
Part VIII

Elliptic curves cryptography and factorization

ELLIPTIC CURVES CRYPTOGRAPHY and FACTORIZATION

Elliptic curve cryptography (ECC) is an approach to
public-key cryptography based on the algebraic structure
of elliptic curves over finite fields.

Elliptic curves belong to very important and deep
mathematical concepts with a very broad use.

The use of elliptic curves for cryptography was suggested,
independently, by Neal Koblitz and Victor Miller in 1985.
ECC started to be widely used after 2005.

Elliptic curve are also basis of a very important
Lenstra’s integer factorization algorithm.

Both of these uses of elliptic curves are dealt with in this
chapter.
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HISTORICAL COMMENTS

Elliptic are also seen as the simplest non-trivial
mathematical object.

Historically, computing the integral of an arc-length of
an ellipse lead to the idea of elliptic functions and
curves.

Niels Henrik Abel (1802-1829) and K. W. T.
Weierstrass (1815-1897) are considered as pioneers in
the area of elliptic functions.

Abel has been considered, by his contemporaries, as
mathematical genius that left enough for
mathematicians to study for next 500 years.
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ELLIPTIC CURVES CRYPTOGRAPHY

Public key cryptography based on a special manipulation (called multiplication or
addition) of points of elliptic curves is currently getting momentum and has a tendency
to replace public key cryptography based on the infeasibility of factorization of integers,
or on infeasibility of the computation of discrete logarithms.

For example, the US-government has recommended to its governmental institutions to
use mainly elliptic curve cryptography - ECC.

The main advantage of elliptic curves cryptography is that to achieve a certain level of
security shorter keys are sufficient than in case of “usual cryptography”. Using shorter
keys can result in a considerable savings in hardware implementations.

The second advantage of the elliptic curves cryptography is that quite a few of attacks
developed for cryptography based on factorization and discrete logarithm do not work for
the elliptic curves cryptography.

It is amazing how practical is the elliptic curve cryptography that is based on very
strangely looking theoretical concepts.
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ELLIPTIC CURVES

An elliptic curve E is the graph of points of the plane curve defined by the Weierstrass
-equation

E : y 2 = x3 + ax + b

(where a, b are either rational numbers or integers (and computation is done modulo
some integer n)) extended by a “point at infinity”, denoted usually as ∞ (or 0) that can
be regarded as being, at the same time, at the very top and very bottom of the y -axis.

We will consider only those elliptic curves that have no multiple roots - which is
equivalent to the condition 4a3 + 27b2 6= 0.

In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has
one of the forms shown in the following figure. The graph depends on whether the
polynomial x3 + ax + b has three or only one real root.

y 2 = x(x + 1)(x − 1) y 2 = x3 + 73
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MORE PRECISE DEFINITION

A more precise definition of elliptic curves requires that it is the curve of points of the
equation

E : y 2 = x3 + ax + b

in the case the curve is non-singular.

Geometrically, this means that the graph has no cusps, self-interactions, or isolated
points.

Algebraically a curve is non-singular if and only if the discriminant

∆ = −16(4a3 + 27b3) 6= 0

The graph of a non-singular curve has two components if its discriminant is positive, and
one component if it is negative.
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IMPORTANCE of ELLIPTIC CURVES

Elliptic curves are currently an important area of mathematical research with
importance for many other areas.

Recently, in 1995, elliptic curves played an important role in proving, by Andrew
Wiles, Fermat’s Last Theorem (formulated in 1635) , what could be considered as
one of the most important mathematical achievements of the last 50 years.

Elliptic curves have also close relation to BSD Conjecture (Birch and
Swinnerton-Dyer Conjecture), one of the Millennium problems of the Clay
Mathematics institute.

Elliptic curves are currently behind practically most preferred methods of
cryptographic security.

Elliptic curves are also a basis of very important factorization method.
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ADDITION of POINTS on ELLIPTIC CURVES - GEOMETRY

Geometry

On any elliptic curve we can define addition of points in such a way that points of the
corresponding curve with such an operation of addition form an Abelian group in which
the point in infinite, denoted by ∞, is plying the role of the identity group element

If the line through two different points P1 and P2 of an elliptic curve E intersects E in a
point Q = (x , y), then we define P1 + P2 = P3 = (x ,−y).(This also implies that for any
point P on E it holds P +∞ = P.) ∞ therefore indeed play a role of the null/identity
element of the group

If the line through two different points P1 and P2 is parallel with y-axis, then we define
P1 + P2 =∞.

In case P1 = P2, and the tangent to E in P1 intersects E in a point Q = (x , y), then we
define P1 + P1 = (x ,−y).

It should now be obvious how to define subtraction of two points of an elliptic curve.

It is now easy to verify that the above addition of points forms Abelian group with ∞ as
the identity (null) element.
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ADDITION of POINTS - EXAMPLES 1 and 2

The following pictures show some cases of points additions

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 9/86

ADDITION of POINTS - EXAMPLES 3 and 4

The following pictures show some cases of double and triple points additions
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ADDITION of POINTS - EXAMPLES 5 and 6

The following pictures show some more complex cases of double and triple points
additions
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ADDITION of POINTS - EXAMPLES 7 and 8

The following pictures show some more complex cases of double and triple points
additions
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ADDITION of POINTS on ELLIPTIC CURVES - FORMULAS)

Formulas

Addition of points P1 = (x1, y1) and P2 = (x2, y2) of an elliptic curve
E : y 2 = x3 + ax + b can be easily computed using the following formulas:

P1 + P2 = P3 = (x3, y3)

where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =

8>><>>:
(y2 − y1)

(x2 − x1)
if P1 6= P2,

(3x2
1 + a)

(2y1)
if P1 = P2.

All that holds for the case that λ 6=∞; otherwise P3 =∞.

