
Part X

Protocols to do seemingly impossible and zero-knowledge protocols

PROTOCOLS to do SEEMINGLY IMPOSSIBLE

A protocol is an algorithm two (or more) parties have to follow to perform
a communication/cooperation.

A cryptographical protocol is a protocol to achieve secure
communication during some goal oriented cooperation.

In this chapter we first present several cryptographic protocols for such
basic cryptographic primitives as coin tossing, bit commitment and
oblivious transfer.

After that we deal with a variety of cryptographical protocols that allow to
solve easily seemingly unsolvable problems.

Of special importance among them are so called zero-knowledge
protocols we will deal with afterwards. They are counter-intuitive, though
very powerful and very useful.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 2/64

PRIMITIVES for CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are specifications how two parties, Alice and Bob, should prepare
themselves for a communication and how they should behave during a communication in
order to achieve their goal and be protected against an adversary.

In coin-flipping protocols Alice and Bob can flip a coin over a distance in such a way
that neither of them can determine the outcome of the flip, but both can agree on the
outcome in spite of the fact that they do not trust each other.

In bit commitment protocols Alice can choose a bit and get committed to it in the
following sense: Bob has no way of learning Alice’s commitment and Alice has no way of
changing her commitment. Alice commits herself to a bit x using a commit(x)
procedure, and reveals her commitment, if needed, using open(x) procedure.

In 1-out-2 oblivious transfer protocols Alice transmits two messages first and second
to Bob who can chose to receive first or second, but cannot learn both, in such a way
that Alice will have no idea which of them Bob will receive.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 3/64

SCHEMES for PRIMITIVES of CRYPTOGRAPHIC PROTOCOLS

Coin−�ipping

A

b

random

B

Bit commitment

A B

b
commit phase

b b
opening phase

1/2 oblivious transfer

A B

b

b

b b

c0

1 c
1/2 OT

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 4/64

PROTOCOLS for COIN-FLIPPING/TOSSING BY PHONE

Coin-flipping by telephone:

Alice and Bob got divorced and they do not trust each other any longer. They want to
decide, communicating by phone only, who gets the car.

Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way function f.
Bob guesses which one of them is encryption of head. Alice tells Bob whether his guess
was correct. If Bob does not believe her, Alice sends f to Bob.

Protocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, q secret.

Bob chooses randomly an integer x ∈ {1, . . . , n
2
}, sends Alice y = x2 mod n and tells

Alice: if you guess x correctly, car will be yours.

Alice computes four square roots (x1, n − x1) and (x2, n − x2) of x

and

x ′1 = min(x1, n − x1), x ′2 = min(x2, n − x2).

Since x ∈ {1, . . . , n
2
}, then either x = x ′1 or x = x ′2.

Alice then guesses whether x = x ′1 or x = x ′2 and tells Bob her choice (for example by
reporting the position and value of the leftmost bit in which x ′1 and x ′2 differ).

Bob tells Alice whether her guess was correct.

(Later, if necessary, Alice reveals p and q, and Bob reveals x.)

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 5/64

COIN TOSSING – requirements and problems

Basic requirements: In any good coin tossing protocol both parties
should influence the outcome and should accept the outcome. Both
outcomes should have the same probability.
Requirements for a coin tossing protocol are sometimes generalized as
follows:

The outcome of the protocol is an element from the set {0, 1,
reject}.
If both parties behave correctly, the outcome should be from the
set {0, 1}.
If it is not the case that both parties behave correctly, the outcome
should be reject.

Problem: In some coin tossing protocols one party can find out the
outcome sooner than the second party. In such a case if she is not happy
with the outcome she can disrupt the protocol – to produce reject or to say
”I do not continue in performing the protocol”. A way out is to require
that in case of correct behavior no outcome should have probability > 1

2 .

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 6/64

COIN TOSSING USING a ONE-WAY FUNCTION

Protocol:

Alice chooses a one-way function f and informs Bob about the
definition domain of f.

Bob chooses randomly r1, r2 from dom(f) and sends them to Alice.

Alice sends to Bob one of the values f (r1) or f (r2).

Bob announces Alice his guess which of the two values he received.

Alice announces Bob whether his guess was correct (0) or not (1).

If one needs to verify correctness, Alice should send to Bob the
specification of f.

The protocol is computationally secure. Indeed, to cheat, Alice should be
able to find, for randomly chosen r1, r2, such one-way function f that
f (r1) = f (r2).

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 7/64

BIT COMMITMENT PROTOCOLS (BCP)

Basic ideas and solutions I

In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the
following sense:

Bob has no way of knowing which commitment Alice has made, and Alice has no way of
changing her commitment once she has made it; say after Bob announces his guess as to
what Alice has chosen.

An example of a ”pre-computer era” bit commitment protocol is that Alice writes her
commitment on a paper, locks it in a box, sends the box to Bob and, later, in the
opening phase, she sends also the key to Bob.

Complexity era solution I. Alice chooses a one-way function f and an even (odd) x if she
wants to commit herself to 0 (1) and sends to Bob f(x) and f.

Problem: Alice may know an even x1 and an odd x2 such that f (x1) = f (x2).

Complexity era solution II. Alice chooses a one-way function f, two random x1, x2 and a
bit b she wishes to commit to, and sends to Bob (f (x1, x2, b), x1) - a commitment.

When times comes for Alice to reveal her bit, she sends to Bob f and the triple (x1, x2, b).

