CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern cryptography.
The problem is how can a user sign (electronically)

Part VII

Digital signatures
an (electronic) message in such a way that everybody (or the intended addressee only) can verify the signature that should be good enough also for legal purposes.
Moreover, a properly implemented digital signature should give the receiver a reason to believe that the received message was created by the claimed sender and was not altered in the transit.
In many countries digital signatures have legal significance.

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem $\left(e_{A}, d_{A}\right)$.

One way to sign a message w by a user A so that any user can verify the signature, is to apply on w (as the signing procedure) the mapping d_{A}

```
signing a message w: d}\mp@subsup{d}{A}{}(w)\mathrm{ signature verification: e}\mp@subsup{e}{A}{}(\mp@subsup{d}{A}{}(w))=
```

One way to sign a message w by a user A so that only the user B can verify the signature, is to apply on w (as the signing procedure) at first the mapping d_{A} and then, on the outcome, e_{B} :
signing the message w : $e_{B}\left(d_{A}(w)\right)$ signature verification: $e_{A}\left(d_{B}\left(e_{B}\left(d_{A}(w)\right)\right)\right)=w$
A way to send a message w, and its hash obtained by using a hash function h so that any responder can verifier the signature:

$$
\left(w, d_{A}(h(w))\right)
$$

DIGITAL SIGNATURES - BASIC GOALS

DIGITAL SIGNATURES - BASIC MODES

Basic requirements - I. Digital signatures should be such that each user should be able to verify signatures of other users, but that should give him/her no information how to sign a message on behalf of any other user.

Basic requirements - II A valid digital signature should give the recipient reasons to believe that the message was created by a known sender and that it was not altered in transit.
Note An important difference from a handwritten signature is that digital signature of a message is always intimately connected with the message, and for different messages is different, whereas the handwritten signature is adjoined to the message and always looks the same.
Technically, a digital signature signing is performed by a signing algorithm and a digital signature is verified by a verification algorithm.
A copy of a digital (classical) signature is identical (usually distinguishable) to (from) the origin. A care has therefore to be taken that digital signatures are not misused.
This chapter contains some of the main techniques for design and verification of digital signatures (as well as some possible attacks on them).

If only signature (but not the encryption of the message) are of importance, then it suffices that Alice sends to Bob

$$
\left(w, d_{A}(w)\right)
$$

Caution: Signing a message w by A for B by

$$
e_{B}\left(d_{A}(w)\right)
$$

is O.K., but the symmetric solution, with encoding first:

$$
c=d_{A}\left(e_{B}(w)\right)
$$

is not good
Indeed, an active enemy, the tamperer, can intercept the message, then can compute

$$
d_{T}\left(e_{A}(c)\right)=d_{T}\left(e_{B}(w)\right)
$$

and can send the outcome to Bob, pretending that it is from him/tamperer (without being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same can be used for digital signature.

A SCHEME of DIGITAL SIGNATURE SYSTEMS - SIMPLIFIED VERSION

A digital signature system (DSS) consists of:

- P - the space of possible plaintexts (messages).
- S - the space of possible signatures.
- K - the space of possible keys.
- For each $k \in K$ there is a signing algorithm sigk and a corresponding verification algorithm ver $_{k}$ such that

$$
\begin{gathered}
\operatorname{sig}_{k}: P \rightarrow S \\
\text { ver }_{k}: P \otimes S \rightarrow\{\text { true }, \text { false }\}
\end{gathered}
$$

and

$$
\operatorname{ver}_{k}(w, s)= \begin{cases}\text { true } & \text { if } s=\operatorname{sig}_{k}(w) \\ \text { false } & \text { otherwise }\end{cases}
$$

Algorithms $s i g_{k}$ and verk should be computable in polynomial time.
Verification algorithm can be publicly known; signing algorithm (actually only its key) should be kept secret

Digital signature schemes are basic tools for authentication messages. A digital signature scheme allows anyone to verify signature of any sender S without providing any information how to generate signatures of S.

