
Part III

Cyclic codes



CHAPTER 3: CYCLIC CODES, CHANNEL CODING, LIST
DECODING

Cyclic codes are very special linear codes. They are of large interest and importance for
several reasons:

They posses a rich algebraic structure that can be utilized in a variety of ways.

They have extremely concise specifications.

Their encodings can be efficiently implemented using simple machinery - shift
registers.

Many of the practically very important codes are cyclic.

Channel codes are used to encode streams of data (bits). Some of them, as
Concatenated codes and Turbo codes, reach theoretical Shannon bound concerning
efficiency, and are currently used very often.

List decoding is a new decoding mode capable to deal, in an approximate way, with cases
of many errors, and in such a case to perform better than classical unique decoding.

prof. Jozef Gruska IV054 3. Cyclic codes 2/71



IMPORTANT NOTE

In order to specify a non-linear binary code with 2k codewords of length n one may need
to write down

2k

codewords of length n.

In order to specify a linear binary code of the dimension k with 2k codewords of length n
it is sufficient to write down

k

codewords of length n.

In order to specify a binary cyclic code with 2k codewords of length n it is sufficient to
write down

1

codeword of length n.
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BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if

(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever

a0, . . . an−1 ∈ C , then also an−1a0 . . . an–2 ∈ C and a1a2 . . . an−1a0 ∈ C .

Example

(i) Code C = {000, 101, 011, 110} is cyclic.
(ii) Hamming code Ham(3, 2): with the generator matrix

G =

2664
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

3775
is equivalent to a cyclic code.

(iii) The binary linear code {0000, 1001, 0110, 1111} is not cyclic, but it is equivalent to
a cyclic code.

(iv) Is Hamming code Ham(2, 3) with the generator matrix»
1 0 1 1
0 1 1 2

–
(a) cyclic?
(b) or at least equivalent to a cyclic code?
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FREQUENCY of CYCLIC CODES

Comparing with linear codes, cyclic codes are quite scarce. For example, there are 11 811
linear [7,3] binary codes, but only two of them are cyclic.

Trivial cyclic codes. For any field F and any integer n ≥ 3 there are always the following
cyclic codes of length n over F :

No-information code - code consisting of just one all-zero codeword.

Repetition code - code consisting of all codewords (a, a, . . . ,a) for a ∈ F .

Single-parity-check code - code consisting of all codewords with parity 0.

No-parity code - code consisting of all codewords of length n

For some cases, for example for n = 19 and F = GF (2), the above four trivial cyclic
codes are the only cyclic codes.
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AN EXAMPLE of a CYCLIC CODE

Is the code with the following generator matrix cyclic?

G =

241 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

35
It is. It has, in addition to the codeword 0000000, the following codewords

c1 = 1011100

c1 + c2 = 1110010

c2 = 0101110

c1 + c3 = 1001011

c1 + c2 + c3 = 1100101

c3 = 0010111

c2 + c3 = 0111001

and it is cyclic because the right shifts have the following impacts

c1 → c2,

c1 + c2 → c2 + c3,

c2 → c3,

c1 + c3 → c1 + c2 + c3,

c1 + c2 + c3 → c1 + c2

c3 → c1 + c3

c2 + c3 → c1
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POLYNOMIALS over GF(q)

A codeword of a cyclic code is usually denoted

a0a1 . . . an−1

and to each such a codeword the polynomial

a0 + a1x + a2x
2 + . . .+ an−1x

n−1

will be associated – am ingenious idea!!.

NOTATION: Fq[x ] will denote the set of all polynomials f (x) over GF (q).

deg(f (x)) = the largest m such that xm has a non-zero coefficient in f (x).

Multiplication of polynomials If f (x), g(x) ∈ FQ[x ], then

deg(f (x)g(x)) = deg(f (x)) + deg(g(x)).

Division of polynomials For every pair of polynomials a(x), b(x) 6= 0 in Fq[x ] there exists
a unique pair of polynomials q(x), r(x) in Fq[x ] such that

a(x) = q(x)b(x) + r(x), deg(r(x)) < deg(b(x)).

Example Divide x3 + x + 1 by x2 + x + 1 in F2[x ].
Definition Let f (x) be a fixed polynomial in Fq[x ]. Two polynomials g(x), h(x) are said
to be congruent modulo f (x), notation

g(x) ≡ h(x) (mod f (x)),

if g(x)− h(x) is divisible by f (x).
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NOTICE

A code C of the words of length n
is a set of codewords of length n

a0a1a2 . . . an−1

or C can be seen as
a set of polynomials of the degree (at most) n − 1

a0 + a1x + a2x
2 + . . . + an−1x

n−1
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RINGS of POLYNOMIALS

For any polynomial f (x), the set of all polynomials in Fq[x ] of degree less than deg(f (x)),
with addition and multiplication modulo f (x), forms a ring denoted Fq[x ]/f (x).

Example Calculate (x + 1)2 in F2[x ]/(x2 + x + 1). It holds

(x + 1)2 = x2 + 2x + 1 ≡ x2 + 1 ≡ x (mod x2 + x + 1).

How many elements has Fq[x ]/f (x)?

Result |Fq[x ]/f (x)| = qdeg(f (x)).

Example Addition and multiplication tables for F2[x ]/(x2 + x + 1)

+ 0 1 x 1+x
0 0 1 x 1+x
1 1 0 1+x x
x x 1+x 0 1

1+x 1+x x 1 0

• 0 1 x 1+x
0 0 0 0 0
1 0 1 x 1+x
x 0 x 1+x 1

1+x 0 1+x 1 x

Definition A polynomial f (x) in Fq[x ] is said to be reducible if f (x) = a(x)b(x), where
a(x), b(x) ∈ Fq[x ] and

deg(a(x)) < deg(f (x)), deg(b(x)) < deg(f (x)).

