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CHAPTER 6: OTHER CRYPTOSYSTEMS and BASIC
CRYPTOGRAPHY PRIMITIVES

A large number of interesting and important cryptosystems have already been designed.
In this chapter we present several other of them in order to illustrate other
principles and techniques that can be used to design cryptosystems.

At first, we present several cryptosystems security of which is based on the fact that
computation of square roots and discrete logarithms is in general infeasible in some
groups.

Secondly, we discuss one of the fundamental questions of modern cryptography:
when can a cryptosystem be considered as (computationally) perfectly secure?

In order to do that we will:

discuss the role randomness play in the cryptography;

introduce the very fundamental definitions of perfect security of cryptosystem

present some examples of perfectly secure cryptosystems.

Finally, we discuss in some details such important cryptography primitives as
pseudo-random number generators and hash functions
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RABIN CRYPTOSYSTEM

Primes p, q of the form 4k + 3, so called Blum primes, are kept secret, n = pq is the
public key.
Encryption: of a plaintext w < n

c = w 2 (mod n)

Decryption: ????????
It is easy to verify (using Euler’s criterion which says that if c is a quadratic residue
modulo p, then c (p−1)/2 ≡ 1 (mod p), that

±c (p+1)/4mod p and ±c (q+1)/4mod q

are two square roots of c modulo p and q. (Indeed, p+1
2

= p−1
2

+ 1) One can now obtain
four square roots of c modulo n using the method shown in Appendix.

In case the plaintext w is a meaningful English text, it should be easy to determine w
from the four square roots w1,w2,w3,w4 presented above.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.

Rabin did not propose this system as a practical cryptosystem.
prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 3/63



RABIN CRYPTOSYSTEM

Primes p, q of the form 4k + 3, so called Blum primes, are kept secret, n = pq is the
public key.
Encryption: of a plaintext w < n

c = w 2 (mod n)

Decryption: -briefly

It is easy to verify (using Euler’s criterion which says that if c is a quadratic residue
modulo p, then c (p−1)/2 ≡ 1 (mod p), that

±c (p+1)/4mod p and ±c (q+1)/4mod q

are two square roots of c modulo p and q. (Indeed, p+1
2

= p−1
2

+ 1) One can now obtain
four square roots of c modulo n using the method of Chinese remainder shown in the
Appendix.

In case the plaintext w is a meaningful English text, it should be easy to determine w
from the four square roots w1,w2,w3,w4 presented above.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.

Rabin did not propose this system as a practical cryptosystem.
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COMPUTATION of SQUARE ROOTS MODULO PRIMES

In case of Blum integers p and q and n = pq to solve the equation x2 ≡ a(mod n), one
needs to compute squares of a modulo p and q and then to use the Chinese remainder
theorem to solve equation x2 = a (mod pq).

Example To solve modular equation x2 ≡ 71 (mod 77),one needs to solve modular
equation

x2 ≡ 71 ≡ 1 (mod 7) to get x ≡ ±1(mod 7)
and
then to solve modular equation

x2 ≡ 71 ≡ 5 (mod 11) to get x ≡ ±4 (mod 11).

Using the Chinese Remainder Theorem we then get

x ≡ ±15,±29 (mod 77).
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DETAILS and CORRECTNESS of DECRYPTION I

Blum primes p, q form a secret key; n = pq is the public key.

Encryption of a plaintext w < n:

c = w 2 mod n.

Decryption: Compute

r = c (p+1)/4 mod p and s = c (q+1)/4 mod q;

Find integers a, b such that ap + bq = 1 and compute

x = (aps + bqr) mod n, y = (aps − bqr) mod n

Four square roots of c modn then are (all modulo n):

x , y ,−x ,−y

In case w is a meaningful English text, it should be easy to determine w from
x , y ,−x ,−y .

However, this is not the case if w is an arbitrary string.
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DETAILS and CORRECTNESS of DECRYPTION II

Since c = w 2 mod n we have c ≡ w 2 (mod p) and c ≡ w 2 (mod q);

Since r ≡ c (p+1)/4, we have r 2 ≡ c (p+1)/2 ≡ c (p−1)/2c (mod p), and Fermat theorem
then implies that r 2 ≡ c (mod p);

Similarly, since s ≡ c (q+1)/4 we receive s2 ≡ c (mod q);

Since x2 ≡ (a2p2s2 + b2q2r 2) (mod n) and ap + bq = 1 we have bq ≡ 1 (mod p)
and therefore x2 ≡ r 2 (mod p);

Similarly we get x2 ≡ s2 (mod q) and the Chinese remainder theorem then implies
x2 ≡ c (mod n);

Similarly we get y 2 ≡ c (mod n).
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GENERALIZED RABIN CRYPTOSYSTEM

Public key: n,B (0 ≤ B ≤ n − 1)

Trapdoor: Blum primes p, q (n = pq)

Encryption: e(x) = x(x + B) mod n

Decryption: d(y) =

„q
B2

4
+ y − B

2

«
mod n

It is easy to verify that if ω is a nontrivial square root of 1 modulo n, then there are four
decryptions of e(x):

x , −x , ω
`
x + B

2

´
− B

2
, −ω

`
x + B

2

´
− B

2

Example

e
`
ω
`
x + B

2

´
− B

2

´
=
`
ω
`
x + B

2

´
− B

2

´ `
ω
`
x + B

2

´
+ B

2

´
= ω2

`
x + B

2

´2 −
`

B
2

´2
=

x2 + Bx = e(x)

Decryption of the generalized Rabin cryptosystem can be reduced to the decryption of
the original Rabin cryptosystem.