A Digital Signature Scheme ($\mathrm{M}, \mathrm{S}, K_{s}, K_{v}$) is given by:

- M - a set of messages to be signed

■ S - a set of possible signatures

- K_{s} - a set of private keys for signing - one for each signer
- K_{v} - a set of public keys for verification - one for each signer

Moreover, it is required that:

- For each k from K_{s}, there exists a single and easy to compute signing mapping

$$
\operatorname{sig}_{k}:\{0,1\}^{*} \times M \rightarrow S
$$

- For each k from K_{v} there exists a single and easy to compute verification mapping

$$
\text { ver }_{k}: M \times S \rightarrow\{\text { true, false }\}
$$

such that the following two conditions are satisfied:

Correctness:
For each message m from M and public key k in K_{v}, it should hold

$$
\operatorname{ver}_{k}(m, s)=\text { true }
$$

if there is an r from $\{0,1\}^{*}$ such that

$$
\mathrm{s}=\operatorname{sig} g_{l}(\mathrm{r}, \mathrm{~m})
$$

for a private key I from K_{s} corresponding to the public key k .
Security:
For any wfrom M and k in K_{v}, it should be computationally infeasible, without the knowledge of the private key corresponding to k, to find a signature s from S such that

$$
\operatorname{ver}_{k}(\mathrm{w}, \mathrm{~s})=\operatorname{true} .
$$

ATTACKS MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK: The attacker is only given the public verification key. KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several messages known but not chosen by the attacker.
CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several messages chosen by the attacker
ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid signatures for several messages chosen by the attacker where messages chosen may depend on previous signatures given for chosen messages.

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit.
Design of the signature scheme:
A one-way function $f(x)$ is publically chosen.
Two integers k_{0} and k_{1} are chosen and kept secret by the signer, and three items

$$
f,\left(0, s_{0}\right),\left(1, s_{1}\right)
$$

are made public, where

$$
s_{0}=f\left(k_{0}\right), s_{1}=f\left(k_{1}\right)
$$

Signature of a bit b :

$$
\left(\mathrm{b}, k_{b}\right)
$$

Verification of such a signature

$$
s_{b}=f\left(k_{b}\right)
$$

SECURITY?

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus $n=p q$ and encryption exponent e.
Secret key: decryption exponent d and primes p, q
Encryption of a message $w: c=w^{e}$
Decryption of the cryptotext $c: w=c^{d}$.
Does it has a sense to change the order of these two operations: To do first

$$
c=w^{d}
$$

and then

$$
c^{e} ?
$$

Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed,

$$
s=w^{d}
$$

should be interpreted as the signature of the message w
and

$$
w=s^{e}
$$

as a verification of such signature.
prof. Jozef Gruska
IV054 7. Digital signatures

ENCRYPTIONS versus SIGNATURES

Let each user U use a cryptosystem with encryption and decryption algorithms: e_{U}, d_{U} Let w be a message

PUBLIC-KEY ENCRYPTIONS

\(\left.\begin{array}{lc}Encryption: \& e_{U}(w)

Decryption: \& d_{U}\left(e_{U}(w)\right)\end{array}\right]\)| | |
| :--- | :--- |
| | PUBLIC-KEY SIGNATURES |

RABIN SIGNATURES

A collision-resistant hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ is used for some fixed k.
Keys generation The signer S chooses primes p, q of size approximately $k / 2$ and computes $n=p q$.
n is the public key
the pair (p, q) is the secret key.
Signing :

- To sign a message w, the signer chooses random string U and calculates $h(w U)$;
- If $h(w U) \notin Q R(n)$, the signer picks a new U and repeats the process;
- Signer solves the equation $x^{2}=h(w U) \bmod n$;
- The pair (U, x) is the signature of w.

Verification Given a message w and a signature (U, x) the verifier V computes x^{2} and $h(w U)$ and verifies that they are equal.