Example For curve y 2 = x3 + 73 and P1 = (2, 9), P2 = (3, 10) we have λ = 1,
P1 + P2 = P3 = (−4,−3) and P3 + P3 = (71, 603). – {λ = −8}
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DERIVATION of FORMULAS for ADDITION of DIFFERENT
POINTS

If P1 6= P2, then the line that goes through points P1 and P2 has the equation

y = y1 + λ(x − x1) = y1 +
y2 − y1

x2 − x1
(x − x1).

To get the x-coordinate of the third, intersection, point, of the curve y 2 = x3 + ax + b
we have to find roots of the equation:

y 2 = (y1 + λ(x − x1))2 = x3 + ax + b

that can be written in the form

x3 − λ2x2 + (a− 2λ(y1 − λx1))x + (b − (y1 − λx1)2) = 0

Since its two roots have coordinates x1 and x2 for the third, x3, it has to hold

x3 = λ2 − x1 − x2,

because −λ2 is the coefficient at x2 and therefore x1 + x2 + x3 = −(−λ2 = λ2.
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ELLIPTIC CURVES mod n

The points on an elliptic curve

E : y 2 = x3 + ax + b (modn),

notation En(a, b) are such pairs (x,y) mod n that satisfy the above equation, along with
the point ∞ at infinity.

Example Elliptic curve E : y 2 = x3 + 2x + 3 ( mod 5) has points

(1, 1), (1, 4), (2, 0), (3, 1), (3, 4), (4, 0),∞.

Example For elliptic curve E : y 2 = x3 + x + 6 ( mod 11) and its point P = (2, 7) it
holds 2P = (5, 2); 3P = (8, 3). Number of points on an elliptic curve (mod p) can be
easily estimated.

The addition of points on an elliptic curve mod n is done by the same formulas as given
previously, except that instead of rational numbers c/d we deal with cd−1

Example For the curve E : y 2 = x3 + 2x + 3 it holds
(1, 4) + (3, 1) = (2, 0); (1, 4) + (2, 0) = (?, ?).
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ADDITION of POINTS on ELLIPTIC CURVES - REPETITIONS)

Formulas

Addition of points P1 = (x1, y1) and P2 = (x2, y2) of an elliptic curve
E : y 2 = x3 + ax + b can be easily computed using the following formulas:

P1 + P2 = P3 = (x3, y3)

where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =

8>><>>:
(y2 − y1)

(x2 − x1)
if P1 6= P2,

(3x2
1 + a)

(2y1)
if P1 = P2.

All that holds for the case that λ 6=∞; otherwise P3 =∞.

Example For curve y 2 = x3 + 73 and P1 = (2, 9), P2 = (3, 10) we have λ = 1,
P1 + P2 = P3 = (−4,−3) and P3 + P3 = (72, 611). – {λ = −8}
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A VERY IMPORTANT OBSERVATION

In case of modular computation of coordinates of the sum
of two points of an elliptic curve En(a, b) one needs, in
order to determine value of λ to compute u−1( mod n)
for various u.

Th’s can be done in case gcd(u, n) = 1 and therefore we
need to compute gcd(u, n) first.

Observe that if this gcd-value is between 1 and n we have
a factor of n.
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POINTS on CURVE y2 = x3 + x + 6 mod 11
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EXAMPLE

On the elliptic curve
y 2 ≡ x3 + x + 6 (mod 11)

lies the point P = (2, 7) = (x1, y1)

Indeed, 49 ≡ 16 mod 11.

To compute 2P = (x3, y3) we have

λ =
3x2

1 + a

2y1
≡ (3 · 22 + 1)/(14) ≡ 13/14 ≡ 2/3 ≡ 2 · 4 ≡ 8 ≡ mod 11

Therefore
x3 = λ2 − x1 − x2 ≡ 82 − 2− 2 ≡ 60 ≡ 5 mod 11

and
y3 = λ(x1 − x3)− y1 ≡ 8(2− 5)− 7 ≡ −31 ≡ −9 ≡ 2 mod 11
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ADDITION Of a POINT to ITSELF - FORMULAS+EXAMPLES

In the following P = (x1, y1), P + P = (xR , yR), λ = s
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PROPERTIES of ELLIPTIC CURVES MODULO p

Elliptic curves modulo an integer p have finitely many
points and are finitely generated - all points can be
obtained from few given points using the operation of
addition.

Hasse’s theorem If an elliptic curve Ep has |Ep| points
then ||Ep| − p − 1| < 2

√
p

In other words, the number of points of a curve grows
roughly as the number of elements in the field. The
exact number of such points is, however, rather difficult
to calculate.
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SECURITY of ECC

The entire security of ECC depends on our ability to
compute addition of two points and on inability to
compute one summon given the sum and the second
summon.

However, no proof of security of ECC has been
published so far.

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 22/86

ELLIPTIC CURVES DISCRETE LOGARITHM

Let E be an elliptic curve and A,B be its points such that B = kA = (A + A + . . .A + A)
– k times – for some k. The task to find such a k is called the discrete logarithm
problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is known
and also no good general attacks. Elliptic curves based cryptography is based on these
facts.

There is the following general procedure for changing a discrete logarithm based
cryptographic protocols to a cryptographic protocols based on elliptic curves:

Assign given message (plaintext) to a point on a given elliptic curve E .

Change, in the cryptographic protocol, modular multiplication to addition of points
on E .

Change, in the cryptographic protocol, exponentiation to multiplication of points of
the elliptic curve E by integers.

To the point of the elliptic curve E that results from such a protocol assigns a
message (cryptotext).

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 23/86

POWERS of POINTS

The following table shows powers of various points of the curve

y 2 = x3 + x + 6 mod 11
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (I)

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there
are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.

Fortunately, there is a fast randomized algorithm, to assign points of any elliptic curve to
messages, that can fail with probability that can be made arbitrarily small.