Indeed, the equation x2 + Bx ≡ y (mod n) can be transformed,
by the substitution x = x1 − B/2 , into x1

2 ≡ B2/4 + y (mod n)
and, by defining c = B2/4 + y , into x1

2 ≡ c (mod n)
Decryption can be done by factoring n and solving congruences

x1
2 ≡ c (mod p) x1

2 ≡ c (mod q)
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SECURITY of RABIN CRYPTOSYSTEM

We show that any hypothetical decryption algorithm A for Rabin cryptosystem, can be
used, as an oracle, in the following randomized algorithm, to factor an integer n.

Algorithm:

1 Choose a random r , 1 ≤ r ≤ n − 1;

2 Compute y = (r 2 − B2/4) mod n; {y = ek(r − B/2)}.

3 Call A(y), to obtain a decryption x =

„q
B2

4
+ y − B

2

«
mod n;

4 Compute x1 = x + B/2; {x1
2 ≡ r 2 mod n}

5 if x1 = ±r then quit (failure)
else gcd(x1 + r , n) = p or q

Indeed, after Step 4, either x1 = ±r mod n or x1 = ±ωr mod n.
In the second case we have

n | (x1 − r)(x1 + r),

but n does not divide either factor x1 − r or x1 + r .
Therefore computation of gcd(x1 + r , n) or gcd(x1 − r , n) must yield factors of n.

prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 9/63



ElGamal CRYPTOSYSTEM

Design: choose a large prime p – (with at least 150 digits).
choose two random integers 1 ≤ q, x < p – where q is a primitive element of Z∗p
calculate y = qx mod p.

Public key: p, q, y ; trapdoor: x
Encryption of a plaintext w : choose a random r and compute

a = qr mod p, b = y rw mod p

Cryptotext: c = (a, b)
(Cryptotext contains indirectly r and the plaintext is ”masked” by multiplying with y r

(and taking modulo p))

Decryption: w = b
ax mod p = ba−xmod p.

Proof of correctness: ax ≡ qrxmod p

b

ax
≡ y rw

ax
≡ qrxw

qrx
≡ w(mod p)

Note: Security of the ElGamal cryptosystem is based on infeasibility of the discrete
logarithm computation.
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SHANKS’ ALGORITHM for DISCRETE ALGORITHM

Let m = d
√

p − 1e. The following algorithm computes lgqy in Z∗p.

1 Compute qmjmod p, 0 ≤ j ≤ m − 1.

2 Create list L1 of m pairs (j , qmj mod p), sorted by the second item.

3 Compute yq−i mod p, 0 ≤ i ≤ m − 1.

4 Create list L2 of pairs (i , yq−i mod p) sorted by the second item.

5 Find two pairs, one (j , z) ∈ L1 and (i , z) ∈ L2 with identical second element

If such a search is successful, then

qmjmod p = z = yq−i mod p

and as the result
lgqy ≡ (mj + i) mod (p − 1).

Therefore
qmj+i ≡ y (mod p)

On the other hand, for any y we can write
lgqy = mj + i ,

for some 0 ≤ i , j ≤ m − 1. Hence the search in the Step 5 of the algorithm has to be
successful.
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BIT SECURITY of DISCRETE LOGARITHM

Let us consider problem to compute Li (y) = i-th least significant bit of lgqy in Z∗p.

Result 1 L1(y) can be computed efficiently.
To show that we use the fact that the set QR(p) has (p − 1)/2 elements.
Let q be a primitive element of Z∗p. Clearly, qa ∈ QR(p) if a is even. Since the elements

q0mod p, q2mod p, . . . , qp−3mod p

are all distinct, we have that

QR(p) = {q2i mod p | 0 ≤ i ≤ (p − 3)/2}

Consequence: y is a quadratic residue iff lgqy is even, that is iff L1(y) = 0.

By Euler’s criterion y is a quadratic residue if y (p−1)/2 ≡ 1 mod p
L1(y) can therefore be computed as follows:

L1(y) = 0 if y (p−1)/2 ≡ 1 mod p;
L1(y) = 1 otherwise

Result 2 Efficient computability of Li (y), i > 1 in Z∗p would imply efficient computability
of the discrete logarithm in Z∗p.
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GROUP VERSION of ElGamal CRYPTOSYSTEM

A group version of discrete logarithm problem

Given a group (G , ◦), α ∈ G , β ∈ {αi | i ≥ 0}. Find

logα β = k such that αk = β that is k = logα β

GROUP VERSION of ElGamal CRYPTOSYSTEM

ElGamal cryptosystem can be implemented in any group in which discrete logarithm
problem is infeasible.