Fact 1

If

$$
a \equiv b(\bmod (p-1))
$$

then for any integer x

$$
x^{a} \equiv x^{b}(\bmod p)
$$

Fact 2
If a, n, x, y are integers and $\operatorname{gcd}(a, n)=1$, then

$$
x \equiv y(\bmod \phi(n)) \text { implies } a^{x} \equiv a^{y}(\bmod n)
$$

Let

$$
a \equiv b \bmod (p-1)
$$

then

$$
x^{a}=x^{k(p-1)+b}
$$

for some k, any x and therefore

$$
x^{a}=x^{b}\left(x^{p-1}\right)^{k} \equiv x^{b} \bmod p
$$

by Fermat's little theorem.

EIGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers $1 \leq q \leq x \leq p$, where q is a primitive element of Z_{p}^{*};

$$
\begin{gathered}
\text { Compute: } y=q^{x} \bmod p \\
\text { key } K=(p, q, x, y) \\
\text { public key }(p, q, y)-\text { secret key: } x
\end{gathered}
$$

Signature of a message w: Let $r \in Z_{p-1}^{*}$ be randomly chosen and kept secret.

$$
\begin{gathered}
\operatorname{sig}(w, r)=(a, b) \\
\text { where } a=q^{r} \bmod p \\
\text { and } b=(w-x a) r^{-1}(\bmod (p-1))
\end{gathered}
$$

Verification: accept a signature (a, b) of w as valid if

$$
y^{a} a^{b}=q^{w}(\bmod p)
$$

EIGamal SIGNATURE - EXAMPLE

Example

$$
\begin{gathered}
\text { choose: } \mathrm{p}=11, \mathrm{q}=2, \mathrm{x}=8 \\
\text { compute: } y=q^{x}=2^{8} \bmod 11=3
\end{gathered}
$$

message $w=5$ is signed as $(a, b)($ where $) a=q^{r} \bmod p, w=x a+r b \bmod (p-1)$

If we choose $r=9-$ (this choice is $O . K$. because $\operatorname{gcd}(9,10)=1$)

$$
\text { then we compute } a=q^{r}=2^{9} \bmod 11=6
$$

$$
\text { solve equation: } 5 \equiv 8 \cdot 6+9 b(\bmod 10)
$$

$$
\text { that is } 7 \equiv 9 b(\bmod 10) \Rightarrow \text { and so we get } b=3
$$

$$
\text { signature is now: }(6,3)
$$

SECURITY of EIGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature (with x - secret; p, q and $y=q^{x} \bmod p-p u b l i c$):

$$
\operatorname{sig}(w, r)=(a, b)
$$

where r is random and $a=q^{r} \bmod p ; b=(w-x a) r^{-1}(\bmod p-1)$.
11 First suppose Eve tries to forge signature for a new message w, without knowing x.

- If Eve first chooses a value a and tries to find the corresponding b, it has to compute the discrete logarithm

$$
\lg _{a} q^{w} y^{-a}
$$

(because $a^{b} \equiv q^{r(w-x a) r^{-1}} \equiv q^{w-x a} \equiv q^{w} y^{-a}$) what is infeasible.

- If Eve first chooses \mathbf{b} and then tries to find \mathbf{a}, she has to solve the equation

$$
y^{a} a^{b} \equiv q^{\chi a} q^{r b} \equiv q^{w}(\bmod p) .
$$

It is not known whether this equation can be solved for any given befficiently
2. If Eve chooses a and b and tries to determine w such that (a, b) is signature of w, then she has to compute discrete logarithm

$$
\lg _{q} y^{a} a^{b} .
$$

Hence, Eve can not sign a "random" message this way.

From EIGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a modification of EIGamal digital signature scheme. It was proposed in August 1991 and adopted in December 1994.
Any proposal for digital signature standard has to go through a very careful scrutiny. Why?

Encryption of a message is usually done only once and therefore it usually suffices to use a cryptosystem that is secure at the time of the encryption.
On the other hand, a signed message could be a contract or a will and it can happen that it will be needed to verify its signature many years after the message is signed.
Since EIGamal signature is no more secure than discrete logarithm, it is necessary to use large p, with at least 512 bits.

However, with EIGamal this would lead to signatures with at least 1024 bits what is too much for such applications as smart cards.