Basic idea: Given an elliptic curve E(modp), the problem is that not to every x there is
an y such that (x , y) is a point of E .

Given a message (number) m we therefore adjoin to m few bits at the end of m and
adjust them until we get a number x such that x3 + ax + b is a square modp.
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (II)

Technicalities

Let K be a large integer such that a failure rate of
1

2K
is acceptable when trying to

encode a message by a point.

For j ∈ {0, . . . ,K − 1} verify whether for x = mK + j , x3 + ax + b (mod p) is a square
(mod p) of an integer y.

If such an j is found, encoding is done; if not the algorithm fails (with probability
1

2K

because x3 + ax + b is a square approximately half of the time).

In order to recover the message m from the point (x , y), we compute:$
x

K

%
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EFFICIENCY of various CRYPTOGRAPHIC SYSTEMS

The following pictures show how many bits needed keys of different cryptographic
systems to achieve the same security.
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ELLIPTIC CURVES KEY EXCHANGE

Elliptic curve version of the Diffie-Hellman key generation
protocol goes as follows:

Let Alice and Bob agree on a prime p, on an elliptic curve
Ep(a, b) and on a point P on Ep(a, b).

Alice chooses an integer na, computes naP and sends it
to Bob.

Bob chooses an integer nb, computes nbP and sends it
to Alice.

Alice computes na(nbP) and Bob computes nb(naP).
This way they have the same key.
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ELLIPTIC CURVES VERSION of ElGamal CRYPTOSYSTEM

Standard version of ElGamal: Bob chooses a prime p, a generator q < p, an integer x,
computes y = qx (mod p), makes public p, q, y and keeps x secret.

To send a message m Alice chooses a random r, computes:

a = qr ; b = my r

and sends it to Bob who decrypts by calculating m = ba−x ( mod p)

Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve Ep, a point
P on E, an integer x, computes Q = xP, makes Ep, and Q public and keeps x secret.

To send a message m ALice expresses m as a point X on Ep, chooses a random number r,
computes

A = rP ; B = X + rQ

and sends the pair (A,B) to Bob who decrypts by calculating X = B − xA.
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ELLIPTIC CURVES DIGITAL SIGNATURES

Elliptic curves version of ElGamal digital signatures has the following form for signing (a
message) m, an integer, by Alice and to have the signature verified by Bob:

Alice chooses a prime p, an elliptic curve Ep(a, b), a point P on Ep and calculates the
number of points n on Ep – what can be done, and we assume that 0 < m < n.

Alice then chooses a random integer a and computes Q = aP. She makes public p, E, P,
Q and keeps secret a.

To sign a message m Alice does the following:

Alice chooses a random integer r , 1 ≤ r < n such that gcd(r,n) = 1 and computes R
= rP = (x,y).

Alice computes s = r−1(m − ax) (mod n)

Alice sends the signed message (m,R,s) to Bob.

Bob verifies the signature as follows:

Bob declares the signature as valid if xQ + sR = mP

The verification procedure works because

xQ + sR = xaP + r−1(m − ax)(rP) = xaP + (m − ax)P = mP

Warning Observe that actually rr−1 = 1 + tn for some t. For the above verification
procedure to work we then have to use the fact that nP =∞ and therefore P + t ·∞ = P
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COMMENT

Federal (USA) elliptic curve digital signature standard
(ECDSA) was introduced in 2005.

Elliptic curve method was used to factor Fermat numbers
F10 (308 digits) and F11 (610 digits).
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DOMAIN PARAMETERS for ELLIPTIC CURVES

To use ECC, all parties involved have to agree on all basic
elements concerning the elliptic curve E being used:

A prime p.
Constants a and b in the equation y 2 = x3 + ax + b.
Generator G of the underlying cyclic subgroup such
that its order is a prime.
The order n of G is the smallest integer n such that
nG = 0
Co-factor h = |E |

n should be small (h ≤ 4) and,
preferably h = 1.

To determine domain parameters (especially n and h) may
be much time consuming task. That is why mostly so
called ”standard or ”named’ elliptic curves are used that
have been published by some standardization bodies.
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SECURITY of ELLIPTIC CURVE CRYPTOGRAPHY

Security of ECC depends on the difficulty of solving the discrete logarithm problem
over elliptic curves.

Two general methods of solving such discrete logarithm problems are known.

The square root method and Silver-Pohling-Hellman (SPH) method.

SPH method factors the order of a curve into small primes and solves the discrete
logarithm problem as a combination of discrete logarithms for small numbers.

Computation time of the square root method is proportional to O(
√

en) where n is
the order of the based element of the curve.
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KEY SIZE

All known algorithms to solve elliptic curves discrete
logarithm problem need at least θ(

√
n) steps, where n

is the order of the group.

This implies that the size of the underlying field
(number of points on the chosen elliptic curve) should
be roughly twice the security parameter.

For example, for 128-bit security one needs a curve
over F

¯q, where q ≈ 2256.

This can be contrasted with RSA cryptography that
requires 3072-bi public and private keys to keep the
same level of security.
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BREAKING ECC

The hardest ECC scheme (publicly) broken to

date had a 112-bit key for the prime field case

and a 109-bit key for the binary field case.

The prime field case was broken in July 2009

using 200 PlayStation 3 game consoles and

could be finished in 3.5 months.

The binary field case was broken in April 2004

using 2600 computers for 17 months.
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GOOD ELLIPTIC CURVES

NIST recommended 5 elliptic curves for prime fields,
one for prime sizes 192, 224, 256, 384 and 521 bits.

NIST also recommended five elliptic curves for binary
fields F2m one for m equal 163, 233, 283, 409 and 571.
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INTEGER FACTORIZATION METHODS

INTEGER FACTORIZATION METHODS

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 37/86

INTEGER FACTORIZATION - PROBLEM I

Two very basic questions concerning integers are of large theoretical and also practical
cryptographical importance.

