n-1$ then perform next loop (if there is next one);
return probably prime.
If for some a the algorithm returns composite, then n is composite; if n is composite then for at least half $1<a<n-1$ the algorithm returns composite.

If the loop is applied k time and once returns composite, then n is composite; otherwise n is prime and the probability of error is smaller than 2^{-k}.

In 2002 a deterministic, so called ASK, polynomial time algorithm for primality testing, with complexity $O\left(n^{12}\right)$ were discovered by three scientits from IIT Kanpur.

For factorization no polynomial deterministic algorithm is known and development of methods that would allow to factorized large integers is one of mega challenges for the development of computing algorithms and technology.

Largest recent success was factorization of so called RSA-768 number that has 232 digits (and 768 bits). Factorization took 2 years using several hundred of fast computers all over the world (using highly optimized implementation of the general field sieve method). On a single computer it would take 2000 years.

There is a lot of heuristics to factorized integers - some are very simple, other sophisticated. A method based on elliptic curves presented later, is one of them.

Factorization could be done in polynomial time using Shor's algorithm and a powerful quantum computer, as discussed later.

Fermat numbers FACTORIZATION

Factorization of so-called Fermat numbers $2^{2^{i}}+1$ is a good example to illustrate progress that has been made in the area of factorization.
Pierre de Fermat (1601-65) expected that all following numbers are primes:

$$
F_{i}=2^{2^{i}}+1 \quad i \geq 1
$$

This is indeed true for $i=0, \ldots, 4 . F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257, F_{4}=65537$.
1732 L . Euler found that $F_{5}=4294967297=641 \cdot 6700417$
1880 Landry+LeLasser found that

$$
F_{6}=18446744073709551617=274177 \cdot 67280421310721
$$

1970 Morrison+Brillhart found factorization for $F_{7}=(39$ digits $)$

$$
\begin{aligned}
F_{7} & =340282366920938463463374607431768211457= \\
& =5704689200685129054721 \cdot 59649589127497217
\end{aligned}
$$

1980 Brent+Pollard found factorization for F_{8}

1990 A. K. Lenstra+ . . found factorization for F_{9} (155 digits). Currently, also factorizations of F_{10} (308 digits) and F_{11} (610 digits) are known.

FACTORIZATION BASICS

- Not all numbers of a given length are equally hard to factor. The hardest instances are semi-primes - products of two primes of similar length.
- Concerning complexity classes it holds. Function version of the factorization problem is known to be in FNP and it is not known to be in FP.
- Decision version of the factorization problem: Does an integer n has a factor smaller than d ? is known to be in NP and not known to be in P. Moreover it is known to be both in NP and co-NP as well both in UP and co-UP.
- The fastest known factorization algorithm has time

$$
e^{\left.(1.9 \ln n)^{1 / 3}(\ln \ln n)^{2 / 3}\right)}
$$

and with it we can factor 140 digit numbers in reasonable time.

BASIC FACTORIZATION METHODS

These methods are actually heuristics, and for each of them a variety of modifications is known.

Algorithm Divide n with all primes up to \sqrt{n} and collect all divisors.

Time complexity: $e^{\frac{1}{2} \ln n}=L\left(1, \frac{1}{2}\right)$
Notation $L(\varepsilon, c)$ is used to denote complexity

$$
O\left(e^{(c+o(1))(\ln n)^{\varepsilon}(\ln \ln n)^{1-\varepsilon}}\right)
$$

The idea is to factorize an integer n by writing it at first as two different sums of two different integer squares. Famous example of Euler,

$$
n=a^{2}+b^{2}=c^{2}+d^{2}-------1000009=1000^{2}+3^{2}=972^{2}+235^{2}
$$

Denote then

$$
k=\operatorname{gcd}(a-c, d-b) \quad h=\operatorname{gcd}(a+c, d+b)
$$

In such a case either both k and h are even or both $\frac{a-c}{k}$ and $\frac{d-b}{k}$ are even
It holds

$$
n=\left(\left(\frac{k}{2}\right)^{2}+\left(\frac{h}{2}\right)^{2}\right)\left(\left(\frac{a-c}{k}\right)^{2}+\left(\frac{d-b}{k}\right)^{2}\right)
$$

Unfortunately, disadvantage of Euler's factorization method is that it cannot be applied to factor an integer with any prime factor of the form $4 k+3$ occuring to an old power in its prime factorization.