If f (x) is not reducible, then it is said to be irreducible in Fq[x ].
Theorem The ring Fq[x ]/f (x) is a field if f (x) is irreducible in Fq[x ].
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FIELD Rn, Rn = Fq[x ]/(xn − 1)

Computation modulo xn − 1 in the field Rn = Fq[x ]/(xn − 1)

Since xn ≡ 1 (mod (xn − 1)) we can compute f (x) mod (xn − 1) by replacing, in f (x),
xnby1, xn+1 by x , xn+2 by x2, xn+3 by x3, . . .

Replacement of a word

w = a0a1 . . . an−1

by a polynomial

p(w) = a0 + a1x + . . .+ an−1x
n−1

is of large importance because

multiplication of p(w) by x in Rn corresponds to a single cyclic shift of w

x(a0 + a1x + . . . an−1x
n−1) = an−1 + a0x + a1x

2 + . . .+ an−2x
n−1
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An ALGEBRAIC CHARACTERIZATION of CYCLIC CODES

Theorem A binary code C of words of length n is cyclic if and only if it satisfies two
conditions

(i) a(x), b(x) ∈ C ⇒ a(x) + b(x) ∈ C

(ii) a(x) ∈ C , r(x) ∈ Rn ⇒ r(x)a(x) ∈ C

Proof

(1) Let C be a cyclic code. C is linear ⇒
(i) holds.
(ii)

If a(x) ∈ C , r(x) = r0 + r1x + . . .+ rn−1x
n−1then

r(x)a(x) = r0a(x) + r1xa(x) + . . .+ rn−1x
n−1a(x)

is in C by (i) because summands are cyclic shifts of a(x).

(2) Let (i) and (ii) hold
Taking r(x) to be a scalar the conditions (i) and (ii) imply linearity of C .
Taking r(x) = x the conditions (i) and (ii) imply cyclicity of C .
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CONSTRUCTION of CYCLIC CODES

Notation For any f (x) ∈ Rn, we can define

〈f (x)〉 = {r(x)f (x) | r(x) ∈ Rn}

(with multiplication modulo xn − 1) to be a set of polynomials - a code.

Theorem For any f (x) ∈ Rn, the set 〈f (x)〉 is a cyclic code (generated by f ).

Proof We check conditions (i) and (ii) of the previous theorem.

(i) If a(x)f (x) ∈ 〈f (x)〉 and also b(x)f (x) ∈ 〈f (x)〉, then

a(x)f (x) + b(x)f (x) = (a(x) + b(x))f (x) ∈ 〈f (x)〉
(ii) If a(x)f (x) ∈ 〈f (x)〉, r(x) ∈ Rn, then

r(x)(a(x)f (x)) = (r(x)a(x))f (x) ∈ 〈f (x)〉
Example let C = 〈1 + x2〉, n = 3, q = 2.
In order to determine C we have to compute r(x)(1 + x2) for all r(x) ∈ R3.

R3 = {0, 1, x , 1 + x , x2, 1 + x2, x + x2, 1 + x + x2}.

Result

C = {0, 1 + x , 1 + x2, x + x2}
C = {000, 110, 101, 011}
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CHARACTERIZATION THEOREM for CYCLIC CODES

We show that all cyclic codes C have the form C = 〈f (x)〉 for some f (x) ∈ Rn.

Theorem Let C be a non-zero cyclic code in Rn. Then

there exists a unique monic polynomial g(x) of the smallest degree such that

C = 〈g(x)〉
g(x) is a factor of xn − 1.

Proof

(i) Suppose g(x) and h(x) are two monic polynomials in C of the smallest degree, say
D.
Then the polynomial w(x) = g(x)− h(x) ∈ C and it has a smaller degree than D
and a multiplication by a scalar makes out of w(x) a monic polynomial. Therefore
the assumption that g(x) 6= h(x) leads to a contradiction.

(ii) If a(x) ∈ C , then for some q(x) and r(x)

a(x) = q(x)g(x) + r(x), (wheredeg r(x) < deg g(x)).
and therefore

r(x) = a(x)− q(x)g(x) ∈ C .

By minimality condition

r(x) = 0

oand therefore a(x) ∈ 〈g(x)〉.
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CHARACTERIZATION THEOREM for CYCLIC CODES -
continuation

(iii) It has to hold, for some q(x) and r(x)

xn − 1 = q(x)g(x) + r(x) with deg r(x) < deg g(x)

and therefore

r(x) ≡ −q(x)g(x) (mod xn − 1) and
r(x) ∈ C ⇒ r(x) = 0⇒ g(x) is therefore a factor of xn − 1.

GENERATOR POLYNOMIALS - definition

Definition If

C = 〈g(x)〉,

for a cyclic code C , then g is called the generator polynomial for the code C .
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HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe to get all cyclic codes of the
given length n in GF(q)

Indeed, all we need to do is to find all factors (in GF(q)) of

xn − 1.

Problem: Find all binary cyclic codes of length 3.

Solution: Make decomposition

x3 − 1 = (x − 1)(x2 + x + 1)| {z }
both factors are irreducible in GF(2)

Therefore, we have the following generator polynomials and cyclic codes of length 3.

Generator polynomials
1

x + 1
x2 + x + 1

x3 − 1 ( = 0)

Code in R3

R3

{0, 1 + x , x + x2, 1 + x2}
{0, 1 + x + x2}

{0}

Code in V (3, 2)
V (3, 2)

{000, 110, 011, 101}
{000, 111}
{000}
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DESIGN of GENERATOR MATRICES for CYCLIC CODES

Theorem Suppose C is a cyclic code of codewords of length n with the generator
polynomial

g(x) = g0 + g1x + . . . + gr x
r .