Can a given integer n be factorized? (Or, is n prime?)

If n can be factorized, find its factors.

Till around 1977 no polynomial algorithm was know to determine primality of integers. In
spite of the fact that this problem bothered mathematicians since antique ancient times.

In 1977 several very simple and fast randomized algorithms for primality testing
were discovered - one of them is on the next slide.
So called Fundamental theorem of arithmetic, known since Euclid, claims that
factorization of an integer n into a power of primes

n =
kY

i=1

pei
i

is unique when primes pi are ordered. However, theorem provides no clue how to find such
a factorization and till now no classical polynomial factorization algorithm is know.
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RABIN-MILLER’s PRIME RECOGNITION

Given an odd integer n decompose n − 1 = 2sd , d odd.

Algorithm: Choose randomly 1 < a < n − 1 and compute
x ← ad mod n;
if x ∈ {1, n − 1} do loop
loop: repeat s − 1 times

x ← x2 mod n
if x = 1 then return composite;
if x = n − 1 then repeat the loop;

return composite
return probably prime.

If for some a the algorithm returns composite, then n is composite; if n is composite
then for at least half 1 < a < n − 1 the algorithm returns composite.

If the algorithm is applied k time and once returns composite, then n is composite;
otherwise n is prime and the probability of error is smaller than 2−k .
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RABIN-MILLER FACTORIZATION ALGORITHM

There is a variety of modifications of Rabin-Miller algorithm for primality testing. Here is
another one”

Given an integer n, a 1 < w < n, n − 1 = 2s r and let us denote by C(n,w) the following
test:

C(n,w): either w r ≡ 1 mod n or w 2s′ r ≡ −1 mod n for some 0 ≤ s ′ ≤ s

If for some w the test C(n,w) fails, then n is composite; otherwise w is seen as a witness
of primaility of n and the test C(n,w ′) should be repeated for another w ′.

If the test is repeated k times and k witnesses of primality of n are found, then the
probability of n being composite is at most 4−k
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INTEGER FACTORIZATION - PROBLEM II

In 2002 a deterministic, so called ASK, polynomial time algorithm for primality testing,
with complexity O(n12) were discovered by three scientits from IIT Kanpur.

For factorization no polynomial deterministic algorithm is known and development of
methods that would allow to factorized large integers is one of mega challenges for the
development of computing algorithms and technology.

Largest recent success was factorization of so called RSA-768 number that has 232 digits
(and 768 bits). Factorization took 2 years using several hundred of fast computers all
over the world (using highly optimized implementation of the general field sieve method).
On a single computer it would take 2000 years.

There is a lot of heuristics to factorized integers - some are very simple, other
sophisticated. A method based on elliptic curves presented later, is one of them.

Factorization could be done in polynomial time using Shor’s algorithm and a powerful
quantum computer, as discussed later.
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Fermat numbers FACTORIZATION

Factorization of so-called Fermat numbers 22i

+ 1 is a good example to illustrate progress
that has been made in the area of factorization.

Pierre de Fermat (1601-65) expected that all following numbers are primes:

Fi = 22i

+ 1 i ≥ 1

This is indeed true for i = 0, . . . , 4. F0 = 3,F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

1732 L. Euler found that F5 = 4294967297 = 641 · 6700417

1880 Landry+LeLasser found that

F6 = 18446744073709551617 = 274177 · 67280421310721

1970 Morrison+Brillhart found factorization for F7 = (39digits)

F7 = 340282366920938463463374607431768211457 =

= 5704689200685129054721 · 59649589127497217

1980 Brent+Pollard found factorization for F8

1990 A. K. Lenstra+ . . . found factorization for F9 (155 digits). Currently, also
factorizations of F10 (308 digits) and F11 (610 digits) are known.
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FACTORIZATION BASICS

Not all numbers of a given length are equally hard to factor. The hardest instances
are semi-primes - products of two primes of similar length.

Concerning complexity classes it holds. Function version of the factorization
problem is known to be in FNP and it is not known to be in FP.

Decision version of the factorization problem: Does an integer n has a factor
smaller than d? is known to be in NP and not known to be in P. Moreover it is
known to be both in NP and co-NP as well both in UP and co-UP.

The fastest known factorization algorithm has time

e(1.9 ln n)1/3(ln ln n)2/3)

and with it we can factor 140 digit numbers in reasonable time.
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BASIC FACTORIZATION METHODS.

BASIC FACTORIZATION METHODS

These methods are actually heuristics, and for each of
them a variety of modifications is known.
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TRIAL DIVISION

Algorithm Divide n with all primes up to
√

n and collect
all divisors.

Time complexity: e
1
2 ln n = L(1, 1

2)

Notation L(ε, c) is used to denote complexity

O(e(c+o(1))(ln n)ε(ln ln n)1−ε

)

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 45/86

EULER’s FACTORIZATION

The idea is to factorize an integer n by writing it first as two different sums of two
different integer squares. For example,

n = a2 + b2 = c2 + d2 −−−−−−− 1000009 = 10002 + 32 = 9722 + 2352

.
Denote know

k = gcd(a− c, d − b) h = gcd(a + c, d + b)

In such a case either both k and h are even or both a−c
k

and d−b
k

are even.
In the first case

n =

 „
k

2

«2

+

„
h

2

«2
! “a− c

k

”2

+

„
d − b

k

«2
!

The other case is treated similarly.
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FERMAT’s FACTORIZATION

If n = pq, p <
√

n , then

n =

(
q + p

2

)2

−
(

q − p

2

)2

= a2 − b2

Therefore, in order to find a factor of n, we need only to
investigate the values

x = a2 − n

for a =
⌈√

n
⌉

+ 1,
⌈√

n
⌉

+ 2, . . . ,
(n − 1)

2
until a perfect square is found.
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A POWERFUL SIMPLE IDEA

To find a factor of a given integer n do the following

Original idea: Generate, in a simple and clever way,a
pseudorandom sequence of integers x0, x1, x2 and
compute, for i = 1, 2, . . . gcd(xi , n) until a factor of n is
found.