Cryptosystem for (G , ◦)
Public key: α, β
Trapdoor: k such that αk = β

Encryption: of a plaintext w and a random integer k

e(w , k) = (y1, y2) where y1 = αk , y2 = w ◦ βk

Decryption: of cryptotext (y1, y2):

d(y1, y2) = y2 ◦ y−k
1

An important special case is that of computation of discrete logarithm in a group of
points of an elliptic curve defined over a finite field.
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FEISTEL ENCRYPTION/DECRYPTION SCHEME

This is a general scheme for design of cryptosystems that
was used at the design of several important
cryptosystems, such as Lucifer and DES.
Its main advantage is that encryption and decryption are
very similar, and even identical in some cases, and then
the same hardware can be used for both encryption and
decryption.
Let F a be a so-called round function and K0,K1, . . . ,Kn

be sub-keys for rounds 0, 1, 2, . . . , n.
Encryption is as follows:

Split the plaintext into two equal size parts L0,R0.

For rounds i ∈ {0, 1, . . . , n} compute

Li+1 = Ri ; Ri+1 = Li ⊕ F (Ri , ki )

then the ciphertext is (Rn+1, Ln+1)
Decryption of (Rn+1, Ln+1) is done by computing, for
i = n, n − 1, . . . , 0

Ri = Li+1, Li = Ri+1 ⊕ F (Li+1,Ki )

and (L0,R0) is the plaintext

R

F

F

K

F

R0 0

K 0

1

K

L

L n+1n+1

n+1
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WHEN ARE ENCRYPTIONS PERFECTLY SECURE?

WHEN ARE ENCRYPTIONS PERFECTLY SECURE?
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RANDOMIZED ENCRYPTIONS

From security point of view, public-key cryptography with deterministic encryptions has
the following serious drawback:

A cryptanalyst who knows the public encryption function e k and a cryptotext c can try
to guess a plaintext w , compute e k(w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding plaintext
(except with a negligible probability).

Formal setting: Given: plaintext-space P
cryptotext C
key-space K
random-space R

encryption: e k : P x R → C
decryption: d k : C → P or C → 2Psuch that for any p, r :

d k(e k(p, r)) = p.

d k , e k should be easy to compute.
Given e k , it should be unfeasible to determine d k .
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WHEN is a CRYPTOSYSTEM (perfectly) SECURE?

First question: Is it enough for perfect security of a cryptosystem that one cannot get a
plaintext from a cryptotext?

NO, NO, NO
WHY

For many applications it is crucial that no information about the plaintext could be
obtained.

Intuitively, a cryptosystem is (perfectly) secure if one cannot get any (new)
information about the corresponding plaintext from any cryptotext.

It is very nontrivial to define fully precisely when a cryptosystem is (computationally)
perfectly secure.

It has been shown that perfectly secure cryptosystems have to use randomized
encryptions.
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SECURE ENCRYPTIONS – BASIC CONCEPTS I

We now start to discuss a very nontrivial question: when is an encryption scheme
computationally perfectly SECURE?

At first, we introduce two very basic technical concepts:

Definition A function f:N → R is a negligible function if for any polynomial p(n) and for
almost all n:

f (n) ≤ 1
p(n)

Definition – computational distinguishibility Let X = {Xn}n∈N and Y = {Yn}n∈N be
probability ensembles such that each Xn and Yn ranges over strings of length n. We say
that X and Y are computationally indistinguishable if for every feasible algorithm A the
difference

dA(n) =| Pr [A(Xn) = 1]− Pr [A(Yn) = 1] |

is a negligible function in n.
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SECURE ENCRYPTION – FIRST DEFINITION

Definition – semantic security of encryption A cryptographic system is semantically
secure if for every feasible algorithm A, there exists a feasible algorithm B so that for
every two functions

f , h : {0, 1}∗ → {0, 1}n

and all probability ensembles {X n}n∈N , where X n ranges over {0, 1}n

Pr [A(E(Xn), h(Xn)) = f (Xn)] < Pr [B(h(Xn)) = f (Xn)] + µ(n),

where µ is a negligible function.

It can be shown that any semantically secure public-key cryptosystem must use a
randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized versions of
RSA are semantically secure.
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SECURE ENCRYPTIONS – SECOND DEFINITION

Definition A randomized-encryption cryptosystem is polynomial time secure if, for any c
∈ N and sufficiently large s ∈ N (security parameter), any randomized polynomial time
algorithms that takes as input s (in unary) and the public key, cannot distinguish between
randomized encryptions, by that key, of two given messages of length c, with the
probability larger than 1

2
+ 1

sc .

Both definitions are equivalent.
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PSEUDORANDOM GENERATORS

PSEUDORANDOM GENERATORS

Psedorandom generators is an additional key concept of cryptography and of the design
of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum (almost
perfect) generators of randomness are already commercially availaable.
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CRYPTOGRAPHICALLY PERFECT PSEUDORANDOM
GENERATORS

One of the most basic questions of perfect security of encryptions is whether there are
cryptographically perfect pseudorandom generators and what such a concept rally means.