Then dim (C) = n − r and a generator matrix G1 for C is

G1 =

0BBB@
g0 g1 g2 . . . gr 0 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 0 . . . 0
0 0 g0 g1 g2 . . . gr 0 . . . 0

. . . . . . . . .
0 0 . . . 0 0 . . . 0 g0 . . . gr

1CCCA
Proof

(i) All rows of G1 are linearly independent.
(ii) The n − r rows of G represent codewords

g(x), xg(x), x2g(x), . . . , xn−r−1g(x) (*)

(iii) It remains to show that every codeword in C can be expressed as a linear
combination of vectors from (*).

Indeed, if a(x) ∈ C , then
a(x) = q(x)g(x).

Since deg a(x) < n we have deg q(x) < n − r .
Hence

q(x)g(x) = (q0 + q1x + . . . + qn−r−1x
n−r−1)g(x)

= q0g(x) + q1xg(x) + . . . + qn−r−1x
n−r−1g(x).
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EXAMPLE

The task is to determine all ternary codes of length 4 and generators for them.
Factorization of x4 − 1 over GF (3) has the form

x4 − 1 = (x − 1)(x3 + x2 + x + 1) = (x − 1)(x + 1)(x2 + 1)

Therefore, there are 23 = 8 divisors of x4 − 1 and each generates a cyclic code.

Generator polynomial Generator matrix
1 I4

x − 1

24−1 1 0 0
0 −1 1 0
0 0 −1 1

35
x + 1

241 1 0 0
0 1 1 0
0 0 1 1

35
x2 + 1

»
1 0 1 0
0 1 0 1

–
(x − 1)(x + 1) = x2 − 1

»
−1 0 1 0
0 −1 0 1

–
(x − 1)(x2 + 1) = x3 − x2 + x − 1

ˆ
−1 1 −1 1

˜
(x + 1)(x2 + 1)

ˆ
1 1 1 1

˜
x4 − 1 = 0

ˆ
0 0 0 0

˜
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COMMENTS

The last matrix is not, however, formally a generator
matrix - the corresponding code is empty. On the previous
slide ”generator polynomials” x − 1, x2 − 1 and
x3 − x2 + x + 1 are formally not in Rn because only
allowable coefficients are 0, 1, 2.
A good practice is, however, to use also coefficients −2,
and −1 as ones that are equal, modulo 3, to 1 and 2 and
they can be replace in such a way also in matrices to be
fully correct formally.
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EXAMPLE - II

In order to determine all binary cyclic codes of length 7, consider decomposition

x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1)

Since we want to determine binary codes, all minus signs can be replaced by plus signs
and therefore

x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)

Therefore generators for 23 binary cyclic codes of length 7 are

1, a(x) = x + 1, b(x) = x3 + x + 1), c(x) = x3 + x2 + 1

a(x)b(x), a(x)c(x), b(x)c(x), a(x)b(x)c(x) = x7 + 1
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CHECK POLYNOMIALS and PARITY CHECK MATRICES for
CYCLIC CODES

Let C be a cyclic [n, k]-code with the generator polynomial g(x) (of degree n − k). By
the last theorem g(x) is a factor of xn − 1. Hence

xn − 1 = g(x)h(x)

for some h(x) of degree k. (h(x) is called the check polynomial of C .)

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) and a check
polynomial h(x). Then an c(x) ∈ Rn is a codeword of C if and only if c(x)h(x) ≡ 0
–(this and next congruences are all modulo xn − 1).

Proof Note, that g(x)h(x) = xn − 1 ≡ 0

(i) c(x) ∈ C ⇒ c(x) = a(x)g(x) for some a(x) ∈ Rn

⇒ c(x)h(x) = a(x) g(x)h(x)| {z }
≡0

≡ 0.

(ii) c(x)h(x) ≡ 0

c(x) = q(x)g(x) + r(x), deg r(x) < n − k = deg g(x)
c(x)h(x) ≡ 0⇒ r(x)h(x) ≡ 0 (mod xn − 1)

Since deg (r(x)h(x)) < n − k + k = n, we have r(x)h(x) = 0 in F [x ] and therefore

r(x) = 0⇒ c(x) = q(x)g(x) ∈ C .
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POLYNOMIAL REPRESENTATION of DUAL CODES

Continuation: Since dim (〈h(x)〉) = n − k = dim(C⊥) we might easily be fooled to
think that the check polynomial h(x) of the code C generates the dual code C⊥.

Reality is “slightly different”:

Theorem Suppose C is a cyclic [n, k]-code with the check polynomial

h(x) = h0 + h1x + . . .+ hkx
k ,

then

(i) a parity-check matrix for C is

H =

0BB@
hk hk−1 . . . h0 0 . . . 0
0 hk . . . h1 h0 . . . 0
. . . . . .
0 0 . . . 0 hk . . . h0

1CCA
(ii) C⊥ is the cyclic code generated by the polynomial

h(x) = hk + hk−1x + . . .+ h0x
k

i.e. by the reciprocal polynomial of h(x).
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POLYNOMIAL REPRESENTATION of DUAL CODES

Proof A polynomial c(x) = c0 + c1x + . . .+ cn−1x
n−1 represents a code from C if

c(x)h(x) = 0. For c(x)h(x) to be 0 the coefficients at xk , . . . , xn−1 must be zero, i.e.

c0hk + c1hk−1 + . . .+ ckh0 = 0

c1hk + c2hk−1 + . . .+ ck+1h0 = 0

. . .

cn−k−1hk + cn−khk−1 + . . .+ cn−1h0 = 0

Therefore, any codeword c0c1 . . . cn−1 ∈ C is orthogonal to the word hkhk−1 . . . h000 . . . 0
and to its cyclic shifts.

Rows of the matrix H are therefore in C⊥. Moreover, since hk = 1, these row vectors are
linearly independent. Their number is n − k = dim (C⊥). Hence H is a generator matrix
for C⊥, i.e. a parity-check matrix for C .