Huge-computer-networks-era idea Generate, in a
simple and clever way, huge number of well related
pseudorandom sequences x0, x1, . . . and make a huge
number of computers (all over the world) to compute,
for a portion of squences for each computer, gcd(xi , n)
until one of them finds a factor of n.
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Pollard ρ-FACTORIZATION of an n - basic idea

1. Randomly choose x0 ∈ {1, 2, . . . , n} and compute
xi = x2

i−1 + xi + 1( mod n), for i = 1, 2, . . .

2. Two versions:
Version 1: Compute gcd(xi − xj , n) for i = 1, 2, . . . and
j = 1, 2, . . . , i − 1 until a factor of n is found.

Version 2: Compute gcd(xi − x2i , n) for i = 1, 2, . . . until
a factor is found.

Time complexity: L(1, 1
4)

The second method was used to factor 8-th Fermat
number F8 with 78 digits.
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JUSTIFICATION of VERSION 1

Let p be a non-trivial factor of n much smaller than n.

Since there is a smaller number of congruence classes
modulo p than modulo n, it is quite probable that there
exist xi and xj such that

xi ≡ xj( mod p) and xi 6≡ xj( mod n)

In such a case n 6 |(xi − xj) and therefore gcd(xi − xj , n) is
a nontrivial factor of n.
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JUSTIFICATION of VERSION 2

Let p be the smallest factor of n.
Sequence x0, x1, x2, .... behaves randomly modulo p ≤ √n.
Therefore, the probability that xi ≡ xj( mod p) for some
j 6= i is not negligible - actually about 1√

p .

In such a case xi+k ≡ xj+k( mod p) for all k
Therefore, there exists an s such that xs ≡ x2s( mod p).
Due to the pseudorandomness of the sequence x0, x1, x2,
with probability at least 1/2 xs 6≡ x2s( mod n) and
therefore p|gcd(xs − x2s , n).
For good probability of success we need to generate
roughly

√
p = n1/4 of xi . Time complexity is therefore

O(e
1
4 ln n).
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BASIC FACTS

Factorization ρ-algorithms has its efficiency based on two facts.

Fact 1 For a given prime p, as in birthday problem, two numbers are congruent
modulo p, with probability 0.5 after 1.177

√
p numbers have been randomly chosen.

Fact 2 If p is a factor of an n, then p < gcd(x − y , n) since p divides both n and
x − y .
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POLLARD’s ρ-ALGORITHM - another modification

Input: An integer n to be factorized. x0 ← random; x ← x0; y ← x0; d ← 1;

while d = 1

x ← f (x) mod n;

y ← f (f (y) mod n) mod n;

d ← gcd(|x − y |, n);

If d = n return failure else return d .

Algorithm is fast in the case n has at least one small factor. For example, it is reported
that on a 3 GHz processor, the factor 274177 of the sixth Fermat number
(18446744073709551617) was found in 26 milliseconds.

Another improvement of the algorithm, due to Pollard and R. Brent: Instead of
computing gcd(|x − y |, n) at every iteration, z is defined as the product of several, say
100 consecutive |x − y | terms modulo n and then a single gcd(z , n) is computed.

Also the second algorithm is fast for small factors
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ρ-ALGORITHM - EXAMPLE

f (x) = x2 + x + 1

n = 18923; x = y = x0 = 2347

x ← f (x) mod n; y ← f (f (y)) mod n

x = 4164 y = 9593 gcd = 1
x = 9593 y = 2063 gcd = 1
x = 12694 y = 14985 gcd = 1
x = 2063 y = 14862 gcd = 1
x = 358 y = 3231 gcd = 1
x = 14985 y = 3772 gcd = 1
x = 5970 y = 16748 gcd = 1
x = 14862 b = 3586 gcd = 1
x = 5728 b = 16158 gcd = 149
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Pollard’s p − 1 ALGORITHM - FIRST VERSION

Algorithm

1. Fix a prime p and an integer B .

2. Compute m =
∏
{q | q is a prime≤B}qlog n

3. Compute gcd(am − 1, n) for a random a.

Algorithm was invented J. Pollard in 1987 and has time
complexity O(B(log n)p). It works well if both p and p − 1
are primes.
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JUSTIFICATION of FIRST Pollard’s p − 1 ALGORITHM

Let B be chosen and let p|n and p − 1 has no factor
greater than B .

This implies that (p − 1)|m
{m |m =

∏
q | q is a prime≤B qlog n}

By Fermat’s little theorem, this implies that p|(am − 1)
and therefore by computing

gcd(am − 1, n)

for some a a factor of n can be obtained.
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POLLARD’s p-1 algorithm - second version

Pollard’s algorithm (to factor n given a bound b on factors).

a := 2;

for j=2 to b do a := aj mod n;

f := gcd(a− 1, n); – { f = gcd(2b! − 1, n)}
if 1 < f < n then f is a factor of n otherwise failure

Indeed, let p be a prime divisor of n and q < b for every prime q|(p − 1).

(Hence (p − 1)|b!).

At the end of the for-loop we have

a ≡ 2b! (mod n)

and therefore

a ≡ 2b! (mod p)

By Fermat theorem 2p−1 ≡ 1 (mod p) and since (p − 1)|b! we get a ≡ 2b! ≡ 1 (mod p).
and therefore we have p|(a− 1)

Hence

p|gcd(a− 1, n)
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IMPORTANT OBSERVATIONS II

Pollard ρ-methods work fine for numbers with a small factor.

The p-1 methods requires that p-1 is smooth. The elliptic curve method requires only
that there are enough smooth integers near p and so at least one of randomly chosen
integers near p is smooth.

This means that the elliptic curves factorization method succeeds much more often than
p-1 method.