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 8/64

BIT COMMITMENT SCHEMES I

The basis of bit commitment protocols are bit commitment schemes:

A bit commitment scheme is a mapping f : {0, 1} × X → Y , where X and
Y are finite sets.

A commitment to a b ∈ {0, 1}, or an encryption of b, is any value (called a
blow) f(b, x) where x ∈ X.

Each bit commitment protocol has two phases:

Commitment phase: The sender sends a bit b he wants to commit to, in an
encrypted form, to the receiver.

Opening phase: If required, the sender sends to the receiver additional
information that enables the receiver to get b.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 9/64

BIT COMMITMENT SCHEMES II

Each bit commitment scheme should have three properties:

Hiding (privacy): For no b ∈ {0, 1} and no x ∈ X , it is feasible for Bob to
determine b from B = f(b, x).

Binding: Alice can ”open” her commitment b, by revealing (opening) x and
b such that B = f(b, x), but she should not be able to open a commitment
(blow) B as both 0 and 1.

Correctness: If both, the sender and the receiver, follow the protocol, then
the receiver will always learn (recover) the committed value b.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 10/64

BIT COMMITMENT with ONE-WAY FUNCTIONS

Commitment phase:

Alice and Bob choose a one-way function f

Bob sends a randomly chosen r1 to Alice

Alice chooses random r2 and her committed bit b and sends to Bob
f (r1, r2, b).

Opening phase:

Alice sends to Bob r2 and b

Bob computes f (r1, r2, b) and compares with the value he has already
received.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 11/64

HASH FUNCTIONS and COMMITMENTS

A commitment to a data w, without revealing w, using a hash function h,
can be done as follows:

Commitment phase: To commit to a w choose a random r and make public
h(wr).

Opening phase: reveal r and w.

For this application the hash function h has to be one-way: from h(wr) it
should be unfeasible to determine wr.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 12/64

TWO SPECIAL BIT COMMITMENT SCHEMES

Bit commitment scheme I. Let p, q be large primes, n = pq, m ∈ QNR(n), X = Z∗n .
Let n,m be public.

Commitment: f(b, x) = mbx2 mod n for a random x from X.

Since computation of quadratic residues is in general infeasible, this bit commitment
scheme is hiding.

Since m ∈ QNR(n), there are no x1, x2 such that mx2
1 = x2

2 mod n and therefore the
scheme is binding.

Bit commitment scheme II. Let p be a large Blum prime, X = Zp∗ = Y, α be a
primitive element of Z∗p .

f (b, x) = αx mod p, if SLB(x) = b;
= αp−x mod p, if SLB(x) 6= b.

where

SLB(x) = 0 if x ≡ 0, 1 (mod 4);
= 1 if x ≡ 2, 3 (mod 4).

Binding property of this bit commitment scheme follows from the fact that in the case of
discrete logarithms modulo Blum primes there is no effective way to determine second
least significant bit (SLB) of the discrete logarithm.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 13/64

MAKING COIN TOSSING FROM BIT COMMITMENT

Each bit commitment scheme can be used to solve coin tossing problem as follows:

1 Alice tosses a coin, and commits itself to its outcome bA (say to 0 (1) if the
outcome is head (tail)) and sends the commitment to Bob.

2 Bob also tosses a coin and sends the outcome bB to Alice.

3 Alice opens her commitment. to Bob (so he starts to know bA)

4 Both Alice and Bob compute b = bA ⊕ bB .

Observe that if at least one of the parties follows the protocol, that is it tosses a random
coin, the outcome is indeed a random bit.

Note: Observe that after step 2 Alice will know what the outcome is, but
Bob does not. So Alice can disrupt the protocol if the outcome is to be not
good for her. This is a weak point of this protocol.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 14/64

BASIC TYPES of HIDING and BINDING

If the hiding or the binding property of a commitment protocol depends on
the complexity of a computational problem, we speak about computational
hiding and computational binding.

In case, the binding or the hiding property does not depend on the
complexity of a computational problem, we speak about unconditional
hiding or unconditional binding.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 15/64

A COMMITMENT SCHEME BASED on DISCRETE LOGARITHM

Alice wants to commit herself to an m ∈ {0, . . . , q − 1}.
Scheme setting:

Bob randomly chooses primes p and q such that

q|(p − 1).

Bob chooses random generators g 6= 1 6= v of the subgroup G of order q ∈ Z∗n .Bob sends
p, q, g and v to Alice.

All following computations will be modulo p:
Commitment phase:

To commit to an m ∈ {0, . . . , q − 1}, Alice chooses a random r ∈ Zq, and sends
c = g rvm to Bob.

Opening phase:

Alice sends r and m to Bob who then verifies whether c= g rvm.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 16/64

COMMENTS

If Alice, committed to an m, could open her commitment as m̄ 6= m,
using some r̄ , then g rvm = g r̄v m̄ and therefore

lgg v = (r − r̄)(m̄ −m)−1.

Hence, Alice could compute lggv of a randomly chosen element v ∈ G ,
what contradicts the assumption that computation of discrete
logarithms in G is infeasible.

Since g and v are generators of G, then g r is a uniformly chosen
random element in G, perfectly hiding vm and m in g rvm, as in the
encryption with ONE-TIME PAD cryptosystem.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 17/64

BIT COMMITMENT using ENCRYPTIONS

Commit phase:

1 Bob generates a random string r and sends it to Alice

2 Alice commit herself to a bit b using a key k through an encryption

Ek(rb)

and sends it to Bob.