The concept of pseudorandom generators is quite old. An interesting example is due to
John von Neumann:

Take an arbitrary integer x as the ”seed”.
Repeat the following process:

compute x2 and take sequence of the middle digits of x2 as a new ”seed” x .
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A SIMPLE PSEUDORANDOM GENERATORS

A pseudorandom generator is a deterministic polynomial time algorithm which expands
short random sequences (called seeds) into longer bit sequences such that the resulting
probability distribution is in polynomial time indistinguishable from the uniform
probability distribution.

Example. Linear congruential generator

One chooses n-bit numbers m, a, b, X0 and generates an n2 element sequence

X1X2 . . .Xn2

of n-bit numbers by the iterative process

Xi+1 = (aXi + b) mod m.
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CRYPTOGRAPHY and RANDOMNESS

Randomness and cryptography are deeply related.

1 Prime goal of any good encryption method is to transform even a highly nonrandom
plaintext into a highly random cryptotext. (Avalanche effect.)

Example Let ek be an encryption algorithm, x0 be a plaintext. And

xi = ek(xi−1), i ≥ 1.

It is intuitively clear that if encryption ek is “cryptographically secure”, then it is
very, very likely that the sequence x0 x1 x2 x3 is (quite) random.

Perfect encryption should therefore produce (quite) perfect (pseudo)randomness.

2 The other side of the relation is more complex. It is clear that perfect randomness
together with ONE-TIME PAD cryptosystem produces perfect secrecy. The price to
pay: a key as long as plaintext is needed.

The way out seems to be to use an encryption algorithm with a pseudo-random
generator to generate a long pseudo-random sequence from a short seed and to use
the resulting sequence with ONE-TIME PAD.

Basic question: When is a pseudo-random generator good enough for
cryptographical purposes?
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SECURE ENCRYPTIONS – PSEUDORANDOM GENERATORS

In cryptography random sequences can usually be well enough replaced by pseudorandom
sequences generated by (cryptographically perfect) pseudorandom generators.

Definition - pseudorandom generator. Let l(n) : N → N be such that l(n) > n for all
n. A (computationally indistinguishable) pseudorandom generator with a stretch function
l , is an efficient deterministic algorithm which on the input of a random n-bit seed
outputs a l(n)-bit sequence which is computationally indistinguishable from any random
l(n)-bit sequence.

Definition A predicate b is a hard core predicate of the function f if b is easy to evaluate,
but b(x) is hard to predict from f(x). (That is, it is unfeasible, given f(x) where x is
uniformly chosen, to predict b(x) substantially better than with the probability 1/2.)

It is conjectured that the least significant bit of the modular squaring function x2 mod n
is a hard-core predicate.

Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G(s) = b(s) · b(f (s)) · · · b
“
f l(|s|)−1(s)

”
is a (computationally indistinguishable) pseudorandom generator with stretch function
l(n).

Theorem A (good) pseudorandom generator exists if a one-way function exists.
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CRYPTOGRAPHICALLY STRONG PSEUDO-RANDOM
GENERATORS

Fundamental question: when is a pseudo-random generator good enough for
cryptographical purposes?

Basic concept: A pseudo-random generator is called cryptographically strong if the
sequence of bits it produces, from a short random seed, is so good for using with
ONE-TIME PAD cryptosystem, that no polynomial time algorithm allows a cryptanalyst
to learn any information about the plaintext from the cryptotext.

A cryptographically strong pseudo-random generator would therefore provide sufficient
security in a secret-key cryptosystem if both parties agree on some short seed and never
use it twice.
As discussed later: Cryptographically strong pseudo-random generators could provide
perfect secrecy also for public-key cryptography.

Problem: Do cryptographically strong pseudo-random generators exist?

Remark: The concept of a cryptographically strong pseudo-random generator is one of
the key concepts of the foundations of computing.

Indeed, a cryptographically strong pseudo-random generator exists if and only if a
one-way function exists what is equivalent with P 6= UP and what implies P 6= NP.
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CANDIDATES for CRYPTOGRAPHICALLY STRONG
PSEUDO-RANDOM GENERATORS

So far there are only candidates for cryptographically strong pseudo-random generators.

For example, cryptographically strong are all pseudo-random generators that are
unpredictable to the left in the sense that a cryptanalyst that knows the generator and
sees the whole generated sequence except its first bit has no better way to find out this
first bit than to toss the coin.

It has been shown that if integer factoring is intractable, then the so-called BBS
pseudo-random generator, discussed below, is unpredictable to the left.

(We make use of the fact that if factoring is unfeasible, then for almost all quadratic
residues x mod n, coin-tossing is the best possible way to estimate the least significant
bit of x after seeing x2 mod n.)

Let n be a Blum integer. Choose a random quadratic residue x0 (modulo n).

For i ≥ 0 let
xi+1 = xi

2mod n, bi = the least significant bit of xI

For each integer i , let
BBS n,i (x0) = b0 . . . bi−1

be the first i bits of the pseudo-random sequence generated from the seed x0 by the BBS
pseudo-random generator.
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PERFECTLY SECURE ENCRYPTION ALGORITHMS - EXAMPLES

PERFECTLY SECURE ENCRYPTION ALGORITHMS - EXAMPLES
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RANDOMIZED VERSION of RSA-LIKE CRYPTOSYSTEM

The scheme works for any trapdoor function (as in case of RSA),

f : D → D,D ⊂ {0, 1}n,

for any pseudorandom generator

G : {0, 1}k → {0, 1}l , k << l

and any hash function

h : {0, 1}l → {0, 1}k ,

where n = l + k.Given a random seed s ∈ {0, 1}k as input, G generates a pseudorandom
bit-sequence of length l.