Fermat factorization and Quadratic Sieve method discussed later work fine if integer has
two factors of almost the same size.
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FACTORING with ELLIPTIC CURVES

Basis idea: To factorize an integer n choose an elliptic curve En, a point P on E and
compute, modulo n, either iP for i = 2, 3, 4, . . . or 2jP for j = 1, 2, . . . .

The point is that in such calculations one needs to compute gcd(k,n) for various k.
If one of these values is between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and converted to
using an enormous number of computers to factor a single very large n.
Indeed, each computer gets some number of elliptic curves and some points on them and
multiplies these points by some integers according to the rule for addition of points. If
one of computers encounters, during such a computation, a need to compute
1 < gcd(k, n) < n, factorization is finished.

Example: If curve E : y 2 = x3 + 4x + 4 (mod 2773) and its point P = (1, 3) are used,
then 2P = (1771, 705) and in order to compute 3P one has to compute
gcd(1770, 2773) = 59 – factorization is done.
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A BRIEF VERSION of THE BASIC ALGORITHM

1. Fix a B - to choose a factor base (of all primes smaller
than B)

2. Compute

m =
∏

{q | q is a prime≤B

}qlog n

3. Choose random a, b such that a3 − 27b2 6= 0( mod n)

4. Choose a random point P on the elliptic curve En(a, b)

5. Try to compute mP .

If this fails a factor of n is found.
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EXAMPLES

Example 1: For elliptic curve

E : y 2 = x3 + x − 1 (mod 35)

and its point P = (1, 1) we have

2P = (2, 32); 4P = (25, 12); 8P = (6, 9)

and at the attempt to compute 9P one needs to compute
gcd(15, 35) = 5 and factorization is done.

It remains to be explored how efficient this method is and
when it is more efficient than other methods.
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IMPORTANT OBSERVATIONS (1)

If n = pq for primes p, q, then an elliptic curve En can be seen as a pair of elliptic
curves Ep and Eq.

It follows from the Lagrange theorem that for any elliptic curve En and its point P
there is an k < n such that kP =∞.

In case of an elliptic curve Ep for some prime p, the smallest positive integer m such
that mP =∞ for some point P divides the number N of points on the curve Ep.
Hence NP =∞.

If N is a product of small primes, then b! will be a multiple of N for a reasonable
small b. Therefore, b!P =∞.

The number with only small factors is called smooth and if all factors are smaller
than an b, then it is called b-smooth.

It can be shown that the density of smooth integers is so large that if we choose a
random elliptic curve En then it is a reasonable chance that n is smooth.
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PRACTICALITY of Factoring USING ECC I

Let us continue to discuss the following key problem for factorization using elliptic curves:

Problem: How to choose integer k such that for a given point P we should try to
compute points iP or 2iP for all multiples of P smaller than kP?

Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple
of as many as possible of those m-digit numbers which do not have too large prime
factors. In such a case one has a good chance that k is a multiple of the number of
elements of the group of points of the elliptic curve modulo n.

Method 1: One chooses an integer B and takes as k the product of all maximal powers of
primes smaller than B.

Example: In order to find a 6-digit factor one chooses B=147 and
k = 27 · 34 · 53 · 72 · 112 · 13 · . . . · 139. The following table shows B and the number of
elliptic curves one has to test:
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PRACTICALITY of FACTORING USING ECC - II

Digits of to-be-factors 6 9 12 18 24 30
B 147 682 2462 23462 162730 945922

Number of curves 10 24 55 231 833 2594

Computation time by the elliptic curves method depends on the size of factors.
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ELLIPTIC CURVES FACTORIZATION: FAQ

How to choose (randomly) an elliptic curve E and point P on E? An easy way is
first choose a point P(x , y) and an a and then compute b = y 2 − x3 − ax to get the
curve E : y 2 = x3 + ax + b.

What happens at the factorization using elliptic curve method, if for a chosen curve
En) the corresponding cubic polynomial x3 + ax + b has multiple roots (that is if
4a3 + 27b2 = 0) ? No problem, method still works.

What kind of elliptic curves are really used in cryptography? Elliptic curves over
fields GF (2n) for n > 150. Dealing with such elliptic curves requires, however,
slightly different rules.

History of ECC? The idea came from Neal Koblitz and Victor S. Miller in 1985.
Best known algorithm is due to Lenstra.

How secure is ECC?No mathematical proof of security is know.

How about patents concerning ECC? There are patents in force covering certain
aspects of ECC technology.
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FACTORIZATION on QUANTUM COMPUTERS

In the following we present the basic idea behind a
polynomial time algorithm for quantum computers to
factorize integers.

Quantum computers works with superpositions of basic
quantum states on which very special (unitary) operations
are applied and and very special quantum features
(non-locality) are used.

Quantum computers work not with bits, that can take on
any of two values 0 and 1, but with qubits (quantum bits)
that can take on any of infinitely many states α|0〉+ β|1〉,
where α and β are complex numbers such that
|α|2 + |β|2 = 1.
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REDUCTIONS

Shor’s polynomial time quantum factorization algorithm is
based on an understanding that factorization problem can
be reduced

1 first on the problem of solving a simple modular
quadratic equation;

2 second on the problem of finding periods of functions
f (x) = ax mod n.
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FIRST REDUCTION

Lemma If there is a polynomial time deterministic (randomized) [quantum] algorithm to
find a nontrivial solution of the modular quadratic equations

a2 ≡ 1 (mod n),

then there is a polynomial time deterministic (randomized) [quantum] algorithm to
factorize integers.

Proof. Let a 6= ±1 be such that a2 ≡ 1 (mod n). Since

a2 − 1 = (a + 1)(a− 1),

if n is not prime, then a prime factor of n has to be a prime factor of either a + 1 or
a− 1. By using Euclid’s algorithm to compute

gcd(a + 1, n) and gcd(a− 1, n)

we can find, in O(lg n) steps, a prime factor of n.