Opening phase:

1 Alice sends the key k to Bob.

2 Bob decrypts the message to learn b and to verify r.

Comment: without Bob’s random string r Alice could find a different key l
such that ek(b) = el(¬b).

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 18/64

COMMITMENTS and ELECTRONIC VOTING

Let com(r, m) = g rvm denote commitment to m in the commitment scheme based on discrete
logarithm. If r1, r2, m1, m2 ∈ Zn, then com(r1, m1)× com(r2, m2) = com(r1 + r2, m1 + m2).
Commitment schemes with such a property are called homomorphic commitment schemes.
Homomorphic schemes can be used to cast yes-no votes of n voters V1, . . . , Vn, by the trusted
authority TA for whom eT and dT are ElGamal encryption and decryption algorithms.
This works as follows: Each voter Vi chooses his vote mi ∈ {0, 1}, a random rI ∈ {0, . . . , q − 1}
and computes his voting commitment cI = com(ri , mi).Then Vi makes ci public and sends
eT (g ri) to TA and TA computes

dT

nY

i=1

eT (g ri)

!
=

nY
i=1

g ri = g r ,

where r =
nX

i=1

ri , and makes public g r .

Now, anybody can compute the result s of voting from publicly known ci and g r since

v s =

nY
i=1

ci

g r
,

with s =
nX

i=1

mi .

s can now be derived from v s by computing v1, v2, v3, . . . and comparing with v s if the number

of voters is not too large.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 19/64

TRUST in CRYPTOGRAPHIC PROTOCOLS - deliberations

In any interaction between people, there is a certain level of risk, trust, and
expected behaviour, that is implicit in the interchanges.

People may behave properly for a variety of reasons: fear from prosecution,
desire to act in ethical manner due to social influences, and so on.

However, in cryptographic protocols trust has to be kept to the lowest
possible level.

In any cryptographic protocol, if there is an absence of a mechanism for
verifying, say authenticity, one must assume, as default, that other
participants can be dishonest (if for no other reason than for self-
preservation).

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 20/64

OBLIVIOUS TRANSFER (OT) PROBLEM

Story: Alice knows a secret and wants to send secret
to Bob in such a way that he gets secret with
probability 1

2, and he knows whether he got secret,
but Alice has no idea whether he received secret.(Or
Alice has several secrets and Bob wants to buy one of them
but he does not want Alice to know which one he bought.)

Oblivious transfer problem: Design a protocol for
sending a message from Alice to Bob in such a way
that Bob receives the message with probability 1

2

and ”garbage” with the probability 1
2 . Moreover, Bob

knows whether he got the message or garbage, but Alice
has no idea which one he got.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 21/64

OBLIVIOUS TRANSFER PROTOCOL - continuation

Oblivious transfer problem: Design a protocol for sending a message from Alice to
Bob in such a way that Bob receives the message with probability 1

2
and ”garbage”

with the probability 1
2
. Moreover, Bob knows whether he got the message or garbage,

but Alice has no idea which one he got.

An Oblivious transfer protocol:

1 Alice chooses two large primes p and q and sends n = pq to Bob.

2 Bob chooses a random number x and sends y = x2 mod n to Alice.

3 Alice computes four square roots ±x1,±x2 of y (mod n) and sends one of them to
Bob. (She can do it, but has no idea which of them is x.)

4 Bob checks whether the number he got is congruent to x. If yes, he has received no
new information. Otherwise, Bob has two different square roots modulo n and can
factor n. Alice has no way of knowing whether this is the case.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 22/64

1-OUT-OF-2 OBLIVIOUS TRANSFER PROBLEM

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to
Bob in such a way that Bob can choose which of the messages he receives
(but he cannot choose both), but Alice cannot learn Bob’s decision.

A generalization of 1-out-of-2 oblivious transfer problem is two-party
oblivious circuit evaluation problem:

Alice has a secret i and Bob has a secret j and they both know some
function f.

At the end of protocol the following conditions should hold:

1 Bob knows the value f(i,j), but he does not learn anything about i.

2 Alice learns nothing about j and nothing about f(i,j).

Note: The 1-out-of-2 oblivious transfer problem is the instance of the
oblivious circuit evaluation problem for i = (b0, b1), f (i , j) = bj .

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 23/64

1-out-2 OBLIVIOUS TRANSFER BOX

1-out-of-two oblivious transfer can be imagined as a box with three inputs
and one output.

INPUTS: Alice inputs: X0 and X1;

. Bob inputs a bit i

OUTPUT: Bob gets as the output: Xi

X

X
0

1

i

Alice BOB

1/2 OT
X0

1

i

Alice BOB

1/2 OTX X
i

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 24/64

AN IMPLEMENTATION of OBLIVIOUS TRANSFER PROTOCOLS

Alice generates two key pairs for a PKC P and sends both her public
keys p1, p2 to Bob.

Bob chooses a to-be random secret key k for a SKC S, encrypts it by
one of Alice’s public keys, p1 or p2 and sends the outcome to Alice.

Alice uses her two secret keys to decrypt the message she received.
One of the outcomes is garbage g, another one is k, but she does not
know which one is k.

Alice encrypts her two secret messages, one with k, another with g and
sends them to Bob.

Bob uses S with k to decrypt both messages he got and one of the
attempts is successful. Alice has no idea which one.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 25/64

HISTORY and POWER of OBLIVIOUS TRANSFER PROTOCOLS

C. Crépeau (1988) showed that both versions of oblivious transfer are
equivalent – a protocol for each version can be realized using any
protocol for the other version, using a cryptographic reduction

Original definition of the oblivious transfer is due to J. Halpern and M.
O. Rabin (1983); 1-out-of-2 oblivious transfer suggested S. Even, O.
Goldreich and A. Lempel in 1985.