FERMAT's FACTORIZATION

If $\mathrm{n}=\mathrm{pq}, p<\sqrt{n}$, then

$$
n=\left(\frac{q+p}{2}\right)^{2}-\left(\frac{q-p}{2}\right)^{2}=a^{2}-b^{2}
$$

Therefore, in order to find a factor of n, we need only to investigate the values

$$
x=a^{2}-n
$$

$$
\text { for } a=\lceil\sqrt{n}\rceil+1,\lceil\sqrt{n}\rceil+2, \ldots, \frac{(n-1)}{2}
$$

until a perfect square is found.

To find a factor of a given integer n do the following
■ Original idea: Generate, in a simple and clever way, a pseudorandom sequence of integers x_{0}, x_{1}, x_{2} and compute, for $i=1,2, \ldots \operatorname{gcd}\left(x_{i}, n\right)$ until a factor of n is found.
■ Huge-computer-networks-era idea: Generate, in a simple and clever way, huge number of well related pseudorandom sequences x_{0}, x_{1}, \ldots and make a huge number of computers (all over the world) to compute, each for a portion of such squences, $\operatorname{gcd}\left(x_{i}, n\right)$ until one of them finds a factor of n.

1. Randomly choose $x_{0} \in\{1,2, \ldots, n\}$. Compute $x_{i}=x_{i-1}^{2}+x_{i-1}+1(\bmod n)$, for $i=1,2, \ldots$
2. Two versions:

Version 1: Compute $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)$ for $i=1,2, \ldots$ and $j=1,2, \ldots, i-1$ until a factor of n is found.

Version 2: Compute $\operatorname{gcd}\left(x_{i}-x_{2 i}, n\right)$ for $i=1,2, \ldots$ until a factor is found.

Time complexity: $L\left(1, \frac{1}{4}\right)$
The second method was used to factor 8-th Fermat number F_{8} with 78 digits.

JUSTIFICATION of VERSION 1

Let p be a non-trivial factor of n much smaller than n.
Since there is a smaller number of congruence classes modulo p than modulo n, it is quite probable that there exist x_{i} and x_{j} such that

$$
x_{i} \equiv x_{j}(\bmod p) \text { and } x_{i} \not \equiv x_{j}(\bmod n)
$$

In such a case $n \chi\left(x_{i}-x_{j}\right)$ and therefore $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)$ is a nontrivial factor of n.

JUSTIFICATION of VERSION 2

Let p be the smallest factor of n.
Sequence $x_{0}, x_{1}, x_{2}, \ldots$. behaves randomly modulo $p \leq \sqrt{n}$.
Therefore, the probability that $x_{i} \equiv x_{j}(\bmod p)$ for some $j \neq i$ is not negligible - actually about $\frac{1}{\sqrt{p}}$.
In such a case $x_{i+k} \equiv x_{j+k}(\bmod p)$ for all k
Therefore, there exists an s such that $x_{s} \equiv x_{2 s}(\bmod p)$.
Due to the pseudorandomness of the sequence x_{0}, x_{1}, x_{2},
with probability at least $1 / 2 x_{s} \not \equiv x_{2 s}(\bmod n)$ and therefore $p \mid \operatorname{gcd}\left(x_{s}-x_{2 s}, n\right)$.
For good probability of success we need to generate roughly $\sqrt{p}=n^{1 / 4}$ of x_{i}. Time complexity is therefore $O\left(e^{\frac{1}{4} \ln n}\right)$.

Factorization using ρ-algorithms has its efficiency based on two facts.

- Fact 1 For a given prime p, as in birthday problem, two numbers are congruent modulo p, with probability 0.5 after $1.177 \sqrt{p}$ numbers have been randomly chosen.
- Fact 2 If p is a factor of an n, then $p<\operatorname{gcd}(x-y, n)$ since p divides both n and $x-y$.

Input: An integer n to be factorized. $x_{0} \leftarrow$ random; $x \leftarrow x_{0} ; y \leftarrow x_{0} ; d \leftarrow 1$;
while $d=1$

```
\(x \leftarrow f(x) \bmod n ;\)
    \(y \leftarrow f(f(y) \bmod n) \bmod n\);
    \(d \leftarrow \operatorname{gcd}(|x-y|, n)\);
```

If $d=n$ return failure else return d.