Encryption of a message m ∈ {0, 1}l is done as follows:

1 A random string r ∈ {0, 1}k is chosen.

2 Set x = (m ⊕ G(r))‖(r ⊕ h(m ⊕ G(r))). (If x /∈ D go to step 1.)

3 Compute encryption c = f(x) – length of x and of c is n.

Decryption of a cryptotext c.

Compute f −1(c) = a‖b, |a| = l and |b| = k.

Set r = h(a)⊕ b and get m = a⊕ G(r).

Comment Operation ”‖” stands for a concatenation of strings.
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BLOOM-GOLDWASSER CRYPTOSYSTEM ONCE MORE

Private key: Blum primes p and q.

Public key: n = pq.

Encryption of x ∈ {0, 1}m.

1 Randomly choose s0 ∈ {0, 1, . . . , n}.
2 For I = 1, 2, . . . , m + 1 compute

si ← s2
i−1 mod n

and σi = lsb(si ). —–{lsb – least significant bit}
The cryptotext is then (sm+1, y), where y = x ⊕ σ1σ2 . . . σm.

Decryption: of the cryptotext (r, y):

Let d = 2−m modφ(n)).

Let s1 = rd mod n.

For i = 1, . . . , m, compute σi = lsb(si ) and si+1 ← s2
i mod n

The plaintext x can then be computed as y ⊕ σ1σ2 . . . σm.
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HASH FUNCTIONS

HASH FUNCTIONS

Hash functions have numerous applications in cryptography and in computing in general,
in searching and in the design of efficient randomized algorithms.

The concept of hash functions appered in the 1950’s, but the search for good and/or
secure hash functions continue.
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HASH FUNCTIONS BASICS

Hash functions

h : {0, 1}∗ → {0, 1}m; h : {0, 1}n → {0, 1}m, n >> m

map (very) long messages w into short ones, called usually messages digests or hashes or
fingerprints of w, in a way that has important (cryptographic) properties, especially those
that minimize impacts of potential collisions - the cases two elements are mapped into
the same one.

Hash functions have several very important uses in cryptography:

In integrity of data protection. They can reduce the problem of protection of huge
data to the protection of small hashes.

In making efficient data signatures. They can reduce the problem of creating long
signatures of huge date to short signatures of their hashes.

In making commitments, in authentication of communicating parties and in creating
cryptographically perfect (pseudo) randomness

.
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PROPERTIES GOOD HASH FUNCTIONS SHOULD HAVE I.

We now derive basic properties cryptographically good hash functions
should have – by analysing several possible attacks on their use.

Attack 1 If Eve gets a valid signature (w,y) of a message w , where
y = sigk(h(w)) and she would be able to find a w’ such that h(w’)=h(w),
then also (w’,y), a forgery, would be a valid signature.

Cryptographically good hash function should therefore have the following
weak collision-free (collision-resistant) property

Definition 1. Let w be a message. A hash function h is weakly
collision-resistant (collision-free)for w, if it is computationally infeasible to
find a w ′ 6= w such that h(w)=h(w’).
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PROPERTIES GOOD HASH FUNCTIONS SHOULD HAVE II.

Attack 2 If Eve finds two w and w’ such that h(w’)=h(w), she can ask
Alice to sign h(w) to get signature s and then Eve can create a forgery
(w’,s).

Cryptographically good hash function should therefore have the following
strong collision-free (resistant) property

Definition 2. A hash function h is strongly collision-resistant
(collision-free) if it is computationally infeasible to find two elements
w 6= w ′ such that h(w)=h(w’).
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PROPERTIES HASH FUNCTIONS SHOULD HAVE III.

Attack 3 If Eve can compute signature s of a random z, and then she can
find w such that z=h(w), then Eve can create forgery (w,s).

To exclude such an attack, hash functions should have the following
one-wayness property.

Definition 3. A hash function h is one-way if it is computationally
infeasible to find, given z, an w such that h(w)=z.

One can show that if a hash function has strongly collision-free property,
then it has one-wayness property.
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HASH FUNCTIONS and INTEGRITY of DATA

An important use of hash functions is to protect integrity of data:

The problem of protecting integrity of data of arbitrary length is
reduced, using hash functions, to the problem to protect integrity of data
of fixed (and small) length hashes – of their fingerprints.

In addition, to send reliably a message w through an unreliable (and cheap)
channel, one sends also its (small) hash h(w) through a very secure (and
therefore expensive) channel.

The receiver, familiar also with the hash function h that is being used, can
then verify the integrity of the message w’ he receives by computing h(w’)
and comparing

h(w) and h(w’) .
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EXAMPLES

Example 1 For a vector a = (a1, . . . , ak) of integers let

H(a) =
kX

i=0

ai mod n

where n is a product of two large integers.

This hash functions does not meet any of the three properties mentioned on the last slide.