J. Kilian (1988) showed that oblivious transfers are very powerful
protocols that allow secure multiparty computation of the value f(x,
y) of any binary function f , where x is a secret value known only by
Alice, and y is a secret value known only by Bob, in such a way that it
holds:

Both, Alice and Bob, learn f(x, y)
Alice learns about y only as much as she can learn from x and f(x,
y)
Bob learns about x only as much as he can learn from y and f(x, y)

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 26/64

BIT COMMITMENT from 1-out-2 oblivious transfer

Using 1-out-of-2 oblivious transfer box (OT-box) one can design a bit commitment
scheme:

COMMITMENT PHASE:

1 Alice selects a random bit r and her commitment bit b;

2 Alice inputs x0 = r and x1 = r ⊕ b into the OT-box.

3 Alice sends a message to Bob telling him it is his turn.

4 Bob selects a random bit c, inputs c into the OT-box and records the output xc .

OPENING PHASE:

1 Alice sends r and b to Bob.

2 Bob checks to see if xc = r ⊕ (bc)

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 27/64

MENTAL POKER PLAYING by PHONE by Alice and Bob

Basic requirements (for playing poker with 52 cards):

Initial hands (sets of 5 cards) of both players are equally likely.

The initial hands of Alice and Bob are disjoint.

Both players always know their own hands but not that of the opponent.

Each player can detect eventual cheating of the other player.

A commutative cryptosystem is used with all functions kept secret.

Players agree on numbers w1, . . . ,w52 as the names of 52 cards.

Protocol:

1 Bob encrypts cards with eB , and tells eB(w1), . . . , eB(w52), in a randomly chosen
order, to Alice.

2 Alice chooses five of the items eB(wi) as Bob’s hand and tells them Bob.

3 Alice chooses another five of eB(wi), encrypts them with eA and sends them to Bob.

4 Bob applies dB to all five values eA(eB(wi)) he got from Alice and sends eA(wi) to
Alice as Alice’s hand. At this point both players have their hands and poker can
start.

Remark: The cryptosystems that are used cannot be public-key in the normal sense.
Otherwise Alice could compute eB(wi) and deal with the cards accordingly – a good hand
for B but slightly better for herself.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 28/64

MENTAL POKER by PHONE with THREE PLAYERS

1 Alice encrypts 52 cards w1, . . . ,w52 with eA and sends encryptions, in a random
order, to Bob.

2 Bob, who cannot decode the encryptions, chooses 5 of them, randomly. He encrypts
them with eB , and sends eB(eA(wi)) to Alice and the remaining 47 encryptions
eA(wi) to Carol.

3 Carol, who cannot decode any of the encryptions, chooses five of them randomly,
encrypts them also with her key and sends Alice eC (eA(wi)).

4 Alice, who cannot read encrypted messages from Bob and Carol, decrypt them with
her key and sends back to the senders,

five dA(eB(eA(wi))) = eB(wi) to Bob,

five dA(eC (eA(wi))) = eC (wi) to Carol.

5 Bob and Carol decrypt encryptions they got to learn their hands.

6 Carol chooses randomly 5 other messages eA(wi) from the remaining 42 and sends
them to Alice.

7 Alice decrypt messages to learn her hand.

Additional cards can be dealt with in a similar manner. If either Bob or Carol wants a
card, they take an encrypted message eA(wi) and go through the protocol with Alice. If
Alice wants a card, whoever currently has the deck sends her a card.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 29/64

ZERO-KNOWLEDGE PROOFS/PROTOCOLS

Loosely speaking, zero-knowledge proofs of an assertion
are proofs that yield nothing beyond the validity of the
assertion.

In other words, a verifier obtaining such a proof gains only
conviction in the validity of the assertion.

One way to understand it is by saying that anything that
can be efficiently computable from a zero-knowledge proof
can also be efficiently computable under the
belief/understanding that the assertion being proved is
true.

There are various types of zero-knowledge protocols - of
identity, of membership, of knowledge, ...

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 30/64

ZERO-KNOWLEDGE PROOFS and CRYPTOGRAPHY

Zero-knowledge proofs are fascinating and extremely useful
cryptographic tools.

Their fascinating nature is due to their seemingly
contradictorness: zero-knowledge proofs are both
convincing and yet yield nothing beyond the assertion
being proved.

Their applicability in cryptography is vast. For example,
they are used to force malicious parties to behave honestly,
according to a predetermined protocol, while maintaining
privacy i.e. the protocol may require communicating
parties to provide zero-knowledge proofs of the
correctness of their secret-based
(privacy-protection) actions, without revealing these
secrets.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 31/64

WHAT is a PROOF?

What is a proof?
The concept of proof was one of main achievements of the Golden Era of Greek
science/mathematics/geometry - 6th - 3rd century BC.

After that the concept of proof was almost forgotten for more than 2000 years.

A need to precise the concept of proof arose again at the very beginning of 20th
century due to the existence very strange functions and paradoxes in set theory.

Hilbert formalized the concept of proof. A sequence of statements each of which is
either an axiom or can be derived from previous ones using one of the deduction
rules - a proof should be checkable by machines.

Later, it has turned out that such a concept of proof, producing ”absolute truth”,
maybe sometimes much stronger than needed.