In December 1994, on the proposal of the National Institute of Standards and Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.
Design of DSA

1 The following global public key components are chosen:

- p - a random l-bit prime, $512 \leq I \leq 1024$, I $=64 \mathrm{k}$.
- q - a random 160 -bit prime dividing p-1.
$r=h^{(p-1) / q} \bmod p$, where h is a random primitive element of Z_{p}, such that $r>1$, $r \neq 1($ observe that r is a q-th root of $1 \bmod p)$.
2 The following user's private key component is chosen:
- x - a random integer (once), $0<x<q$,

3 The following value is also made public

$$
y=r^{x} \bmod p
$$

4 Key is $K=(p, q, r, x, y)$

Signing and Verification

Signing of a 160-bit plaintext w

- choose random $0<k<q$
- compute $\mathrm{a}=\left(r^{k} \bmod p\right) \bmod \mathrm{q}$
- compute $\mathrm{b}=k^{-1}(\mathrm{w}+\mathrm{xa}) \bmod \mathrm{q}$ where $k k^{-1} \equiv 1(\bmod q)$
- signature: $\operatorname{sig}(w, k)=(a, b)$

Verification of signature (a, b)

- compute $z=b^{-1} \bmod q$

■ compute $u_{1}=w z \bmod q, u_{2}=a z \bmod q$ verification:

$$
\operatorname{ver}_{K}(w, a, b)=\operatorname{true} \Leftrightarrow\left(r^{u_{1}} y^{u_{2}} \bmod p\right) \bmod q=a
$$

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute $\mathrm{n}=\mathrm{pq}$ and choose: as a public key integers v_{1}, \ldots, v_{k} and compute, as a secret key, $s_{1}, \ldots, s_{k}, s_{i}=\sqrt{v_{i}^{-1}} \bmod n$.
Protocol for Alice to sign a message w:
1 Alice first chooses (as a security parameter) an integer t, then t random integers $1 \leq r_{1}, \ldots, r_{t}<n$, and computes $x_{i}=r_{i}^{2} \bmod n$, for $1 \leq i \leq t$.
2 Alice uses a publicly known hash function h to compute $H=h\left(w x_{1} x_{2} \ldots x_{t}\right)$ and then uses the first $k t$ bits of H , denoted as $b_{i j}, 1 \leq i \leq t, 1 \leq j \leq k$ as follows.
3 Alice computes y_{1}, \ldots, y_{t}

$$
y_{i}=r_{i} \prod_{j=1}^{k} s_{j}^{b_{i j}} \bmod n
$$

4 Alice sends to Bob w, all $b_{i j}$, all y_{i} and also h \{Bob already knows Alice's public key $\left.v_{1}, \ldots, v_{k}\right\}$
5 Bob finally computes z_{1}, \ldots, z_{k}, where

$$
z_{i}=y_{i}^{2} \prod_{j=1}^{k} v_{j}^{b_{i j}} \bmod n=r_{i}^{2} \prod_{j=1}^{k}\left(v_{j}^{-1}\right)^{b_{i j}} \prod_{j=1}^{k} v_{j}^{b_{i j}}=r_{i}^{2}=x_{i}
$$

and verifies that the first $k \times t$ bits of $h\left(w x_{1} x_{2} \ldots x_{t}\right)$ are the $b_{i j}$ values that Alice has sent to him.
Security of this signature scheme is $2^{-k t}$
Advantage over the RSA-based signature scheme: only about 5\% of modular multiplications are needed.
prof. Jozef Gruska