Example 2 For a vector a = (a1, . . . , ak) of integers let

H(a) =
kX

i=0

a2
i mod n

This function is one-way, but it is not weakly collision-free.
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FINDING COLLISIONS with INVERSION ALGORITHM

Theorem Let h : X → Z be a hash function where X and Z are finite and |X | ≥ 2|Z |. If
there is an inversion algorithm A for h, then there exists randomized algorithm to find
collisions.

Sketch of the proof. One can easily show that the following algorithm

1 Choose a random x ∈ X and compute z=h(x); Compute x1 = A(z);

2 if x1 6= x , then x1 and x collide (under h – success) else failure

has probability of success

p(success) =
1

|X |
X
x∈X

|[x ]| − 1

|[x ]| ≥ 1

2

where, for x ∈ X , [x] is the set of elements having the same hash as x.
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AN ALMOST GOOD HASH FUNCTION

We show an example of a hash function (so called Discrete Log Hash Function) that
seems to have as the only drawback that it is quite slow to be used in practice:

Let p be a large prime such that q = (p−1)
2

is also prime and let α, β be two primitive
roots modulo p. Denote a = logα β (that is β = αa).

h will map two integers smaller than q to an integer smaller than p, for
m = x0 + x1q, 0 ≤ x0, x1 ≤ q − 1 as follows,

h(x0, x1) = h(m) = αx0βx1 (mod p).

To show that h is one-way and collision-free the following fact can be used:

FACT: If we know different messages m1 and m2 such that h(m1) = h(m2), then we can
compute logα β.

prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 39/63



EXTENDING HASH FUNCTIONS

Let h : {0, 1}m → {0, 1}t be a strongly collision-free hash function, where m > t + 1.

We design now a strongly collision-free hash function

h∗ :
∞X

i=m

{0, 1}i → {0, 1}t .

Let a bit string x, |x | = n > m, have decomposition

x = x1‖x2 . . . ‖xk ,

where |xi | = m − t − 1 if i < k and |xk | = m − t − 1− d for some d.

(Hence k =
l n

(m − t − 1)

m
.)

h∗ will be computed as follows:

1 for i=1 to k-1 do yi := xi ;

2 yk := xk‖0d ; yk+1 := binary representation of d ;

3 g1 := h(0t+1‖y1) ;

4 for i=1 to k do gi+1 := h(gi‖1‖yi+1) ;

5 h∗(x) := gk+1.
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HASH FUNCTIONS from CRYPTOSYSTEMS

Let us have computationally secure cryptosystem with plaintexts, keys and cryptotexts
being binary strings of a fixed length n and with encryption function ek .

If

x = x1‖x2‖ . . . ‖xm

is decomposition of x into substrings of length n, g0 is a random string, and

gi = f (xi , gi−1)

for i = 1, . . . ,m, where f is a function that “incorporates” encryption functions ek of the
cryptosystem, for suitable keys k, then

h(x) = gm .

For example such good properties have these two functions:

f (xi , gi−1) = egi−1 (xi )⊕ xi

f (xi , gi−1) = egi−1 (xi )⊕ xi ⊕ gi−1
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PRACTICALLY USED HASH FUNCTIONS

A variety of hash functions has been constructed. Very often used hash
functions are MD4, MD5 (created by Rivest in 1990 and 1991 and
producing 128 bit message digest).

NIST even published, as a standard, in 1993, SHA (Secure Hash
Algorithm) – producing 160 bit message digest – based on similar ideas as
MD4 and MD5.

A hash function is called secure if it is strongly collision-free.

One of the most important cryptographic results of the last years was due
to the Chinese Wang who has shown that MD4 is not cryptographically
secure.

Observe that every cryptographic hash function is vulnerable to a collision
attack using so called birthday attack. Due to the birthday problem a
hash of n bits can be broken in

√
2n evaluations of the hash function -

much faster than brute force attack.
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MD5

Often used in practise has been hash function MD5 designed in 1991 by Rivest. It maps
any binary message into 128-bit hash.

The input message is broken into 512-bit block, divided into 16 words (of 32 bits) and
padded if needed to have final length divisible by 512. Padding consists of a bit 1
followed by so many 0’s as required to have the length up to 64 bits fewer than a
multiple of 512. Final 64 bits represent the length of the original message modulo 264.

The main MD5 algorithm operates on 128-bits word
that is divided into four 32-bits words A,B,C ,D
initialized to some fixed constants. The main
algorithm then operates on 512 bit message blocks in
turn - each block modifying the state.

The precessing of a message consists of four rounds,
j-th round is composed of 16 similar operations using
a non-linear function Fj and a left rotation by s
places where s varies for each round - see next figure.

A B C D

A B C D

M

K

F

s−shift

j

i

i
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HOW to FIND COLLISIONS of HASH FUNCTIONS

HOW to FIND COLLISIONS of HASH FUNCTIONS

The most basic method is based on so-called birthday
paradox related to so-called the birthday problem.
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BIRTHDAY PROBLEM and its VARIATIONS

It is well known that if there are 23 (29) [40] {57} < 100 > people in one
room, then the probability that two of them have the same birthday is
more than 50% (70%)[89%] {99%} < 99.99997% > — this is called a
Birthday paradox.