By Manin: Proof is whatever convinces me.

Zero-knowledge proofs and probabilistic proofs represent a new type of proofs –
proofs that provide convincing evidence – so much convincing as needed.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 32/64

ZERO-KNOWLEDGE PROOFS/PROTOCOLS - I.

Very informally, a zero-knowledge proof protocol allows one party, usually
called PROVER, to convince another party, called VERIFIER, that
PROVER has some knowledge (a secret, a proof of a theorem,...), or that
something holds, without revealing to the VERIFIER ANY information
about his knowledge (secret, proof,...) or how to show that.

In the rest of this chapter we present and illustrate very basic ideas of
zero-knowledge proof protocols and their importance for cryptography.

Zero-knowledge proof protocols are a special type of so-called interactive
proof systems.

By a theorem we understand in the following a claim that a specific object
has a specific property. For example, that a specific graph is 3-colorable.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 33/64

AN ILLUSTRATIVE EXAMPLE

(A cave with a magic door opening on a secret word)

Alice knows a secret word opening the door in cave. How can she convince Bob about it
without revealing this secret word?

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 34/64

ANOTHER ILLUSTRATION

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 35/64

ZERO-KNOWLEDGE PROOFS/PROTOCOLS - II.

A zero-knowledge proof or protocol is an interactive process by which one party (the
Prover) can convince another party (the Verifier) that a a particular statement is true,
without conveying any additional information apart from the fact that the statement is
indeed true.

For the case where the ability to prove the statement requires that the Prover has some
secret information, zero-knowledge requirement implies that that the verifier will not be
able to prove the statement to anyone else.

Notice that the notion of zero-knowledge applies only if the statement being proven is
the fact that the Prover has a certain knowledge - a secret information. Otherwise, the
statement would not be proven in zero-knowledge way, since at the end of the protocol
the verifier would gain an additional information - namely the information that the prover
has knowledge of the required secret information.

This is a particular case known as zero-knowledge proof of knowledge.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 36/64

INTERACTIVE PROOF PROTOCOLS

In an interactive proof system there are two parties

A (strong - all powerful) Prover, often called Peggy (a randomized algorithm that
uses a private random number generator);

A poor Verifier, often called Vic (a polynomial time randomized algorithm that uses
a private random number generator).

Prover knows some secret, or a knowledge, or a fact about a specific object, and wishes
to convince Vic, through a communication with him, that he has the above knowledge.

For example, both Prover and Verifier posses an input x and Prover wants to convince
Verifier that x has a certain Property and that Prover knows how to prove that.

The interactive proof system consists of several rounds. In each round Prover and Verifier
alternatively do the following.

1 Receive a message from the other party.

2 Perform a (private) computation.

3 Send a message to the other party.

Communication starts usually by a challenge of Verifier and a response of Prover.

At the end, Verifier either accepts or rejects Prover’s attempts to convince Verifier.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 37/64

INTERACTIVE PROOF SYSTEMS

An interactive proof protocol is said to be an interactive proof system for a
secret/knowledge or a decision problem Π if the following properties are satisfied provided
that Prover and Verifier posses an input x (or Prover has secret knowledge) and Prover
wants to convince Verifier that x has certain properties and that Prover knows how to
prove that (or that Prover knows the secret).

(Knowledge) Completeness: If x is a yes-instance of Π, or Peggy knows the secret, then
Vic always accepts Peggy’s ”proof” for sure.

(Knowledge) Soundness: If x is a no-instance of Π, or Peggy does not know the secret,
then Vic accepts Peggy’s ”proof” only with very small probability.

CHEATING

If the Prover and the Verifier of an interactive proof system fully follow the protocol
they are called honest Prover and honest Verifier.

A Prover who does not know secret or proof and tries to convince the Verifier is
called cheating Prover.

A Verifier who does not follow the behaviour specified in the protocol is called a
cheating Verifier.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 38/64

INTERACTIVE PROOF SYSTEMS INTUITIVELY

Loosely speaking, an interactive proof is a game between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the verifier of
the validity of some assertion.

An interactive proof should allow the prover to convince the verifier of the validity of any
true assertion, whereas no prover strategy may fool the verifier with not negligible
probability to accept false assertions.

Intuitively, one may think about interactions between verifier and prover as consisting of
”tricky” questions asked by the verifier to which the prover has to reply ”convincingly”.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 39/64

GRAPH ISOMORPHISM - EXAMPLE

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 40/64

EXAMPLE – GRAPH NON-ISOMORPHISM

A simple interactive proof protocol exists for a computationally very hard graph
non-isomorphism problem.

Input: Two graphs G1 and G2, with the set of nodes {1, . . . , n}.
Protocol: Repeat n times the following steps:

1 Vic chooses randomly an integer i ∈ {1, 2} and a permutation π of {1, . . . , n}.Vic
then computes the image H of Gi under the permutation π and sends H to Peggy.

2 Peggy determines the value j such that GJ is isomorphic to H, and sends j to Vic.

3 Vic checks to see if i = j.

Vic accepts Peggy’s proof if i = j in each of n rounds.

Completeness: If G1 is not isomorphic to G2, then probability that Vic accepts is 1
because Peggy will have no problem to answer correctly.

Soundness: If G1 is isomorphic to G2, then Peggy can deceive Vic if and only if she
correctly guesses n times those i’s Vic chooses randomly. The probability that this can
happen is 2−n.

Observe that Vic’s computations can be performed in polynomial time (with respect to
the size of graphs).