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to communicate by network, but he will not allow messages to be encrypted. Can they set up a subliminal channel, a covert communication channel between them, in full view of Walter, even though the messages themselves contain no secret information?
Yes. Alice and Bob create first the following communication scheme:
They choose a large n and an integer k such that $\operatorname{gcd}(\mathrm{n}, \mathrm{k})=1$.
They calculate $h=k^{-2} \bmod n=\left(k^{-1}\right)^{2} \bmod n$.
They make h, n to be public key
They keep secret k as trapdoor information.
Let w be secret message Alice wants to send (it has to be such that $\operatorname{gcd}(w, n)=1$)
Denote a harmless message she uses by w^{\prime} (it has to be such that $\operatorname{gcd}\left(\mathrm{w}^{\prime}, \mathrm{n}\right)=1$)
Signing by Alice:

$$
\begin{aligned}
& S_{1}=\frac{1}{2} \cdot\left(\frac{w^{\prime}}{w}+w\right) \bmod n \\
& S_{2}=\frac{k}{2} \cdot\left(\frac{w^{\prime}}{w}-w\right) \bmod n
\end{aligned}
$$

Signature: $\left(S_{1}, S_{2}\right)$. Alice then sends to Bob (w^{\prime}, S_{1}, S_{2})
Signature verification method for Walter: $\mathrm{w}^{\prime}=S_{1}^{2}-h S_{2}^{2}(\bmod n)$
Decryption by Bob: $w=\frac{w^{\prime}}{\left(S_{1}+k^{-1} S_{2}\right)} \bmod n$

LAMPORT SIGNATURE - ANOTHER VIEW

A cryptographically secure hash function $h:\{0,1\}^{*} \rightarrow\{0,1\}^{256}$ is available as well as a cryptographically secure random number generator G.
Keys generation: To create the private key the signer S uses the random number generator G to generate 256 pairs of random 256-bits numbers (in total $2 \times 256 \times 256$ bits -16 KB in total). This will be secret key of the signer.
To create the public key S, signer hashes each of the 512 random numbers in the private key, creating 512 hashes, each of 256 bits (16 KB in total). The 512 hashes form the public key.

Signing: If the signer S wants to sign a message w she computes first $h(w)$. Afterwards, to each of 256 bits in the hash, S picks the corresponding number from its private key - if the i-th bit is $0(1), S$ chooses the first (second) number of the i-th pair. This gives the signer 256 random numbers (8 KB in total). These numbers are the signature of the message w.
Verification: To verify Signer's signature of message w, verifier V first computes $h(w)$. Then V uses bits of the hash to pick out 256 of the hashes of Signer's public key. V picks the hashes in the same manner that signer picked random numbers for signature. The verifier then computes 256 hashes of 256 random numbers of the Signer's signature. If these 256 hashes match exactlv 256 hashes he iust picked from Signer's public kev

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use only - from any cryptographically secure one-way function.

Let k be a positive integer and let $P=\{0,1\}^{k}$ be the set of messages.
Let $\mathrm{f}: Y \rightarrow Z$ be a one-way function where Y is a set of "signatures".
For $1 \leq i \leq k, j=0,1$ let $y_{i j} \in Y$ be chosen randomly and $z_{i j}=f\left(y_{i j}\right)$.
The key K consists of $2 \mathrm{k} y$'s and z 's. y's form the secret key, z 's form the public key.
Signing of a message $x=x_{1} \ldots x_{k} \in\{0,1\}^{k}$

$$
\operatorname{sign}\left(x_{1} \ldots x_{k}\right)=\left(y_{1, x_{1}}, \ldots, y_{k, x_{k}}\right)=\left(a_{1}, \ldots, a_{k}\right)-\text { notation }
$$

and

$$
\operatorname{verif}\left(x_{1} \ldots x_{k}, a_{1}, \ldots, a_{k}\right)=\operatorname{true} \Leftrightarrow f\left(a_{i}\right)=z_{i, x i}, 1 \leq i \leq k
$$

Eve cannot forge a signature because she is unable to invert one-way functions.
Important note: Lamport signature scheme can be used to sign only one message.

Lamport signature - III.

An interest in the Lamport signatures steams to a large extend from the fact that it is believed that Lamport signatures with large hash functions will stay secure even when quantum computers are available.

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings At first one needs to generate public keys $P K_{i}$ and secret keys $S K_{i}$ for all 2^{n} messages m_{i}, using Lamport signature scheme, and to compute also $h\left(P K_{i}\right)$ for all $i<2^{n}$.