Algorithm is fast in the case n has at least one small factor. For example, it is reported that on a 3 GHz processor, the factor 274177 of the sixth Fermat number (18446744073709551617) was found in 26 milliseconds.

Another improvement of the algorithm, due to Pollard and R. Brent: Instead of computing $\operatorname{gcd}(|x-y|, n)$ at every iteration, z is defined as the product of several, say 100 consecutive $|x-y|$ terms modulo n and then a single $\operatorname{gcd}(z, n)$ is computed.

Also the second algorithm is fast for small factors
Also the second algorithm is fast for small factors

Pollard's $p-1$ ALGORITHM - FIRST VERSION

Algorithm

To find a prime factor p.

1. Fix an integer B.
2. Compute $m=\prod_{\{q \mid q}$ is a prime $\left.\leq B\right\} q^{\log n}$
3. Compute $\operatorname{gcd}\left(a^{m}-1, n\right)$ for a random a.

Algorithm was invented J. Pollard in 1987 and has time complexity $O\left(B(\log n)^{p}\right)$. It works well if both $p \mid n$ and $p-1$ have only small prime factors.

Let a bound B be chosen and let $p \mid n$ and $p-1$ has no factor greater than B.

This implies that $(p-1) \mid m$, where

$$
\left\{m=\prod_{q \mid q \text { is a prime } \leq B} q^{\log n}\right\}
$$

By Fermat's Little Theorem, this implies that $p \mid\left(a^{m}-1\right)$ and therefore by computing

$$
\operatorname{gcd}\left(a^{m}-1, n\right)
$$

for some a some factor p of n can be obtained.

IMPORTANT OBSERVATIONS II

Pollard ρ-methods work fine for numbers with a small factor.
The $\mathrm{p}-1$ methods requires that $\mathrm{p}-1$ is smooth. The elliptic curve method requires only that there are enough smooth integers near p and so at least one of randomly chosen integers near p is smooth.

This means that the elliptic curves factorization method succeeds much more often than $\mathrm{p}-1$ method.
Fermat factorization and Quadratic Sieve method discussed later work fine if integer has two factors of almost the same size.

Pollard's algorithm (to factor n given a bound b on factors).
a :=2;
for $\mathrm{j}=2$ to b do $a:=a^{j} \bmod n ; \longrightarrow-\left\{a=2^{b!}\right\}$
$f:=\operatorname{gcd}(a-1, n) ; \quad-\quad\left\{f=\operatorname{gcd}\left(2^{b!}-1, n\right)\right\}$
if $1<f<n$ then \boldsymbol{f} is a factor of \boldsymbol{n} otherwise failure
Indeed, let p be a prime divisor of n and $q<b$ for every prime $q \mid(p-1)$.
(Hence $(p-1) \mid b!$).
At the end of the for-loop we have

$$
a \equiv 2^{b!}(\bmod n)
$$

and therefore

$$
a \equiv 2^{b!}(\bmod p)
$$

By Fermat theorem $2^{p-1} \equiv 1(\bmod p)$ and since $(p-1) \mid b!$ we get $a \equiv 2^{b!} \equiv 1(\bmod p)$. and therefore we have $p \mid(a-1)$.
Hence,

$$
p \mid \operatorname{gcd}(a-1, n)
$$

FACTORING with ELLIPTIC CURVES

Basis idea: To factorize an integer n choose an elliptic curve E_{n}, a point P on E and compute, modulo n , either iP for $i=2,3,4, \ldots$ or $2^{j} P$ for $j=1,2$, .

The point is that in such calculations one needs to compute $\operatorname{gcd}(k, n)$ for various k. If one of these values is between 1 and \boldsymbol{n} we have a factor of \boldsymbol{n}.

Factoring of large integers: The above idea can be easily parallelised and converted to using an enormous number of computers to factor a single very large n.