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 41/64

ZERO-KNOWLEDGE PROOFS

Informally speaking, an interactive proof systems has the property of being
zero-knowledge if the Verifier, that interacts with the honest Prover of the
system, learns nothing from their interaction beyond the validity of the
statement being proved.

There are several variants of zero-knowledge protocols that differ in the
specific way the notion of learning nothing is formalized.

In each variant it is viewed that a particular Verifier learns nothing if there
exists a polynomial time simulator whose output is indistinguishable from
the output of the Verifier after interacting with the Prover on any possible
instance of the problem.

Different variants of zero-knowledge proof systems concern the strength of
this distinguishability.In particular, perfect or statistical zero-knowledge
refer to the situation where the simulator’s output and the Verifier’s output
are indistinguishable in an information theoretic sense.

Computational zero-knowledge refer to the case there is no polynomial time
distinguishability.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 42/64

ZERO-KNOWLEDGE PROOF PROTOCOLS - VERY INFORMALLY

Very informally An interactive ”proof protocol” at which a
Prover tries to convince a Verifier about the truth of a
statement, or about possession of a knowledge, is called
”zero-knowledge” protocol if the Verifier does not learn
from communication anything more except that the
statement is true or that Prover has knowledge (secret)
she claims to have.

Example The proof n = 670592745 = 12345 × 54321 is
not a zero-knowledge proof that n is not a prime.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 43/64

ZERO-KNOWLEDGE PROOF PROTOCOLS - MORE FORMALLY

Informally, a zero-knowledge proof is an interactive proof protocol that provides highly
convincing evidence that a statement is true or that Prover has certain knowledge (of a
secret) and that Prover knows a (standard) proof of it while providing not a single bit of
information about the proof (knowledge or secret). (In particular, Verifier who got

convinced about the correctness of a statement cannot convince the third person about that.)

More formally A zero-knowledge proof of a theorem T is an interactive two party
protocol, in which Prover is able to convince Verifier who follows the same protocol, by
the overwhelming statistical evidence, that T is true, if T is indeed true, but no Prover is
able to convince Verifier that T is true, if this is not so.

In addition, during interactions, Prover does not reveal to Verifier any other information,
except whether T is true or not.Consequently, whatever Verifier can do after he gets
convinced, he can do just believing that T is true.
Similar arguments hold for the case Prover possesses a secret.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 44/64

FORMAL DEFINITION of ZERO-KNOWLEDGE

In the following definition both prover (P) and verifier (V)
as well as a simulator (S) will be Turing machines.
An interactive proof system with (P , V) for a language L
is zero-knowledge if for any polynomial time randomized
verifier V there exists polynomial randomized simulator S
such that

∀x ∈ L

S(x)−−{ the value produced by the simulator S}

is undistinguishable from what can be obtained from the
transcript of the communication between P and V for the
input x .

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 45/64

AGE DIFFERENCE FINDING PROTOCOL

Alice and Bob want to find out who of them is older without disclosing any other
information about their age.

The following protocol is based on a public-key cryptosystem, in which it is assumed that
neither Bob nor Alice are older than 100 years.

Protocol Let age of Bob be j; and age of Alice be i.

1 Bob chooses a random x ∈ {1, . . . , 100}, computes k = eA(x) and sends to Alice s
= k - j.

2 Alice first computes the numbers yu = dA(s + u); 1 ≤ u ≤ 100, then chooses a large
random prime p and computes numbers

zu = yu mod p, 1 ≤ u ≤ 100 (*)

and verifies that for all u 6= v

|zu − zv | ≥ 2 and zu 6= 0 (**)

(If this is not the case, Alice choose a new p, repeats computations in (*) and
checks (**) again.)

Finally, Alice sends Bob the following sequence (order is important).

z1, . . . , zi , zi+1 + 1, . . . , z100 + 1, p
as z ′1, . . . , z

′
i , z
′
i+1, . . . , z

′
100, p

3 Bob checks whether j-th number in the above sequence is congruent to x modulo p.
If yes, Bob knows that i ≥ j , otherwise i < j .

i ≥ j ⇒ z ′j = zj ≡ yj = dA(k) ≡ x (mod p)
i < j ⇒ z ′j = zj + 1 6= yj = dA(k) ≡ x (mod p)

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 46/64

MILLIONAIRE

The previous problem is ofter referred to as Millionaire
problem that want to know who of them is richer
without disclosing any additional information about
their wealth.

The problem is also often seen as an example of
two-party (multi-party) secure computation at
which both parties want to know some outcomes that
depends on their inputs, but they do not want to
disclose any information about their inputs.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 47/64

3-COLORABILITY of GRAPHS - EXAMPLE

Are the nodes of the following graph colorable by three colors in such a way that no edge
connects nodes of the same color?

Yes, they are:

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 48/64

3-COLORABILITY of GRAPHS

With the following protocol Peggy can convince Vic that a particular graph G, known to
both of them, is 3-colorable and that Peggy knows such a coloring, without revealing to
Vic any information how such coloring looks.

(a)

1 red e1 e1(red) = y1

2 green e2 e2(green) = y2

3 blue e3 e3(blue) = y3

4 red e4 e4(red) = y4

5 blue e5 e5(blue) = y5

6 green e6 e6(green) = y6

(b)

Protocol: Peggy colors the graph G = (V, E) with colors (red, blue, green) and she
performs with Vic |E |2- times the following interactions, where v1, . . . , vn are nodes of V.