In order to show that C⊥ is a cyclic code generated by the polynomial

h(x) = hk + hk−1x + . . .+ h0x
k

it is sufficient to show that h(x) is a factor of xn − 1.

Observe that h(x) = xkh(x−1)and since h(x−1)g(x−1) = (x−1)n − 1

we have that xkh(x−1)xn−kg(x−1) = xn(x−n − 1) = 1− xn

and therefore h(x) is indeed a factor of xn − 1.
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ENCODING with CYCLIC CODES I

Encoding using a cyclic code can be done by a multiplication of two polynomials - a
message (codeword) polynomial and the generating polynomial for the code.

Let C be a cyclic [n, k]-code over a Galois field with the generator polynomial

g(x) = g0 + g1x + . . .+ gr−1x
r−1 of degree r = n − k.

If a message vector m is represented by a polynomial m(x) of the degree k and m is
encoded, using the generator matrix G induced by g(x), then

m⇒ c = mG ,

Therefore, the following relation between m(x) and c(x) holds

c(x) = m(x)g(x).

Such an encoding can be realized by the shift register shown in Figure below, where
input is the k-bit to-be-encoded message, followed by n − k 0’s, and the output will be
the encoded message.

input

output

Shift-register encodings of cyclic codes. Small circles represent multiplication by
the corresponding constant,

L
nodes represent modular additions, squares are shift

cells
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EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small
circles represent multiplication by the corresponding
constant,

⊕
nodes represent modular addition,

squares are delay elements
The input (message) is given by a polynomial
mk−1xk−1 + . . . m2x2 + m1x + m0

and therefore the input to the shift register is the word

mk−1mk−2 . . . m2m1m0 →→→
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MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS

Let us compute

(m0 + m1x + . . .mk−1x
k−1)× (g0 + g1x + g2x

2 . . . gr−1x
r−1)

=

m0g0

+

(m0g1 + m1g0)x

+

(m0g2 + m1g1 + m2g0)x2

+

(m0g3 + m1g2 + m2g1 + m3g0)x3

+
...
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HAMMING CODES as CYCLIC CODES I

Definition (Again!) Let r be a positive integer and let H be an r × (2r − 1) matrix
whose columns are all distinct non-zero vectors of GF (r). Then the code having H as its
parity-check matrix is called binary Hamming code denoted by Ham (r , 2).

It can be shown:

Theorem The binary Hamming code Ham (r , 2) is equivalent to a cyclic code.

Definition If p(x) is an irreducible polynomial of degree r such that x is a primitive
element of the field F [x ]/p(x), then p(x) is called a primitive polynomial.

Theorem If p(x) is a primitive polynomial over GF (2) of degree r , then the cyclic code
〈p(x)〉 is the code Ham (r , 2).
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HAMMING CODES as CYCLIC CODES II

Hamming ham (3, 2) code has generator polynomial x3 + x = 1.

Example Polynomial x3 + x + 1 is irreducible over GF (2) and x is primitive element of
the field F2[x ]/(x3 + x + 1).Therefore,

F2[x ]/(x3 + x + 1) =

{0, 1, x , x2, x3 = x + 1, x4 = x2 + x , x5 = x2 + x + 1, x6 = x2 + 1}

The parity-check matrix for a cyclic version of Ham (3, 2)

H =

0@1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

1A
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PROOF of THEOREM

The binary Hamming code Ham (r , 2) is equivalent to a cyclic code.
It is known from algebra that if p(x) is an irreducible polynomial of degree r , then the ring
F2[x]/p(x) is a field of order 2r .
In addition, every finite field has a primitive element. Therefore, there exists an element α of
F2[x]/p(x) such that

F2[x]/p(x) = {0, 1, α, α2, . . . , α2r−2}.

Let us identify an element a0 + a1 + . . . ar−1x r−1 of F2[x]/p(x) with the column vector

(a0, a1, . . . , ar−1)>

and consider the binary r × (2r − 1) matrix

H = [1 α α2 . . . α2r−2].

Let now C be the binary linear code having H as a parity check matrix.
Since the columns of H are all distinct non-zero vectors of V (r , 2),C = Ham (r , 2).
Putting n = 2r − 1 we get

C = {f0f1 . . . fn−1 ∈ V (n, 2)|f0 + f1α+ . . .+ fn−1α
n−1 = 0} (1)

= {f (x) ∈ Rn|f (α) = 0 in F2[x]/p(x)} (2)

If f (x) ∈ C and r(x) ∈ Rn, then r(x)f (x) ∈ C because

r(α)f (α) = r(α) • 0 = 0

and therefore, by one of the previous theorems, this version of Ham (r , 2) is cyclic.
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EXAMPLES of CYCLIC CODES

EXAMPLES of CYCLIC CODES
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GOLAY CODES - DESCRIPTION

Golay codes G24 and G23 were used by spacecraft Voyager I and Voyager II to transmit
color pictures of Jupiter and Saturn. Generator matrix for G24 has the form

G =

0BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0

1CCCCCCCCCCCCCCA

G24 is (24, 12, 8)-code and the weights of all codewords are multiples of 4. G23 is
obtained from G24 by deleting last symbols of each codeword of G24. G23 is
(23, 12, 7)-code. It is a perfect code.
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GOLAY CODE II

Golay code G23 is a (23, 12, 7)-code and can be defined also as the cyclic code generated
by the codeword

11000111010100000000000

This code can be constructed via factorization of x23 − 1.
In his search for perfect codes Golay observed that

3X
j=0

 
23

j

!
= 223−12 = 211

Observe that an (n,M, 2t + 1)-code is perfect if

M
tX

i=0

 
n

i

!
(q − 1)i = qn.