As the next step a complete binary tree with 2^{n} leaves is designed and the value $h\left(P K_{i}\right)$ is stored in the i-the leave, counting from left to right. Moreover, to each internal node the hash of the concatenation of hashes of its two children is stored. The hash assigned to the root is the public key of the Merkle signature scheme and the tree is called Merkle tree. See next figure for a Merkle tree.

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest were the first to define rigorously security requirements for digital signature schemes.
They also presented a new signature scheme, known nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being robust against an adaptive chosen message attacks: an adversary who receives signatures of messages of his choice (where each message may be chosen in a way that depends on the signatures of previously chosen messages) cannot later forge the signature even of a single additional message.

SIGNING of HASHES/FINGERPRINTS

TIMESTAMPING

Signature schemes presented so far allow to sign only "short" messages.
For example, DSS is used to sign 160 bit messages (with 320-bit signatures).

A naive solution is to break long message into a sequence of short ones and to sign each block separately.

Disadvantages: signing is slow and for long signatures integrity is not protected.
The solution is to use a fast public hash function \mathbf{h} which maps a message of any length to a fixed length hash. The hash is then signed.

Example:		
message	w	arbitrary length
message digest	$\mathrm{z}=\mathrm{h}(\mathrm{w})$	160 bits
El Gamal signature	$y=\operatorname{sig}(\mathrm{z})$	320 bits

If Bob wants to send a signed message w he sends $(w, \operatorname{sig}(h(w))$.

There are various ways that a digital signature can be compromised.
For example: if Eve determines the secret key of Bob, then she can forge signatures of any Bob's message she likes. If this happens, authenticity of all messages signed by Bob before Eve got the secret key is to be questioned.
The key problem is that there is no way to determine when a message was signed.
A timestamping protocol should provide a proof that a message was signed at a certain time.

In the following pub denotes some publicly known information that could not be predicted before the day of the signature (for example, stock-market data).
Timestamping by Bob of a signature on a message w, using a hash function h.

- Bob computes $z=h(w)$;

■ Bob computes $z^{\prime}=\mathrm{h}(z \|$ pub $) ;-\{\|\}$ denotes concatenation

- Bob computes $y=\operatorname{sig}\left(z^{\prime}\right)$;

■ Bob publishes (z, pub, y) in the next day newspaper.
It is now clear that signature could not be done after the triple ($z, ~ p u b, y$) was published, but also not before the date pub was known.

BLIND SIGNATURES

The problem is whether Alice can make Bob to sign a message, say m, without Bob knowing m, therefore blindly.

- this would be needed, for example, in e-commerce.

She can. Blind signing can be realized by a two party protocol, between the Alice and Bob, that has the following properties.

- In order to sign (by Bob) a message m, Alice creates, using a blinding procedure, from the message m a new message $m *$ from which m can not be obtained without knowing a secret, and sends $m *$ to Bob for signing.
- Bob signs the message $m *$ to get a signature $s_{m^{*}}$ (of $m *$) and sends $s_{m *}$ to Alice. The signing is to be done in such a way that Alice can afterwards compute, using an unblinding procedure, from Bob's signature $s_{m *}$ of $m *$ - Bob's signature s_{m} of m.

Chaum's BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.
Let Bob's RSA public key be (n, e) and his private key be d.
Let m be a message, $0<m<n$,
PROTOCOL:

- Alice chooses a random $0<k<n$ with $\operatorname{gcd}(n, k)=1$.
\square Alice computes $m^{*}=m k^{e}(\bmod n)$ and sends it to Bob (this way Alice blinds the message m).
\square Bob computed $s^{*}=\left(m^{*}\right)^{d}(\bmod n)$ and sends s^{*} to Alice (this way Bob signs the blinded message m^{*}).
- Alice computes $s=k^{-1} s^{*}(\bmod n)$ to obtain Bob's signature m^{d} of m (Alice performs unblinding of $\left.m^{*}\right)$.

Verification is similar to that of the RSA signature scheme.