1 Peggy chooses a random permutation of colors, recolors G, and encrypts, for i =
1,2,. . . ,n, the color ci of node vi by an encryption procedure ei – for each i different.
Peggy then removes colors from nodes, labels the i-th node of G with cryptotext
yi = ei (ci), and designs Table (b).
Peggy finally shows Vic the graph with nodes labeled by cryptotexts.

2 Vic chooses an edge and asks Peggy to show him coloring of the corresponding
nodes.

3 Peggy shows Vic entries of the table corresponding to the nodes of the chosen edge.
4 Vic performs desired encryptions to verify that nodes really have colors as shown.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 49/64

A MORE CONCISE ZERO-KNOWLEDGE PROTOCOL

Common Input: A graph G = (V ,E), V = {1, . . . , n}, n = |V |.
Peggy’s Input: A coloring φ→ {1, 2, 3}
Repeat t|E | the following steps in order soundness error e−t

Peggy selects a random permutation π on {1, 2, 3} and commits herself to Vic for all
values π(φ(i))

Vic chooses randomly an edge e = (j , k) and sends it to Peggy {asking her to show
coloring of its nodes}
Peggy decommit herself to reveal π(j) and π(k)

Vic checks whether colors are different and match the commitment received in the
first step.

Zero-knowledge proofs for other NP-complete problems can be obtained using the
standard reduction.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 50/64

ZERO-KNOWLEDGE PROOF of HAMILTONIAN CYCLE

Peggy and Vic know a graph G . Peggy will prove to Vic that G has a Hamiltonian cycle
(and that she knows how to draw Hamiltonian cycle in G) - cycle that passes through
each node exactly once. To do that they perform several times the following rounds:

1 Peggy creates randomly a graph H isomorphic to G and commits herself to H before
Vic.

2 Vic asks Peggy to do, randomly chosen, one of the following tasks:
Show isomorphism between G and H
Draw Hamiltonian cycle in H.

3 In case she is asked to show isomorphism, she open her commitment to make H
public and show the required isomorphism.

4 In case she is asked to draw Hamiltonian cycle in H she opens her commitment and
shows the Hamiltonian cycle. She can do that because she knows how to do that for
G and knows isomorphism between G and H.

1 Completeness In case Peggy knows how to draw Hamiltonian cycle for G she always
does well what Vic asks.

2 Soundness. In case G does not have Hamiltonian cycle, Peggy is able to do what
Vic asks only with some small probability.

3 Zero-knowledge. None of the responses of Peggy reveals a Hamiltonian cycle of G .
It reveals only either isomorphism or a Hamiltonian cycle of H. Vic would need to
know both simultaneously in order to be able to draw a Hamiltonian cycle of G .

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 51/64

ZERO-KNOWLEDGE PROOFS in CRYPTOGRAPHIC
PROTOCOLS

The fact that for a big class of statements there are zero-knowledge proofs can be used
to design secure cryptographic protocols. (All languages in PSPACE have zero-knowledge
proofs provided unbreakable encryptions exist (if one-way functions exist.)

A cryptographic protocol can be seen as a set of interactive programs to be executed by
non-trusting parties.

Each party keeps secret her local input.

The protocol specifies the actions parties should take, depending on their local secrets
and previous messages exchanged.

The main problem in this setting is how can a party verify that the other parties have
really followed the protocol?

The way out: a party A can convince a party B that the transmitted message was
completed according to the protocol without revealing its secrets.

An idea how to design a reliable protocol

1 Design a protocol under the assumption that all parties follow the protocol.
2 Transform protocol, using a method to make zero-knowledge proofs out of normal

ones, into a protocol with communication based on zero-knowledge proofs, which
preserves both correctness and privacy and works even if some parties have an
adversary behavior.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 52/64

HISTORY of ZERO-KNOWLEDGE PROOFS

Research in zero-knowledge proofs have been motivated by identification problems and an
approach where one party wants to prove his identity by demonstrating some secret
knowledge (say a password) but does not want that other parties learn anything about
this knowledge.

The concept o zero-knowledge proofs was first published in 1985 by Shafi Goldwasser,
Silvio Micali and Charles Rackoff.

Early version of their paper were from 1985 and were rejected three times from major
conferences (FOCS83, STOC84, FOCS84).

The wide applicability of zero-knowledge proofs was first demonstrated in 1986 by
Goldreich, Micali, Wigderson, who showed how to construct zero-knowledge proofs for
any NP-set.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 53/64

INTERACTIVE PROOF for QUADRATIC RESIDUA

Input: An integer n = pq, where p, q are primes and x ∈ QR(n).

Protocol: Repeat lg n times the following steps:

1 Peggy chooses a random v ∈ Z∗n and sends to Vic

y = v 2 mod n.

2 Vic sends to Peggy a random i ∈ {0, 1}.
3 Peggy computes a square root u of x and sends to Vic

z = uiv mod n.

4 Vic checks whether

z2 ≡ x iy mod n.

Vic accepts Peggy’s proof that x is QR if he succeeds in point 4 in each of lg n rounds.

Completeness: This is straightforward:

Soundness If x is not a quadratic residue, then Peggy can answer only one of two possible
challenges (only if i = 0), because in such a case y is a quadratic residue if and only if xy
is not a quadratic residue.This means that Peggy will be caught in any given round of the
protocol with probability 1

2
.

The overall probability that prover deceives Vic is therefore 2− lg n = 1
n

.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 54/64

ZERO-KNOWLEDGE PROOF for QUADRATIC NON-RESIDUE

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 55/64

IMPLICATIONS

Zero-knowledge proof for quadratic residue has an interesting implication.