Golay code G24 was used in NASA Deep Space Missions - in spacecraft Voyager 1 and
Voyager 2. It was also used in the US-government standards for automatic link
establishment in High Frequency radio systems.

Golay codes are named to honour Marcel J. E. Golay - from 1949.
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GOLAY CODES - III

Golay [24, 12, 8] code is called also extended binary
Golay code.

Golay [23, 12, 7] code is called also perfect binary Golay
code.

It is the linear code generated by the polynomial

x11 + x10 + x6 + x5 + x4 + x2 + 1/(x23 − 1)
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POLYNOMIAL CODES

A Polynomial code generated by a (generator) polynomial g(x) of degree m < n over a
GF(q) is the code whose codewords are represented exactly by those polynomials of
degree less than n that are divisible by g(x).

Example Binary polynomial code with n = 5 and m = 2 generated by the polynomial
g(x) = x2 + x + 1 has codewords

a(x)g(x)

where
a(x) ∈ {0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}

what results in the code with codewords

00000, 00111, 01110, 01001,

11100, 11011, 10010, 10101.
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BCH CODES and REED-SOLOMON CODES

To the most important cyclic codes for applications belong BCH codes and
Reed-Solomon codes.

Definition A polynomial p is said to be minimal for a complex number x in GF (q) if
p(x) = 0 and p is irreducible over GF (q).

Definition A cyclic code of codewords of length n over GF (pr ), where p is a prime, is
called BCH code1 of distance d if its generator g(x) is the least common multiple of the
minimal polynomials for

ωl , ωl+1, . . . , ωl+d−2

for some l, where

ω is the primitive n-th root of unity.

If n = qm − 1 for some m, then the BCH code is called primitive.

Definition A Reed-Solomon code is a primitive BCH code with n = q − 1.

Properties:

Reed-Solomon codes are self-dual.

1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes.
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BCH CODES - II. Another definition

Let q be a prime, m and integer. Consider GF(qm) and n = qm − 1.

Let ωn be the primitive nth root of unity in GF(qm).

For all i < d let mi (x) be the minimal polynomial of ωi
n with coefficients in GF(q).

BCH codes are a special case of polynomial codes. The generator polynomial of a
simplified BCH code of the minimal distance d is defined as the least common multiple of

g(x) = lcm(m1(x),m2(x), . . . ,md−1(x)).

For BCH codes there exist nice variations of syndrome decoding. They were invented in
1959 by Hocquenghem and, independently, in 1960 by Bose and Ray-Chaudhuri.
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REED-SOLOMON CODES - basic idea

A message of k symbols can be encoded by viewing these symbols as coefficients of a
polynomial of degree k − 1 over a finite field of order N, evaluating this polynomial at
more than k distinct points and sending the outcomes to the receiver.

Having more than k points of the polynomial allows to determine exactly, through the
Lagrangian interpolation, the original polynomial (message).

Variations of Reed-Solomon codes are obtained by specifying ways distinct points are
generated and error-correction is performed.

Reed-Solomon codes found many important applications from deep-space travel to
consumer electronics.
They are very useful especially in those applications where one can expect that errors
occur in bursts - such as ones caused by solar energy.

prof. Jozef Gruska IV054 3. Cyclic codes 36/71



REED-SOLOMON CODES - I

Reed-Solomon codes RSC(k, q), for k ≤ q. are codes generator matrix of which has rows
labeled by polynomials X i , 0 ≤ i ≤ k − 1, columns are labelled by elements
0, 1, . . . , q − 1 and the element in a row labeled by a polynomial p and in a column
labeled by an element u is p(u).

Each RSC(k, q) code is [q, k, q − k + 1] code

Example Generator matrix for RSC(3, 5) code is0@ 1 1 1 1 1
0 1 2 3 4
0 1 4 4 1

1A
An interesting property of Reed-Solomon codes:

RSC(k, q)⊥ = RSC(q − k, q).

Reed-Solomon codes were used in digital television, satellite communication, wireless
communication, bar-codes, compact discs, DVD,...
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REED-SOLOMON CODES - HISTORY and APPLICATIONS

Reed-Solomon (RS) codes are non-binary cyclic codes.

They were invented by Irving S. Reed and Gustave Solomon in 1960.

Efficient decoding algorithm for them was invented by Elwyn Berlekamp and James
Massey in 1969.

Using Reed-Solomon codes one can show that it is sufficient to inject 2e additional
symbols into a message in order to be able to correct e errors.

Reed-Solomon codes can be decoded efficiently using so-called list decoding method
(described next).

In 1977 RS codes have been implemented in Voyager space program

The first commercial application of RS codes in mass-consumer products was in
1982.
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CHANNEL (STREAM) CODING

Channel coding is concerned with an efficient encoding of the streams of data and
sending them, at the highest possible rate, over a given communication channel and then
obtaining the original data reliably, at the receiver side, by decoding the received data
efficiently.

Shannon’s channel coding theorem says that over many common channels there exist
data coding schemes that are able to transmit data reliably at all rates smaller than a
certain threshold, called nowadays the Shannon channel capacity of a given channel.

Moreover, the probability of a decoding error can be made to decrease exponentially as
the block length N of the coding scheme goes to infinity.

However, the complexity of a ”naive” optimum decoding scheme increases exponentially
with N - therefore such an optimum decoder rapidly becomes infeasible.

As already mentioned, a breakthrough came when D. Forney, in his PhD thesis in 1972,
showed that concatenated codes could be used to achieve exponentially decreasing error
probabilities at all data rates less than the capacity, with decoding complexity increasing
only polynomially with the code block length.
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CHANNEL (STREAMS) CODING I.

The task of channel coding is to encode streams of data in such a way that if they
are sent over a noisy channel errors can be detected and/or corrected by the receiver.

In case no receiver-to-sender communication is allowed, we speak about forward error
correction.