Let us consider the following communication between Alice and Bob:
1 Alice signs the message: $s_{A}(w)$.
2 Alice encrypts the signed message: $e_{B}\left(s_{A}(w)\right)$ and sends it to Bob.
3 Bob decrypts the signed message: $d_{B}\left(e_{B}\left(s_{A}(w)\right)\right)=s_{A}(w)$.
4 Bob verifies the signature and recovers the message $v_{A}\left(s_{A}(w)\right)=w$.
Consider now the case of resending the message as a receipt
5 Bob signs and encrypts the message and sends to Alice $e_{A}\left(s_{B}(w)\right)$.
6 Alice decrypts the message and verifies the signature.
Assume now: $v_{x}=e_{x}, s_{x}=d_{x}$ for all users x.
a Mallot intercepts $e_{B}\left(s_{A}(w)\right)$.
■ Later Mallot sends $e_{B}\left(s_{A}(w)\right)$ to Bob pretending it is from him (from Mallot).
© Bob decrypts and "verifies" the message by computing

$$
e_{M}\left(s_{B}\left(e_{B}\left(s_{A}(w)\right)\right)\right)=e_{M}\left(s_{A}(w)\right)-\text { a garbage. }
$$

Bob goes on with the protocol and returns to Mallot the receipt:

$$
e_{M}\left(s_{B}\left(e_{M}\left(s_{A}(w)\right)\right)\right)
$$

Mallot can then get w.
Indeed, Mallot can compute
$e_{A}\left(s_{M}\left(e_{B}\left(s_{M}\left(e_{M}\left(s_{B}\left(e_{M}\left(s_{A}(w)\right)\right)\right)\right)\right)\right)\right)=w$.

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers $\mathrm{k}, \mathrm{I}, \mathrm{n}$ such that $k+I<n$, a trapdoor permutation

$$
f: D \rightarrow D, D \subset\{0,1\}^{n},
$$

a pseudorandom bit generator

$$
G:\{0,1\}^{\prime} \rightarrow\{0,1\}^{k} \times\{0,1\}^{n-(I+k)}, w \rightarrow\left(G_{1}(w), G_{2}(w)\right)
$$

and a hash function

$$
h:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime}
$$

The following PSS scheme is applicable to messages of arbitrary length.
Signing: of a message $w \in\{0,1\}^{*}$
1 Choose random $r \in\{0,1\}^{k}$ and compute $m=h(w \| r)$.
2 Compute $G(m)=\left(G_{1}(m), G_{2}(m)\right)$ and $y=m\left\|\left(G_{1}(m) \oplus r\right)\right\| G_{2}(m)$.
3 Signature of w is $\sigma=f^{-1}(y)$.
Verification of a signed message (w, σ).

- Compute $f(\sigma)$ and decompose $f(\sigma)=m\|t\| u$, where $|m|=I,|t|=k$ and $|u|=n-(k+l)$.
- Compute $r=t \oplus G_{1}(m)$.
- Accept signature σ if $h(w \| r)=m$ and $G_{2}(m)=u$; otherwise reject it.

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS repetition

Main problem of the secret-key cryptography: a need to make a secure distribution (establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key establishment (distribution) over public channels.
Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret key, then they first agree, somehow, on a large prime p and a $q<p$ of large order in Z_{p}^{*} and then they perform, through a public channel, the following activities.

- Alice chooses, randomly, a large $1 \leq x<p-1$ and computes

$$
X=q^{x} \bmod p
$$

- Bob also chooses, again randomly, a large $1 \leq y<p-1$ and computes

$$
Y=q^{y} \bmod p .
$$

- Alice and Bob exchange \mathbf{X} and \mathbf{Y}, through a public channel, but keep \mathbf{x}, \mathbf{y} secret.
- Alice computes $Y^{x} \bmod p$ and Bob computes $X^{y} \bmod p$ and then each of them has the key

$$
K=q^{x y} \bmod p .
$$

An eavesdropper seems to need, in order to determine x from $\mathbf{X}, \mathbf{q}, \mathbf{p}$ and y from \mathbf{Y}, \mathbf{q}, p, a capability to compute discrete logarithms, or to compute $q^{x y}$ from q^{x} and q^{y}, what is believed to be infeasible.