No efficient algorithm for deciding quadratic residuosity modulo an n is known when n’s
factorization is not given.

Moreover, all known NP proofs for this problem exhibit a factorization of n.

The existence of zero-knowledge proof for deciding residuosity indicates that adding
interaction to the proving process may decrease the amount of knowledge that must be
communicated in order to prove a theorem.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 56/64

ZERO-KNOWLEDGE PROOF for GRAPH ISOMORPHISM

Input: Given are two graphs G1 and G2 with the set of nodes {1, . . . , n}.
Repeat the following steps n times:

1 Peggy chooses a random permutation π of {1, . . . , n} and computes H to be the
image of G1 under the permutation π, and sends H to Vic.

2 Vic chooses randomly i ∈ {1, 2} and sends it to Peggy. {This way Vic asks for
isomorphism between H and Gi .}

3 Peggy creates a permutation ρ of {1, . . . , n} such that ρ specifies isomorphism
between H and Gi and Peggy sends ρ to Vic.

{If i = 1 Peggy takes ρ = π; if i = 2 Peggy takes ρ = σoπ, where σ is a fixed
isomorphic mapping of nodes of G2 to G1.}

4 Vic checks whether H provides the isomorphism between Gi and H.

Vic accepts Peggy’s ”proof” if H is the image of Gi in each of the n rounds.

Completeness. It is obvious that if G1 and G2 are isomorphic then Vic accepts with
probability 1.

Soundness: If graphs G1 and G2 are not isomorphic, then Peggy can deceive Vic only if
she is able to guess in each round the i Vic chooses and then sends as H the graph Gi .
However, the probability that this happens is 2−n.

Observe that Vic can perform all computations in polynomial time. However, why is this
proof a zero-knowledge proof?

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 57/64

WHY is the last ”PROOF” a ”ZERO-KNOWLEDGE PROOF”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G1 and
G2 are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G1 and G2.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages i transmitted during communications by Peggy and Vic.

Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, r1), . . . , (Hn, in, rn)).

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 58/64

SIMULATOR

A simulator for the previous graph isomorphism protocol.

T = (G1,G2),

for j = 1 to n do

Chose randomly ij ∈ {1, 2}.
Chose ρj to be a random permutation of {1, . . . , n}.
Compute Hj to be the image of Gij under ρj ;
Concatenate (Hj , ij , ρj) at the end of T.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 59/64

CONSEQUENCES and FORMAL DEFINITION

The fact that a simulator can forge transcripts has several important consequences.

Anything Vic can compute using the information obtained from the transcript can
be computed using only a forged transcript and therefore participation in such a
communication does not increase Vic capability to perform any computation.

Participation in such a proof does not allow Vic to prove isomorphism of G1 and G2.

Vic cannot convince someone else that G1 and G2 are isomorphic by showing the
transcript because it is indistinguishable from a forged one.

Formal definition of what this means that a forged transcript ”looks like” a real one:

Definition Suppose that we have an interactive proof system for a decision problem Π
and a polynomial time simulator S.

Denote by Γ(x) the set of all possible transcripts that could be produced during the
interactive proof communication for a yes-instance x.

Denote F(x) the set of all possible forged transcripts produced by the simulator S.

For any transcript T ∈ Γ(x), let pΓ(T) denote the probability that T is the transcript
produced during the interactive proof. Similarly, for T ∈ F (x), let pF (T) denote the
probability that T is the transcript produced by S.

If Γ(x) = F (x) and, for any T ∈ Γ(x), pΓ(T) = pF (T) , then we say that the interactive
proof system is a zero-knowledge proof system.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 60/64

APPENDIX

APPENDIX

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 61/64

WHAT IS A PROOF?

A proof is whatever convinces me (M. Even).

A nice proof makes us wiser (Yu. Manin).

A proof is a sequence of statements each of

them is either an axiom or follows from previous

statements by am easy deduction rule - whether

a to-be-proof is indeed a proof it should be

checkeable by a computer. (A proof is therefore

a computation process.)

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 62/64

HISTORY of PROOFS

The concept of the proof (of a theorem from axioms) was introduced during the first
golden era of mathematics, in Greece, 600-300 BC.

Most of their proofs were actually proofs of correctness of geometric algorithms.

After 300 BC, Greek’s ideas concerning proofs were actually ignored for 2000 years.

During the second golden era of mathematics, in 17th century, the concept of the
proof did not play very important role. Famous was encouragement of those times
”Go on, God will be with you” whenever rigour of some methods or correctness of
some theorem was questioned.

An understanding that proofs are important has developed again at the end of 19th
century and especially at the beginning of 20th century because

a lot of counter-intuitive phenomena have appeared in mathematics (for example a
function that is everywhere continuous but has nowhere derivative);
paradoxes have appeared in the set theory. - For example, Does there exist a set of all
sets?

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 63/64

A PROBLEM And ITS SOLUTION

The term zero-knowledge is a bit misleading in case of
”zero-knowledge proof of membership (in a language L).

The reason being that in the basic setting the Prover
reveals one bit of knowledge to the Verifier (namely
weather the input belong to L).

However, it is possible to resolve this problem by
considering zero-knowledge proofs of knowledge about
knowledge.

In such a setting the goal is not to prove that input is (or
is not) in the given language, but that Prover knows
whether the input is (or is not) in the language.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 64/64