An important parameter of a channel code is code rate

r =
k

n

in case k bits are encoded by n bits.

The code rate express the amount of redundancy in the code - the lower is the
rate, the more redundant is the code.

prof. Jozef Gruska IV054 3. Cyclic codes 40/71



CHANNEL (STREAM) CODING II

Design of a channel code is always a tradeoff between energy efficiency and bandwidth
efficiency.

Codes with lower code rate can usually correct more errors. Consequently, the
communication system can operate

with a lower transmit power;

transmit over longer distances;

tolerate more interference from the environment;

use smaller antennas;

transmit at a higher data rate.

These properties make codes with lower code rate energy efficient.

On the other hand such codes require larger bandwidth and decoding is usually of higher
complexity.

The selection of the code rate involves a tradeoff between energy efficiency and
bandwidth efficiency.

Central problem of channel encoding: encoding is usually easy, but decoding is usually
hard.
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CONVOLUTION CODES

Our first example of channel codes are convolution codes.

Convolution codes have simple encoding and decoding, are quite a simple generalization
of linear codes and have encodings as cyclic codes.

An (n, k) convolution code (CC) is defined by an k × n generator matrix, entries of
which are polynomials over F2.

For example,

G1 = [x2 + 1, x2 + x + 1]

is the generator matrix for a (2, 1) convolution code, denoted CC1, and

G2 =

„
1 + x 0 x + 1

0 1 x

«
is the generator matrix for a (3, 2) convolution code denoted CC2
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ENCODING of FINITE POLYNOMIALS

An (n,k) convolution code with a k x n generator matrix G can be used to encode a
k-tuple of plain-polynomials (polynomial input information)

I = (I0(x), I1(x), . . . , Ik−1(x))

to get an n-tuple of crypto-polynomials

C = (C0(x),C1(x), . . . ,Cn−1(x))

as follows

C = I · G
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EXAMPLES

EXAMPLE 1

(x3 + x + 1) · G1 = (x3 + x + 1) · (x2 + 1, x2 + x + 1)

= (x5 + x2 + x + 1, x5 + x4 + 1)

EXAMPLE 2

(x2 + x , x3 + 1) · G2 = (x2 + x , x3 + 1) ·
„

1 + x 0 x + 1
0 1 x

«

prof. Jozef Gruska IV054 3. Cyclic codes 44/71



ENCODING of INFINITE INPUT STREAMS

The way infinite streams are encoded using convolution codes will be Illustrated on the
code CC1.

An input stream I = (I0, I1, I2, . . .) is mapped into the output stream
C = (C00,C10,C01,C11 . . .) defined by

C0(x) = C00 + C01x + . . . = (x2 + 1)I (x)

and

C1(x) = C10 + C11x + . . . = (x2 + x + 1)I (x).

The first multiplication can be done by the first shift register from the next figure; second
multiplication can be performed by the second shift register on the next slide and it holds

C0i = Ii + Ii+2, C1i = Ii + Ii−1 + Ii−2.

That is the output streams C0 and C1 are obtained by convolving the input stream with
polynomials of G1.
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ENCODING

The first shift register

input

output

will multiply the input stream by x2 + 1 and the second shift register

input

output

will multiply the input stream by x2 + x + 1.
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ENCODING and DECODING

The following shift-register will therefore be an encoder for the code CC1

input
output streams

For decoding of convolution codes so called

Viterbi algorithm

Is used.
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SHANNON CHANNEL CAPACITY

For every combination of bandwidth (W ), channel type , signal power (S) and received
noise power (N), there is a theoretical upper bound, called channel capacity or Shannon
capacity, on the data transmission rate R for which error-free data transmission is
possible.

For so-called Additive White Gaussian Noise (AWGN) channels, that well capture deep
space channels, this limit is (so-called Shannon-Hartley theorem):

R < W log

„
1 +

S

N

«
{bits per second}

Shannon capacity sets a limit to the energy efficiency of the code.

Till 1993 channel code designers were unable to develop codes with performance close to
Shannon capacity limit, that is Shannon capacity approaching codes, and practical codes
required about twice as much energy as theoretical minimum predicted.

Therefore there was a big need for better codes with performance (arbitrarily) close to
Shannon capacity limits.

Concatenated codes and Turbo codes have such a Shannon capacity approaching
property.
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CONCATENATED CODES - I

The basic idea of concatenated codes is extremely simple. Input is first encoded by one
code C1 and the output is then encoded by second code C2. To decode, at first C2 and
then C1 decoding are used.

In 1972 Forney showed that concatenated codes could be used to achieve exponentially
decreasing error probabilities at all data rates less than channel capacity in such a way
that decoding complexity increases only polynomially with the code block length.

In 1965 concatenated codes were considered as infeasible. However, already in 1970s
technology has advanced sufficiently and they became standardize by NASA for space
applications.
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CONCATENATED CODES - II

Let Cin : Ak → An be an [n, k, d ] code over alphabet A.

Let Cout : BK → BN be an [N,K ,D] code over alphabet B with |B| = |A|k symbols.

Concatenation of Cout (as outer code) with Cin (as inner code), denoted Cout ◦ Cin is the
[nN, kK , dD] code

Cout ◦ Cin : AkK → AnN

that maps an input message m = (m1,m2, . . . ,mK ) to a codeword

(Cin(m
′
1),Cin(m

′
2), . . . ,Cin(m

′
N)), where

(m
′
1,m

′
2, . . . ,m

′
N) = Cout(m1,m2, . . . ,mK )

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel
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CONCATENATED CODES - III

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

Of the key importance is the fact that if Cin is decoded using the maximum-likelihood
principle (thus showing an exponentially decreasing error probability with increasing
length) and Cout is a code with length N = 2nr that can be decoded in polynomial time
in N, then the concatenated code can be decoded in polynomial time with respect to
n2nr and has exponentially decreasing error probability even if Cin has exponential
decoding complexity.
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ANOTHER VIEW of CONCATENATED CODES

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

Outer code: - (n2, k2) code over GF(2k1 );

Inner code: - (n1, k1) binary code

Inner decoder - (n1, k1) code

Outer decoder - (n2, k2) code

length of such a concatenated code is n1n2

dimension of such a concatenated code is k1k2

if minimal distances of both codes are d1 and d2, then resulting concatenated code
has minimal distance ≥ d1d2.
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APPLICATIONS

Concatenated codes started to be used for deep space
communication starting with Voyager program in 1977
and stayed so until the invention of Turbo codes and
LDPC codes.