More generally, if we have n objects and r people, each choosing one object
(so that several people can choose the same object), then if
r ≈ 1.177

√
n(r ≈

√
2nλ), then probability that two people choose the same

object is 50% ((1− e−λ)%).

Another version of the birthday paradox: Let us have n objects and two
groups of r people. If r ≈

√
λn, then probability that someone from one

group chooses the same object as someone from the other group is
(1− e−λ).

prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 45/63



BASIC DERIVATIONS related to BIRTHDAY PARADOX

For probability p̄(n) that all n people in a room have birthday in different days, it holds

p̄(n) =
n−1Y
i=1

„
1− i

365

«
=

Qn−1
i=0 (365− i)

365n
=

365!

365n(365− n)!

This equation expresses the fact that in order no two persons share a birthday, the second
person cannot have the same birthday as the first one, third person cannot have the
same birthday as first two,.....

Probability p(n) that at least two person have the same birthday is therefore

p(n) = 1− p̄(n)

This probability is larger than 0.5 first time for n = 23.
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FINDING COLLISIONS USING BIRTHDAY PARADOX

If the hash of a hash function h has size n, then to a given x to find x ′ such that
h(x) = h(x ′) by brute force requires 2n hash computations in average.

The idea, based on the birthday paradox, is simple. Given x we iteratively pick a random
x ′ until h(x) = h(x ′). The probability that i-th trial is first to succeed is (1− 2−n)i−12−n;

The average complexity, in terms of hash function computations is therefore

∞X
i=1

i(1− 2−n)i−12−n = 2n.

To find collisions, that is two x1 and x2 such that h(x1) = h(x2) is easier, thanks to the
birthday paradox and can be done by the following algorithm:
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ALGORITHM

Input: A hash function h onto a domain of size n and a real θ
Output: A pair (x1, x2) such that x1 6= x2 and h(x1) = h(x2)

1. for θ
p

(n) different x do
2. compute y = h(x)
3. if there is a (y , x ′) pair in the hash table then
4. yield (x , x ′) and stop
5. add (y , x) in the hash table
6.Otherwise search failed

Theorem If we pick numbers with uniform distribution in {1, 2, . . . , n} θ
√

n times, then
we get at least one number twice with probability converging (for n→∞) to

1− e−
θ2

2

For n = 365 we get triples: (θ, θ
√

n, probability) as follows: (0.79, 15, 25%); (1.31, 25,
57%); (2.09, 40, 89%)
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HASH FUNCTION DOMAIN LOWER BOUND

Birthday paradox imposes a lower bound on the sizes of message digests
(fingerprints)

For example a 40-bit message would be insecure because a collision could
be found with probability 0.5 with just over 2020 random hashes.

Minimum acceptable size of message digest seems to be 128 and therefore
160 are used in such important systems as DSS – Digital Signature
Schemes (standard).
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APPENDIX
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WILLIAMS CRYPTOSYSTEM – BASICS

This cryptosystem is similar to RSA, but with number operations performed in a
quadratic field. Complexity of the cryptanalysis of the Williams cryptosystem is
equivalent to factoring.

Consider numbers of the form

α = a + b
√

c

where a, b, c are integers.
If c is fixed, α can be viewed as a pair (a, b).

α1 + α2 = (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

α1α2 = (a1, b1) · (a2, b2) = (a1a2+c b1b2, a1b2 + b1a2)

The conjugate α of α of a is defined by

α = a− b
√

c

Auxiliary functions: Xi (α) =
αi + α−i

2

Yi (α) =
b(αi − α−i )

(α− α)

„
=
α− αi

2
√

c

«
Hence

αi = Xi (α) + Yi (α)
√

c
αi = Xi (α)− Yi (α)

√
c

This means that exponentiation can be done fast in case computation of functions Xi

and Yi can be done fast.
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WILLIAMS CRYPTOSYSTEM – EFFICIENT EXPONENTIATION

Assume now
a2 − cb2 = 1

Then αα = 1 and consequently
XI

2 − cYI
2 = 1

Moreover, for j ≥ i
XI+J = 2XIXJ + XJ−1

YI+J = 2YIXJ + YJ−1

From these and following equations:
XI+J = 2XIXJ+cYIYJ

YI+J = 2YIXJ + XIYJ

we get the recursive formulas:
X2i = Xi

2 + cYi
2 = 2Xi

2 − 1
Y2i = 2XiYi

X2i+1 = 2XiYi+1 − X1

Y2i+1 = 2XiYi+1 − Y1

Consequences: 1. Xi and Yi can be, given i , computed fast.
Remark Since X0 = 1,X1 = a,Xi does not depend on b.
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WILLIAMS CRYPTOSYSTEM - BASIC LEMMAS

Congruences on numbers of type a + b
√

c are defined: a1 + b1
√

c ≡ a2 + b2
√

c(
mod n)⇔ a1 ≡ a2( mod n), b1 ≡ b2( mod n) Instead of a2 − cb2 = 1 we will consider
congruence a2 − cb2 ≡ 1( mod n)
Basic Lemma: Let n = p · q (both primes) and let a, b, c be such that a2 − cb2 ≡ 1 (
mod n). Moreover, let the Jacobi-Legendre symbols

εp = (c|p), εq = (c|q)

satisfy the congruence
εi ≡ −i( mod 4) for i ∈ {p, q}.