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 68/86



SECOND REDUCTION

The second key concept is that of the period of functions

fn,x(k) = xk mod n.

Period is the smallest integer r such that

fn,x(k + r) = fn,x(k)

for any k, i.e. the smallest r such that

x r ≡ 1 (mod n).

AN ALGORITHM TO SOLVE EQUATION x2 ≡ 1 (mod n).

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

If this algorithm stops, then ar/2 is a non-trivial solution of the equation

x2 ≡ 1 (mod n).
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EXAMPLE

Let n = 15. Select a < 15 such that gcd(a, 15) = 1.
{The set of such a is {2, 4, 7, 8, 11, 13, 14}}

Choose a = 11. Values of 11x mod 15 are then

11, 1, 11, 1, 11, 1

which gives r = 2.

Hence ar/2 = 11 (mod 15). Therefore

gcd(15, 12) = 3, gcd(15, 10) = 5

For a = 14 we get again r = 2, but in this case

142/2 ≡ −1 (mod 15)

and the following algorithm fails.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.
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EFFICIENCY of REDUCTION

Lemma If 1 < a < n satisfying gcd(n, a) = 1 is selected in the above algorithm randomly
and n is not a power of prime, then

Pr{r is even and ar/2 6≡ ±1} ≥ 9

16
.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

Corollary If there is a polynomial time randomized [quantum] algorithm to compute the
period of the function

fn,a(k) = ak mod n,

then there is a polynomial time randomized [quantum] algorithm to find non-trivial
solution of the equation a2 ≡ 1 (mod n) (and therefore also to factorize integers).
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A GENERAL SCHEME for Shor’s ALGORITHM

The following flow diagram shows the general scheme of Shor’s quantum factorization
algorithm

quantum
x

find period r
subroutine

r  is
even?

r/2 r/2

z=1 ?

output  z

no

yes

no

compute
z = gcd(a, n)

z = 1?

yes

no

z = max{gcd(n, a   -1), gcd(n, a    +1)}

yes

of function   a   mod n

choose randomly
a {2, ... ,n-1}

The algorithm works in polynomial time in case period finding is done in polynomial time
which can be done on quantum computer as Peter Shor showed in 1994.
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QUADRATIC SIEVE METHOD of FACTORIZATION - BASIC
IDEAS

Step 1 To factorize an n one finds many integers x such that x2 − n, n = 7429, has only
small factors and decomposition of x2 − n into small factors.
Example 832−7429 = −540 = (−1)·22 ·33 ·5

872 − 7429 = 140 = 22 · 5 · 7
882 − 7429 = 315 = 32 · 5 · 7

)
relations

Step 2 One multiplies some of the relations if their product is a square.
For example

(872 − 7429)(882 − 7429) = 22 · 32 · 52 · 72 = 2102

Now

(872 − 7429)(882 − 7429) ≡ (87 · 88)2 ≡ 76562 ≡ 2272 mod 7429
and therefore 2272 ≡ 2102 mod 7429

Hence 7429 divides 2272 − 2102 and therefore 17 = 227− 210 is a factor of 7429.
Formation of equations: For the i-th relation one takes a variable λi and forms the
expression
((−1) ·22 ·33 ·5)λ1 ·(22 ·5 ·7)λ2 ·(32 ·5 ·7)λ3 = (−1)λ1 ·22λ1+2λ2 ·32λ1+2λ2 ·5λ1+λ2+λ3 ·7λ2+λ3

If this is to form a square the λ1 ≡ 0 mod 2
following equations have to hold λ1 + λ2 + λ3 ≡ 0 mod 2

λ2 + λ3 ≡ 0 mod 2
λ1 = 0, λ2 = λ3 = 1
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QUADRATIC SIEVE FACTORIZATION - SKETCH of METHODS

Problem How to find relations?

Using the algorithm called Quadratic sieve method.

Step 1 One chooses a set of primes that can be factors – a so-called factor basis.

One chooses an m such that m2 − n is small and considers numbers (m + u)2 − n for
−k ≤ u ≤ k for small k.

One then tries to factor all (m + u)2 − n with primes from the factor basis, from the
smallest to the largest - see table for n=7429 and m=86.

u -3 -2 -1 0 1 2 3
(m + u)2 − n -540 -373 -204 -33 140 315 492
Sieve with 2 -135 -51 35 123
Sieve with 3 -5 -17 -11 35 41
Sieve with 5 -1 7 7
Sieve with 7 1 1

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations

569 466 equations

544 939 elements in the factor base

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 74/86

QUADRATIC SIEVE (QS) FACTORIZATION - SUMMARY I

Method was invented Carl Pomerance in 1981.

It is currently second fastest factorization method known and the fastest one for
factoring integers under 100 decimal digits.

It consists of two phases: data collection and data processing.

In data collection phase for factoring n a huge set of such integers x is found that
numbers (x + d√ne)2 − n have only small factors as well all these factors. This
phase is easy to parallelize and can use methods called sieving for finding all
required integers with only small factors.

In data processing phase a system of linear congruences is formed on the basis of
factorizations obtained in the data collection phase and this system is solved to
reach factorization. This phase is much memory consuming for storing huge
matrices and so hard to parallelise.

The basis of sieving is the fact that if y(x) = x2 − n, then for any prime p it holds
y(x + kp) ≡ y(x) ( mod p) and therefore solving y(x) ≡ 0 mod p for x generate
a whole sequence of y which are divisible by p.

The general running time of QS, to factor n, is

e(1+o(1))
√

lg n lg lg n

The current record of QS is a 135-digit co-factor of 2803 − 2402 − 1.
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FACTORING ALGORITHMS RUNNING TIMES

Let p denote the smallest factor of an integer n and p∗ the largest prime factor of p− 1.