Indeed, each computer gets some number of elliptic curves and some points on them and multiplies these points by some integers according to the rule for addition of points. If one of computers encounters, during such a computation, a need to compute
$1<\operatorname{gcd}(k, n)<n$, factorization is finished.
Example: If curve $E: y^{2}=x^{3}+4 x+4(\bmod 2773)$ and its point $P=(1,3)$ are used, then $2 P=(1771,705)$ and in order to compute 3 P one has to compute $\operatorname{gcd}(1770,2773)=59-$ factorization is done.

A BRIEF VERSION of THE BASIC ALGORITHM

1. Fix a B - to choose a factor base (of all primes smaller than B)

2. Compute

$$
m=\prod_{\{q \mid q \text { is a prime } \leq B\}} q^{\log n}
$$

3. Choose random a, b such that $a^{3}-27 b^{2} \neq 0(\bmod n)$
4. Choose a random point P on the elliptic curve $E_{n}(a, b)$
5. Try to compute $m P$.

If this fails a factor of n is found.

IMPORTANT OBSERVATIONS (1)

- If $n=p q$ for primes p, q, then an elliptic curve E_{n} can be seen as a pair of elliptic curves E_{p} and E_{q}.
- It follows from the Lagrange theorem that for any elliptic curve E_{n} and its point P there is an $k<n$ such that $k P=\infty$.
- In case of an elliptic curve E_{p} for some prime p, the smallest positive integer m such that $m P=\infty$ for some point P divides the number N of points on the curve E_{p}. Hence $N P=\infty$.
If N is a product of small primes, then b! will be a multiple of N for a reasonable small b. Therefore, $b!P=\infty$.
- The number with only small factors is called smooth and if all factors are smaller than an b, then it is called b-smooth.

It can be shown that the density of smooth integers is so large that if we choose a random elliptic curve E_{n} then it is a reasonable chance that n is smooth.

EXAMPLES

Example 1: For elliptic curve

$$
E: y^{2}=x^{3}+x-1(\bmod 35)
$$

and its point $P=(1,1)$ we have

$$
2 P=(2,32) ; 4 P=(25,12) ; 8 P=(6,9)
$$

and at the attempt to compute 9 P one needs to compute $\operatorname{gcd}(15,35)=5$ and factorization is done.

It remains to be explored how efficient this method is and when it is more efficient than other methods.

PRACTICALITY of Factoring USING ECC I

Let us continue to discuss the following key problem for factorization using elliptic curves:
Problem: How to choose integer k such that for a given point P we should try to compute points iP or $2^{i} P$ for all multiples of P smaller than $k P$?
Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple of as many as possible of those m-digit numbers which do not have too large prime factors. In such a case one has a good chance that k is a multiple of the number of elements of the group of points of the elliptic curve modulo n.
Method 1: One chooses an integer B and takes as k the product of all maximal powers of primes smaller than B.
Example: In order to find a 6 -digit factor one chooses $B=147$ and
$k=2^{7} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \cdot 11^{2} \cdot 13 \cdot \ldots \cdot 139$. The following table shows B and the number of elliptic curves one has to test:

ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that $\operatorname{gcd}(\mathrm{n}, 6)=1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows:
Choose an integer parameter r and:
11 Select, randomly, an elliptic curve

$$
E: y^{2}=x^{3}+a x+b
$$

such that $\operatorname{gcd}\left(n, 4 a^{2}+27 b^{2}\right)=1$ and a random point P on E .
[2 Choose integer bounds A, B, M such that

$$
M=\prod_{j=1}^{\prime} p_{j}^{a_{p_{j}}}
$$

for some primes $p_{1}<p_{2}<\ldots<p_{l} \leq B$ and $a_{p_{j}}$, being the largest exponent such that $p_{j}^{a_{j}} \leq A$.
Set $\mathrm{j}=\mathrm{k}=1$
3) Calculate $p_{j} P$.
(44) Computing gcd.