Concatenated codes are used also on Compact Disc.

The best concatenated codes for many applications
were based on outer Reed-Solomon codes and inner
Viterbi-decoded short constant length convolution
codes.
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EXAMPLE

When the primary antenna failed to deploy on the Galileo mission to Jupiter in 1977,
heroic engineering effort was undertaken to design the most powerful concatenated code
conceived up to that time, and to program it into the spacecraft computer.

The inner code was a 214 convolution code, decoded by the Viterbi algorithm.

The outer code consisted of multiple Reed-Solomon codes of varying length.

The system achieved a coding gain of more than 10dB at decoding error probabilities of
the order 10−7. original anthena was supprosed to send 100,000 bits per second. Small
anthena only 10. After all reparations and new codings up to 1000.

Nowadays when so called iterative decoding is used concatenation of even very simple
codes can yield superb performance.
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TURBO CODES

Channel coding was revolutionized by invention of Turbo codes. Turbo codes were
introduced by Berrou, Glavieux and Thitimajshima in 1993.
A Turbo code is formed from the parallel composition of two (convolution) codes
separated by an interleaver (that permutes blocks of data in a fixed (pseudo)-random
way).
A Turbo encoder is formed from the parallel composition of two (convolution) encoders
separated by an interleaver.

input x

interleaver

convolution

i

convolution

encoder

encoder

parity bit b1

parity bit b2
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EXAMPLES of TURBO and CONVOLUTION ENCODERS

A Turbo encoder

input x

interleaver

convolution

i

convolution

encoder

encoder

parity bit b1

parity bit b2

and a convolution encoder
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DECODING and PERFORMANCE of TURBO CODES

A soft-in-soft-out decoding is used - the decoder gets from the analog/digital
demodulator a soft value of each bit - probability that it is 1 and produces only a
soft-value for each bit.

The overall decoder uses decoders for outputs of two encoders that also provide only
soft values for bits and by exchanging information produced by two decoders and
from the original input bit, the main decoder tries to increase, by an iterative
process, likelihood for values of decoded bits and to produce finally hard outcome - a
bit 1 or 0.

Turbo codes performance can be very close to theoretical Shannon limit.

This was, for example the case for UMTS (the third Generation Universal Mobile
Telecommunication System) Turbo code having a less than 1.2-fold overhead. in
this case the interleaver worked with block of 40 bits.

Turbo codes were incorporated into standards used by NASA for deep space
communications, digital video broadcasting and both third generation cellular
standards.

Literature: M.C. Valenti and J.Sun: Turbo codes - tutorial, Handbook of RF and
Wireless Technologies, 2004 - reachable by Google.
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REACHING SHANNON LIMIT

Though Shannon developed his capacity bound already in 1940, till recently code
designers were unable to come with codes with performance close to theoretical limit.

In 1990 the gap between theoretical bound and practical implementations was still
at best about 3dB

A decibel is a relative measure. If E is the actual energy and Eref is the theoretical
lower bound, then the relative energy increase in decibels is

10 log10

E

Eref

Since log10 2 = 0.3 a two-fold relative energy increase equals 3dB.

For code rate 1
2

the relative increase in energy consumption is about 4.8 dB for
convolution codes and 0.98 for Turbo codes.
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TURBO CODES - SUMMARY

Turbo codes encoding devices are usually built from two (usually identical) recursive
systematic convolution encoders , linked together by nonuniform interleaver
(permutation) devices.

Soft decoding is an iterative process in which each component decoder takes
advantage of the work of other at the previous step, with the aid of the original
concept of intrinsic information.

For sufficiently large size of interleavers , the correcting performance of turbo codes,
as shown by simulations, appears to be close to the theoretical shannon limit.

Permutations performed by interleaver can often by specified by simple polynomials
that make one-to-one mapping of some sets {0, 1, . . . , q − 1}.

prof. Jozef Gruska IV054 3. Cyclic codes 59/71



WHY ARE TURBO CODES SO GOOD?

Turbo codes are linear codes.

A ”good” linear code is one that has mostly high-weight codewords.

High-weight codewords are desirable because they are more distinct and the decoder
can more easily distinguish among them.

A big advantage of Turbo encoders is that they reduce the number of low-weight
codewords because their output is the sum of the weights of the input and two
parity output bits.

A turbo code can be seen as a refinement of concatenated codes plus an iterative
algorithm for decoding.
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UNIQUE versus LIST DECODING

In the unique decoding model of error-correction, considered so far, the task is to find,
for a received (corrupted) message wc , the closest codeword w to wc .

This error-correction task/model is not sufficiently good in case when the number of
error can be large.

In the list decoding model the task is for a received (corrupted) message wc and a given
ε to output (list of) all codewords with the distance at most ε from wc .

List decoding is considered to be successful in case the outputted list contains the
codeword that was sent.

It has turned out that for a variety of important codes, say for Reed-Solomon codes, there
are efficient algorithms for list decoding that allow to correct a large variety of errors.
The notion of list-decoding, as a relaxed error-correcting mode, was proposed by Elias in
1950s.
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EFFICIENCY of LIST DECODING

With list decoding the error-correction performance
doubles.