Pollard’s Rho algorithm O(
√

p)
Pollard’s p − 1 algorithm O(p∗)

Elliptic curve method Ø(e(1+o(1))
√

2 ln p ln ln p))

Quadratic sieve method Ø(e1+o(1))
√

(ln n ln ln n))

General number field sieve (GNFS) method Ø(e( 64
9

ln n)1/3(ln ln n)2/3

)

The most efficient factorization method, for factorization of integers with more than 100
digits, is the general number field sieve method (superpolynomial but sub-exponential);
The second fastest is the quadratic sieve method.
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APPENDIX

APPENDIX
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HISTORICAL REMARKS on ELLIPTIC CURVES

Elliptic curves are not ellipses and therefore it seems strange that they have such a name.

Elliptic curves actually received their names from their relation to so called elliptic
integrals Z x2

x1

dx√
x3 + ax + b

Z x2

x1

xdx√
x3 + ax + b

that arise in the computation of the arc-length of ellipses.

It may also seem puzzling why to consider curves given by equations

E : y 2 = x3 + ax + b

and not curves given by more general equations

y 2 + cxy + dy = x3 + ex2 + ax + b

The reason is that if we are working with rational coefficients or mod p, where p > 3 is a
prime, then such a general equation can be transformed to our special case of equation.
In other cases, it may be indeed necessary to consider the most general form of equation.
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ELLIPTIC CURVES - GENERALITY

A general elliptic curve over Zpm where p is a prime is the set of points (x , y) satisfying
so-called Weierstrass equation

y 2 + uxy + vy = x3 + ax2 + bx + c

for some constants u, v , a, b, c together with a single element 0, called the point of
infinity.

If p 6= 2 Weierstrass equation can be simplified by transformation

y → y − (ux + v)

2

to get the equation

y 2 = x3 + dx2 + ex + f

for some constants d , e, f and if p 6= 3 by transformation

x → x − d

3

to get equation

y 2 = x3 + fx + g
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HISTORY of ELLIPTIC CURVES CRYPTOGRAPHY

The use of elliptic curves in cryptography was suggested independently by Neal
Koblitz and Victor S. Miller in 1985.

Behind this method is the belief that the discrete logarithm of a random elliptic
curve element with respect to publicly known base point is infeasible.

At first only elliptic curves over a prime finite field were used for ECC. Later also
elliptic curves over the fields GF (2m) started to be used.

In 2005 the US NSA endorsed to use ECC (Elliptic curves cryptography) with
384-bit key to protect information classified as ”top secret”.

There are patents in force covering certain aspects of ECC technology.

Elliptic curves have been first used for factorization by Lenstra.

Elliptic curves played an important role in perhaps most celebrated mathematical
proof of the last hundred years - in the proof of Fermat’s Last Theorem - due to A.
Wiles and R. Taylor.
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ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be
smaller than an F. One should then proceed as follows:

Choose an integer parameter r and:

1 Select, randomly, an elliptic curve

E : y 2 = x3 + ax + b

such that gcd(n, 4a2 + 27b2) = 1 and a random point P on E.

2 Choose integer bounds A,B,M such that

M =
lY

j=1

p
apj

j

for some primes p1 < p2 < . . . < pl ≤ B and apj , being the largest exponent such

that p
aj

j ≤ A.

Set j = k = 1

3 Calculate pjP.

4 Computing gcd.
If pjP 6= O (mod n), then set P = pjP and reset k ← k + 1

1 If k ≤ apj
, then go to step (3).
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ELLIPTIC CURVES FACTORIZATION - DETAILS II

2 If k > apj , then reset j ← j + 1, k ← 1.

If j ≤ l , then go to step (3); otherwise go to step (5)

If pjP ≡ O( mod n) and no factor of n was found at the computation of inverse
elements, then go to step (5)

5 Reset r ← r − 1. If r > 0 go to step (1); otherwise terminate with ”failure”.

The ”smoothness bound” B is recommended to be chosen as

B = e

vuut lnF (lnlnF )

2

and in such a case running time is

O(e

p
2 + o(1lnF (lnlnF ))ln2n)
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POLLARD ρ-METHOD in GENERAL

A variety of factorization algorithms, of complexity around O(
√

p) where p is the smallest
prime factor of n, is based on the following idea:

A function f is taken that ”behaves like a randomizing function” and
f (x) ≡ f (x mod p) (mod p) for any factor p of n – usually f (x) = x2 + 1

A random x0 is taken and iteration

xi+1 = f (xi ) mod n

is performed (this modulo n computation actually ”hides” modulo p computation in
the following sense: if x ′0 = x0, x ′i+1 = f (x ′i ) mod n, then x ′i = xi mod p)

Since Zp is finite, the shape of the sequence x ′i will remind the letter ρ, with a tail
and a loop. Since f is ”random”, the loop modulo n rarely synchronizes with the
loop modulo p

The loop is easy to detect by GCD-computations and it can be shown that the total
length of tail and loop is O(

√
p).
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LOOP DETECTION

In order to detect the loop it is enough to perform the following computation:

a← x0; b ← x0;

repeat

a← f (a);

b ← f (f (b));

until a = b

Iteration ends if at = b2t for some t greater than the tail length and a multiple of the
loop length.
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FACTORIZATION of a 512-BIT NUMBER

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and ”represented” 95 % of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, he
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.
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RSA FACTORING CHALLENGES

In 1991 RSA Laboratories published a list of semi-primes (numbers that are product
of two primes) and prizes for their decoding.

Numbers are named as RSA-x, where x is number of decimal or binary digits of the
number.

The largest price cashed so far was 30 000 $ for factorization of RSA-704.

The largest price offered was 200 000 $ for factorization of RSA-2024.

Challenge is no longer active - no longer are prices given.

Numbers were generated on a computer with no network connections and after their
generation hard drive was destroyed and therefore nobody knows their factorization.
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