- If $p_{j} P \neq O(\bmod n)$, then set $P=p_{j} P$ and reset $k \leftarrow k+1$

$$
11 \text { If } k \leq a_{p_{j}} \text {, then go to step (3). }
$$

ELLIPTIC CURVES FACTORIZATION: FAQ

- How to choose (randomly) an elliptic curve E and point P on E ? An easy way is first choose a point $P(x, y)$ and an a and then compute $b=y^{2}-x^{3}-a x$ to get the curve $E: y^{2}=x^{3}+a x+b$.
- What happens at the factorization using elliptic curve method, if for a chosen curve E_{n} the corresponding cubic polynomial $x^{3}+a x+b$ has multiple roots (that is if $4 a^{3}+27 b^{2}=0$) ? No problem, method still works.
- What kind of elliptic curves are really used in cryptography? Elliptic curves over fields $G F\left(2^{n}\right)$ for $n>150$. Dealing with such elliptic curves requires, however, slightly different rules.
- History of ECC? The idea came from Neal Koblitz and Victor S. Miller in 1985. Best known algorithm is due to Lenstra.
- How secure is ECC?No mathematical proof of security is know.
- How about patents concerning ECC? There are patents in force covering certain aspects of ECC technology.

QUADRATIC SIEVE METHOD of FACTORIZATION - BASIC IDEAS

Step 1 To factorize an n one finds many integers x such that $x^{2}-n, n=7429$, has only small factors and decomposition of $x^{2}-n$ into small factors.

$$
\text { Example } \left.\begin{array}{l}
83^{2}-7429=-540=(-1) \cdot 2^{2} \cdot 3^{3} \cdot 5 \\
87^{2}-7429=140=2^{2} \cdot 5 \cdot 7 \\
88^{2}-7429=315=3^{2} \cdot 5 \cdot 7
\end{array}\right\} \text { relations }
$$

Step 2 One multiplies some of the relations if their product is a square
For example

$$
\left(87^{2}-7429\right)\left(88^{2}-7429\right)=2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}=210^{2}
$$

Now

$$
\begin{gathered}
\left(87^{2}-7429\right)\left(88^{2}-7429\right) \equiv(87 \cdot 88)^{2} \equiv 7656^{2} \equiv 227^{2} \bmod 7429 \\
\text { and therefore } 227^{2} \equiv 210^{2} \bmod 7429
\end{gathered}
$$

Hence 7429 divides $227^{2}-210^{2}$ and therefore $17=227-210$ is a factor of 7429 .
Formation of equations: For the i-th relation one takes a variable λ_{i} and forms the expression
$\left((-1) \cdot 2^{2} \cdot 3^{3} \cdot 5\right)^{\lambda_{1}} \cdot\left(2^{2} \cdot 5 \cdot 7\right)^{\lambda_{2}} \cdot\left(3^{2} \cdot 5 \cdot 7\right)^{\lambda_{3}}=(-1)^{\lambda_{1}} \cdot 2^{2 \lambda_{1}+2 \lambda_{2}} \cdot 3^{2 \lambda_{1}+2 \lambda_{2}} \cdot 5^{\lambda_{1}+\lambda_{2}+\lambda_{3}} \cdot 7^{\lambda_{2}+\lambda_{3}}$
If this is to form a square the $\quad \lambda_{1} \quad \equiv 0 \bmod 2$
following equations have to hold $\lambda_{1}+\lambda_{2}+\lambda_{3} \equiv 0 \bmod 2$
$\lambda_{2}+\lambda_{3} \equiv 0 \bmod 2$
$\lambda_{1}=0, \quad \lambda_{2}=\lambda_{3}=1$

QUADRATIC SIEVE FACTORIZATION - SKETCH of METHODS

Problem How to find relations?
Using the algorithm called Quadratic sieve method.
Step 1 One chooses a set of primes that can be factors - a so-called factor basis.
One chooses an m such that $m^{2}-n$ is small and considers numbers $(m+u)^{2}-n$ for $-k \leq u \leq k$ for small k.
One then tries to factor all $(m+u)^{2}-n$ with primes from the factor basis, from the smallest to the largest - see table for $\mathrm{n}=7429$ and $\mathrm{m}=86$.

u	-3	-2	-1	0	1	2	3
$(m+u)^{2}-n$	-540	-373	-204	-33	140	315	492
Sieve with 2	-135		-51		35		123
Sieve with 3	-5		-17	-11		35	41
Sieve with 5	-1				7	7	
Sieve with 7					1	1	