It has been shown, non-constructively, that codes of the
rate R exist that can be list decoded up to a fraction of
errors approaching 1− R .

The quantity 1− R is referred to as the list decoding
capacity.

For Reed-Solomon codes there is list decoding up to
1−
√

2R errors.
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LIST DECODING - MATHEMATICAL FORMULATION

Let C be a q-nary linear [n, k, d ] error correcting code.

For a given q-nary input word w of length n and a given error bound e output a list of
codewords of C whose Hamming distance from w is at most e

We are, naturally, interested only in polynomial, in n, algorithms able to do that.

(p, L)-list decodability Let C be a q-nary code of codewords of length n; 0 ≤ p ≤ 1 and
L > 1 an integer.

If for every q-nary word w of length n the number of codewords of C withing hamming
distance pn from w is at most L, then the code C is said to be (p, L)-list-decodable.

Theorem let q ≥ 2, 0 ≤ p ≤ 1− 1/q and ε ≥ 0 then for large enough block length n if
the code rate R ≤ 1− Hq(p)− ε, then there exists a (p,O(1/ε)-list decodable code.
[Hq(p) is q-ary entropy function.]
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LIST DECODING POTENTIAL

The concept of list decoding was proposed by Peter Elias in 1950s.

It has been shown, nonconstructively, that codes of rate R exist that can be list
decoded up to a fraction of errors approaching the list decoding capacity (1− R).

In 2006 Guruswami and Atri Rudra gave explicit codes that achieve list decoding
capacity.

Their codes are called folded Reed-Solomon codes and they are actually nothing but
plain Reed-Solomon codes but viewed as codes over a larger alphabet by careful
bundling of codeword symbols.

List decoding can be seen as formalizing the notion of error-correction when the
number of errors is potentially very large. In such a case the received word can
actually be closer to other codewords than the transmitted one.

Algorithms developed for list decoding of several code families found interesting
applications in computational complexity theory and in cryptography (for example in
construction of hard-core predicates, extractors and pseudo-random generators).
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APPENDIX

APPENDIX
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APPLICATIONS of REED-SOLOMON CODES

Reed-Solomon codes have been widely used in mass storage systems to correct the
burst errors caused by media defects.

Special types of Reed-Solomon codes have been used to overcome unreliable nature
of data transmission over erasure channels.

Several bar-code systems use Reed-Solomon codes to allow correct reading even if a
portion of a bar code is damaged.

Reed-Solomon codes were used to encode pictures sent by the Voyager spacecraft.

Modern versions of concatenated Reed-Solomon/Viterbi decoder convolution coding
were and are used on the Mars Pathfinder, Galileo, Mars exploration Rover and
Cassini missions, where they performed within about 1-1.5dB of the ultimate limit
imposed by the shannon capacity.
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GROUPS

A group G is a set of elements and an operation, call it *, with the following properties:

G is closed under *; that is if a, b ∈ G , so is a ∗ b.

The operation * is associative, hat is (a ∗ (b ∗ c) = (a ∗ b) ∗ c, for any a, b, c ∈ G .

G has an identity e element such that e ∗ a = a ∗ e = a for any a ∈ G .

Every element a ∈ G has an inverse a−1 ∈ G , so that a ∗ a−1 = a−1 ∗ a = e.

A group G is called an Abelian group if the operation ∗ is commutative, that is
(a ∗ b = b ∗ a for any a, b ∈ G).

Example Which of the following sets is an (Abelian) group:

The set of real numbers with ∗ being: (a) addition; (b) multiplication.

The set of matrices of degree n and an operations (a) addition; (b) multiplication.

What happens if we consider only matrices with determinants not equal zero?
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RINGS and FIELDS

A ring R is a set with two operations + (addition) and · (multiplication) , with the
following properties:

R is closed under + and ·.
R is an Abelian group under + (with the unity element for addition called zero).

The associative law for multiplication holds.

R has an identity element 1 for multiplication

The distributive law holds (a · (b + c) = a · b + a · c for all a, b, c ∈ R.

A ring is called commutative ring if multiplication is commutative

A field F is a set with two operations + (addition) and · (multiplication) , with the
following properties:

F is a commutative ring.

Non-zero elements of F form an Abelian group under multiplication.

A non-zero element g is a primitive element of a field F if all non-zero elements of F
are powers of g .
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FINITE FIELDS

Finite field are very well understood.

Theorem If p is a prime, then the integers modp, GF (p), constitute a field. Every finite
field F contains a subfield that is GF (p), up to relabeling, for some prime p and p ·α = 0
for every α ∈ F .

If a field F contains the prime field GF (p), then p is called the characteristic of F .

Theorem (1) Every finite field F has pm elements for some prime p and some m.
(2) For any prime p and any integer m there is a unique (up to isomorphism) field of pm

elements GF (pm).
(3) If f (x) is an irreducible polynomial of degree m in Fp[x ], then the set of polynomials
in Fp[x ] with additions and multiplications modulo f (x) is a field with pm elements.
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FINITE FIELDS GF (pk), k > 1

There are two important ways GF(4), the Galois field of four elements, is realized.
1. It is easy to verify that such a field is the set

GF(4) = {0, 1, ω, ω2}

with operations + and · satisfying laws

0 + x = x for all x ;

x + x = 0 for all x ;

1 · x = x for all x ;

ω + 1 = ω2

2. Let Z2[x ] be the set of polynomials whose coefficients are integers mod 2. GF(4) is
also Z2[x ] (mod x2 + x + 1) therefore the set of polynomials

0, 1, x , x + 1

where addition and multiplication are (mod x2 + x + 1).

3. Let p be a prime and Zp[x ] be the set of polynomials with coefficients mod p. If p(x)
is a irreducible polynomial modp of degree n, then Zp[x ] (mod p(x)) is a GF(pn) with
pn elements.
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