Assume also that gcd(cb, n) = 1 and (2(a + 1)|n) = 1.
Denote

m =
(p − εp)(q − εq)

4
and assume that e and d satisfy the congruence

ed ≡ (m + 1)

2
mod m.

Under these assumptions
α2ed ≡ ±α( mod n),

where
α = a + b

√
c

.
This lemma plays the same role in showing correctness of the Williams cryptosystem as
Euler’s theorem plays for showing correctness of the RSA cryptosystem.
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DESIGN of WILLIAMS CRYPTOSYSTEMS

Choose p, q, compute n = pq.
Choose c such that Jacobi-Legendre symbols εp, εq satisfy congruences of previous
lemma (c can be chosen by a trial).
Choose (by trial) a number s such that

(s2 − c|n) = −1, gcd(n, s) = 1.

Let m be as in Basic lemma and d be such that gcd(m, d) = 1 and let e be such that

ed ≡ (m + 1)

2
mod m.

Public key: n, e, c, s
Secret key: p, q,m, d
Encryption: A plaintext 0 < w < n will first be encoded as a number αw of the form
a + b

√
c.

Denote
b1 = 0, γ = w +

√
c if (w 2 − c|n) = 1

b1 = 1, γ = (w +
√

c)(s +
√

c) if (w 2 − c|n) = −1

In both cases:
(γγ̄|n) = 1.

Define: α = γγ̄−1 = γ
γ̄

(1) if b1 = 0, then α ≡ w2+c
w2−c

+ 2w
w2−c

√
c ( mod n)

(2) if b1 = 1 then α ≡ a + b
√

c where a = (w2+c)(s2+c)+4csw

(w2−c)(s2−c)
b = 2s(w2+c)+2w(s2+c)

(w2−c)(s2−c)

In both cases αᾱ = a2 − cb2 ≡ 1( mod n) and (2(a + 1)|n) = 1.

prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 54/63



DECRYPTION

Decryption: cryptotext: (E , b1, b2), where E = (Xe(α)Ye(α)−1 mod n), b2 ∈ {0, 1},
depending whether a is even or odd.
Decryption: Using E the receiver may compute:

α2e ≡ α2e

(αᾱ)e
≡ αe

ᾱe
=

Xe(α) + Ye(α)
√

c

Xe(α)− Ye(α)
√

c

≡ E +
√

c

E −
√

c
=

E 2 + c

E 2 − c
+

2E

E 2 − c

√
c( mod n)

(The above computation can perform also a cryptanalyst. Trapdoor is needed for the
next computation.)

α2ed = X2ed(α) + Y2ed(α)
√

c = Xd(α2e) + Yd(α2e)
√

c

Now all assumptions of Basic lemma are satisfied and, consequently

α2ed ≡ ±α( mod n)

b2 is then used to determine which of the above signs is correct.
w is now obtained as follows:
Denote:

α′ = αif b1 = 0and
s −
√

c

s +
√

c
ifb1 = 1

Then

α′ ≡ w +
√

c

w −
√

c
( mod n)

and

w ≡ α′ + 1

α′ − 1

√
c ( mod n)
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GLOBAL GOALS of CRYPTOGRAPHY

Cryptosystems and encryption/decryption techniques are only one part of modern
cryptography.

General goal of modern cryptography is construction of schemes which are robust against
malicious attempts to make these schemes to deviate from their prescribed functionality.

The fact that an adversary can design its attacks after the cryptographic scheme has
been specified, makes design of such cryptographic schemes very difficult – schemes
should be secure under all possible attacks.

In the next chapters several of such most important basic functionalities and design of
secure systems for them will be considered. For example: digital signatures, user and
message authentication,. . .

Moreover, also such basic primitives as zero-knowledge proofs, needed to deal with
general cryptography problems will be presented and discussed.

We will also discuss cryptographic protocols for a variety of important applications. For
example for voting, digital cash,. . .
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BLUM PRIMES and INTEGERS

An integer n is a Blum integer if n = pq, where p, q are primes congruent 3 modulo
4, that is primes of the form 4k + 3 for some integer k. Such primes are also called
Blum primes.

If n is a Blum integer, then each x ∈ QR(n) has 4 square roots and exactly one of
them is in QR(n) – so called principal square root of x modulo n.

Function f : QR(n)→ QR(n) defined by f (x) = x2 mod n is a permutation.
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UNIVERSAL HASHING SCHEMES

A universal hashing scheme is a randomized algorithm that selects a hashing function
among a family of hashing functions, in such a way that probability of collision of any
two distinct keys is 1/n, where n is the number of distinct hashes desired – independently
of the keys.

Universal hashing ensures - in a probabilistic sense - that the hash function application
will behave as if it were using a random function, for any distribution of the input data.

Theorem The family of functions emH = {ha | a ∈ {0, . . . ,m − 1}r+1, defined by the
formula

ha(u) =
rX

i=0

aiui mod m

is a universal family of hash functions mapping {0, . . . ,m − 1}r+1 into {0, . . . ,m − 1.
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