In order to factor a 129-digit number from the RSA challenge they used

> 8424486 relations
> 569466 equations

544939 elements in the factor base

QUADRATIC SIEVE (QS) FACTORIZATION - SUMMARY I

- Method was invented Carl Pomerance in 1981.
- It is currently second fastest factorization method known and the fastest one for factoring integers under 100 decimal digits.
- It consists of two phases: data collection and data processing.
- In data collection phase for factoring n a huge set of such integers x is found that numbers $\left(x+\lceil\sqrt{n})^{2}-n\right.$ have only small factors as well all these factors. This phase is easy to parallelize and can use methods called sieving for finding all required integers with only small factors.
- In data processing phase a system of linear congruences is formed on the basis of factorizations obtained in the data collection phase and this system is solved to reach factorization. This phase is much memory consuming for storing huge matrices and so hard to parallelise.
- The basis of sieving is the fact that if $y(x)=x^{2}-n$, then for any prime p it holds $y(x+k p) \equiv y(x)(\bmod p)$ and therefore solving $y(x) \equiv 0 \bmod p$ for x generate a whole sequence of y which are divisible by p.
- The general running time of QS, to factor n, is

$$
e^{(1+o(1)) \sqrt{\lg n \lg \lg n}}
$$

- The current record of QS is a 135 -digit co-factor of $2^{803}-2^{402}-1$.

Let p denote the smallest factor of an integer n and p^{*} the largest prime factor of $p-1$.

Pollard's Rho algorithm	$O(\sqrt{p})$
Pollard's $p-1$ algorithm	$O\left(p^{*}\right)$
Elliptic curve method	$\varnothing\left(e^{(1+o(1)) \sqrt{2 \ln p \ln \ln p)}}\right)$
Quadratic sieve method	$\varnothing\left(e^{1+o(1)) \sqrt{(\ln n \ln \ln n)}}\right)$
General number field sieve (GNFS) method	$\emptyset\left(e^{\left(\frac{64}{9} \ln n\right)^{1 / 3}(\ln \ln n)^{2 / 3}}\right)$

The most efficient factorization method, for factorization of integers with more than 100 digits, is the general number field sieve method (superpolynomial but sub-exponential); The second fastest is the quadratic sieve method.

APPENDIX

Elliptic curves are not ellipses and therefore it seems strange that they have such a name. Elliptic curves actually received their names from their relation to so called elliptic integrals

$$
\int_{x 1}^{x 2} \frac{d x}{\sqrt{x^{3}+a x+b}}
$$

$$
\int_{x 1}^{x 2} \frac{x d x}{\sqrt{x^{3}+a x+b}}
$$

that arise in the computation of the arc-length of ellipses.
It may also seem puzzling why to consider curves given by equations

$$
E: y^{2}=x^{3}+a x+b
$$

and not curves given by more general equations

$$
y^{2}+c x y+d y=x^{3}+e x^{2}+a x+b
$$

The reason is that if we are working with rational coefficients or mod p, where $p>3$ is a prime, then such a general equation can be transformed to our special case of equation. In other cases, it may be indeed necessary to consider the most general form of equation.

ELLIPTIC CURVES - GENERALITY

A general elliptic curve over $Z_{p^{m}}$ where p is a prime is the set of points (x, y) satisfying so-called Weierstrass equation

$$
y^{2}+u x y+v y=x^{3}+a x^{2}+b x+c
$$

for some constants u, v, a, b, c together with a single element $\mathbf{0}$, called the point of infinity.

If $p \neq 2$ Weierstrass equation can be simplified by transformation

$$
y \rightarrow \frac{y-(u x+v)}{2}
$$

to get the equation

$$
y^{2}=x^{3}+d x^{2}+e x+f
$$

for some constants d, e, f and if $p \neq 3$ by transformation

$$
x \rightarrow x-\frac{d}{3}
$$

to get equation

$$
y^{2}=x^{3}+f x+g
$$

ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that $\operatorname{gcd}(\mathrm{n}, 6)=1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows:
Choose an integer parameter r and:
11 Select, randomly, an elliptic curve

$$
E: y^{2}=x^{3}+a x+b
$$

such that $\operatorname{gcd}\left(n, 4 a^{2}+27 b^{2}\right)=1$ and a random point P on E .
[2 Choose integer bounds A, B, M such that

$$
M=\prod_{j=1}^{\prime} p_{j}^{a_{p_{j}}}
$$

for some primes $p_{1}<p_{2}<\ldots<p_{l} \leq B$ and $a_{p_{j}}$, being the largest exponent such that $p_{j}^{a_{j}} \leq A$.
Set $\mathrm{j}=\mathrm{k}=1$
${ }^{3}$ Calculate $p_{j} P$.
14 Computing ged.