HISTORY of DIGITAL SIGNATURES

- In 1976 Diffie and Hellman were first to describe the idea of a digital signature scheme. However, they only conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to produce a primitive (not secure enough) digital signatures.
- The first widely marketed software package to offer digital signature was Lotus Notes 1.0, based on RSA and released in 1989
- ElGamal digital signatures were invented in 1984.
- In 1988 Goldwasser, Micali and Rivest were first to rigorously define (perfect) security of digital signature schemes.
- Digital signatures are often used to implement electronic signatures - this is a broader term that refers to any electronic data that carries the intend of a signature. Not all electronic signatures use digital signatures.
- In some countries digital signatures have legal significance
- Properly implemented digital signatures are more difficult to forge than the handwritten ones
- Digital signatures can also provide non-repudiation. This means that the signer cannot successfully claim: (a) that he did not signed a message, (b) his private key remain secret.
- Whitfield Diffie and Martin Hellman were the first, in 1976, to describe the idea of digital signatures, although they only conjectured that such schemes exist.

■ The first broadly marketed software package to offer digital signature was Lotus Notes 1.0, released in 1989, which used RSA algorithm

DSA was adopted in US as Federal Information Processing Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013
DES is covered by US-patent attributed to David W. Krantz (former NSA employe). Claus P. Schnor claims that his US patent covered DSA.

- Append-Only Signatures (AOS) have the property that any party given an AOS signature $\operatorname{sig}\left[M_{1}\right]$ on message M_{1} can compute $\operatorname{sig}\left[M_{1} \| M_{2}\right]$ for any message M_{2}. (Such signatures are of importance in network applications, where users need to delegate their shares of resources to other users).
- Identity-Based signatures (IBS) at which the identity of the signer (i.e. her email address) plays the role of her public key. (Such schemes assume the existence of a TA holding a master public-private key pair used to assign secret keys to users based on their identity.)
- Hierarchically Identity-Based Signatures are such IBS in which users are arranged in a hierarchy and a user at any level at the hierarchy can delegate secret keys to her descendants based on their identities and her own secret keys.
- At Group Signatures (GS) a group member can compute a signature that reveals nothing about the signer's identity, except that he is a member of the group. On the other hand, the group manager can always reveal the identity of the signer.
- Hierarchical Group Signatures (HGS) are a generalization of GS that allow multiple group managers to be organized in a tree with the signers as leaves. When verifying a signature, a group manager only learns to which of its subtrees, if any, the signer belongs.
- Aggregate signatures They are signature schemes that support aggregation in the following sense: Given n signatures on n messages from n users, it is possible to aggregate all these signatures into a single signature whose size is constant in the number of users in such a way that this single signature will convince the verifier that the n users did indeed signed the n original messages.

UNCONDITIONALLY SECURE DIGITAL SIGNATURES

Any of the digital signature schemes introduced so far can be forged by anyone having enough computer power.

Chaum and Roijakkers (2001) developed, for any fixed set of users, an unconditionally secure signature scheme with the following properties:

- Any participant can convince (except with exponentially small probability) any other participant that his signature is valid.
- A convinced participant can convince any other participant of the signature's validity, without interaction with the original signer.

GENERAL OBSERVATIONS

- Digital signatures are often used to implement electronic signatures - this is a broader term that refers to any electronic data that carries the intend of a signature. Not all electronic signatures use digital signatures.
- In some countries digital signatures have legal significance
- Properly implemented digital signatures are more difficult to forge than the handwritten ones.
- Digital signatures can also provide non-repudiation - meaning that the signer cannot successfully claim that he did not signed a message, while also climbing his private key remain secret.
- Whitfield Diffie and Martin Hellman were the first, in 1976, to describe the idea of digital signatures, although they only conjectured that such schemes exist.
- The first broadly marketed software package to offer digital signature was Lotus Notes 1.0, released in 1989, which used RSA algorithm