- If $p_{j} P \neq O(\bmod n)$, then set $P=p_{j} P$ and reset $k \leftarrow k+1$ 11 If $k \leq a_{p_{j}}$, then go to step (3).

ELLIPTIC CURVES FACTORIZATION - DETAILS II

2. If $k>a_{p_{j}}$, then reset $j \leftarrow j+1, k \leftarrow 1$.

If $j \leq I$, then go to step (3); otherwise go to step (5)

- If $p_{j} P \equiv O(\bmod n)$ and no factor of n was found at the computation of inverse elements, then go to step (5)
(5) Reset $r \leftarrow r-1$. If $r>0$ go to step (1); otherwise terminate with "failure".

The "smoothness bound" B is recommended to be chosen as

$$
B=e^{\frac{\ln F(\ln \ln F)}{2}}
$$

and in such a case running time is

$$
O\left(e^{\sqrt{2+o(1 \ln F(\ln \ln F))} / n^{2} n}\right)
$$

A variety of factorization algorithms, of complexity around $O(\sqrt{p})$ where p is the smallest prime factor of n, is based on the following idea:

- A function f is taken that "behaves like a randomizing function" and
$f(x) \equiv f(x \bmod p)(\bmod p)$ for any factor p of n-usually $f(x)=x^{2}+1$
- A random x_{0} is taken and iteration

$$
x_{i+1}=f\left(x_{i}\right) \bmod n
$$

is performed (this modulo n computation actually "hides" modulo p computation in the following sense: if $x_{0}^{\prime}=x_{0}, x_{i+1}^{\prime}=f\left(x_{i}^{\prime}\right) \bmod n$, then $x_{i}^{\prime}=x_{i} \bmod p$)

- Since \mathbf{Z}_{p} is finite, the shape of the sequence x_{i}^{\prime} will remind the letter ρ, with a tail and a loop. Since f is "random", the loop modulo n rarely synchronizes with the loop modulo p
- The loop is easy to detect by GCD-computations and it can be shown that the total length of tail and loop is $O(\sqrt{p})$.

In order to detect the loop it is enough to perform the following computation:

$$
a \leftarrow x_{0} ; b \leftarrow x_{0} ;
$$

repeat
$a \leftarrow f(a) ;$
$b \leftarrow f(f(b)) ;$
until $\mathrm{a}=\mathrm{b}$
Iteration ends if $a_{t}=b_{2 t}$ for some t greater than the tail length and a multiple of the loop length.

FACTORIZATION of a 512-BIT NUMBER

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the so-called RSA- 155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data Security and "represented" 95% of 512 -bit numbers used as the key to protect electronic commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, he estimated that, using knowledge of that time, factorization of RSA-129 would require 10^{16} years.

RSA FACTORING CHALLENGES

- In 1991 RSA Laboratories published a list of semi-primes (numbers that are product of two primes) and prizes for their decoding.
- Numbers are named as RSA-x, where x is number of decimal or binary digits of the number.
- The largest price cashed so far was $30000 \$$ for factorization of RSA-704.
- The largest price offered was $200000 \$$ for factorization of RSA-2024.
- Challenge is no longer active - no longer are prices given.
- Numbers were generated on a computer with no network connections and after their generation hard drive was destroyed and therefore nobody knows their factorization.

[^0]: Public key cryptography based on a special manipulation (called multiplication or addition) of points of elliptic curves is currently getting momentum and has a tendency to replace public key cryptography based on the infeasibility of factorization of integers, or on infeasibility of the computation of discrete logarithms.

 For example, the US-government has recommended to its governmental institutions to use mainly elliptic curve cryptography - ECC.
 The main advantage of elliptic curves cryptography is that to achieve a certain level of security shorter keys are sufficient than in case of "usual cryptography". Using shorter keys can result in a considerable savings in hardware implementations.

 The second advantage of the elliptic curves cryptography is that quite a few attacks developed for cryptography based on factorization and discrete logarithm do not work for the elliptic curves cryptography.

 It is amazing how practical is the elliptic curve cryptography that is based on very strangely looking and very theoretical concepts.

